

Mark Scheme (Results)

Summer 2023

Pearson Edexcel International GCSE In Mathematics B (4MB1) Paper 02

Edexcel and BTEC Qualifications

https://britishstudentcoom.com Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

Summer 2023 Question Paper Log Number P72920A Publications Code 4MB1 02 2306 MS All the material in this publication is copyright © Pearson Education Ltd 2023

General Marking Guidance

- https://britishstudentcoom.com All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.

Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Types of mark

- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- cao correct answer only
- ft follow through
- isw ignore subsequent working
- SC special case
- oe or equivalent (and appropriate) 0
- dep dependent 0
- indep independent 0
- awrt answer which rounds to 0
- eeoo each error or omission \cap
- cas Correct answer scores full marks (unless from obvious 0 incorrect working)
- wr working required

No working

https://britishstudentcoom.com If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

With working

If the final answer is wrong always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the guestion has not been simplified. Examiners should send any instance of a suspected misread to review.

If there is a choice of methods shown, then award the lowest mark, unless the subsequent working makes clear the method that has been used.

If there is no answer achieved then check the working for any marks appropriate from the mark scheme.

Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

				https://
				S Britishstury
	1	1.		ور ا
Question	Working 260	Answer	Mark	Notes M1 compate calculation on aquation to find the number of
1(a)	$\frac{72}{360} \times 130 \text{ or } \frac{360}{130} x = 72 \text{ oe}$		2	red bricks
		26		A1 cas check the table for the answer
(b)	Bag Box		2	M1 for 2 correct probabilities.
	<u>6</u> <u>15</u> Green			Allow as decimals 0.62 (actual 0.61538), 0.6, 0.4, 0.6
	50 Green			
	130 Not green			
	80 - 15 Green			
	- 130 Not green			
	$-\frac{9}{15}$			
		Fully		A1 oe fully correct with exact probabilities
(c)	50 9 80 6	correct	2	2 16
	$\left \frac{30}{130}\times \frac{5}{15}\right + \frac{30}{130}\times \frac{5}{15}$ or			M1ft their Tree diagram. Allow $\frac{5}{13} + \frac{10}{65}$ May be seen on
				tree diagram at the end but must be added.
	$1 - \frac{50}{50} \times \frac{6}{6} - "\frac{80}{50}" \times "\frac{9}{5}"$			If tree diagram is incorrect they need to show working.
	130 15 130 15			
		31		A1 cas oe awrt 0.48 (actual answer 0.47692)
		65		ignore subsequent incorrect changes to decimal form
1				Total 6 marks

				https://https//https://https://https://https://https://https://https://https://https://https://https://https://https://https://https//https://
Qu	Working	Answer	Mark	Notes
2(a)	$\frac{1.3}{1.25}$ or $\frac{1.3-1.25}{1.25}$ oe		2	M1 Allow $\frac{1.3n - 1.25n}{1.25n}$ or 1.04 or 104
		4		A1 cas
(b)	1.3×1.2 or $1.30 + 0.2 \times 1.3$		2	M1 Condone 1.25×1.2 or $1.25 + 0.2 \times 1.25$
		1.56		A1 cas
(c)	0.28×300		2	M1
		84		A1 cas
(d)	$\frac{5}{3+5} \times (300 - "84") \text{ or}$ $(300 - "84") - \frac{3}{3+5} \times (300 - "84")$		2	M1 ft their answer to part (c)
		135		A1 cas
(e)	$(50 \times 0.3)[\times P = 15P]$ and $40 \times 0.6[\times P = 24P]$ oe		4	M1 working out the profit for the first 90 pumpkins where <i>P</i> can be omitted or can be any value (providing both have same value for <i>P</i>). Do not allow 30 % × 50 and /or 60% × 40 unless followed by $15P$ and $24P$ or $39P$
	$("135"-50-40) \times 0.9[\times P] [= 40.5P]$ oe			M1 working out the profit for the remaining pumpkins where P can be omitted or can be any value (providing same as value used for previous method). Ft their part (d) for indicating need 90% of ("their 135"-50-40) or 90% of 45P or 0.9×45 but do NOT allow 40.5 if it comes from incorrect working eg $0.3 \times 135 = 40.5$ which will be M0
				79.5 with no incorrect working will gain the 1 st and 2 nd M1
	$\frac{("39"P + "40.5"P)}{"135"P} [\times 100]$	50		M1 dep on both method marks awarded ft their part (d) <i>P</i> can be omitted or can be any value providing the same value throughout

			https://teritististu	~
				Chtro
	See next page for alternative for (e)		Total 12 marks	On.C
		-		On
ALT				

ALT				
(e)	$(50 \times 1.3)[\times C = 65C]$ and $40 \times 1.6[\times C = 64C]$ oe		4	M1 working out the selling price for the first 90 pumpkins where <i>C</i> can be omitted or can be any value (providing both have same value for <i>C</i>). Do not allow 130 % × 50 and /or 160% × 40 unless followed by 65 <i>C</i> and 64 <i>C</i> or 129 <i>C</i>
	$("135"-50-40) \times 1.9[\times C] [= 85.5C]$ oe			M1 working out the selling price for the remaining pumpkins where <i>P</i> can be omitted or can be any value (providing same as value used for previous method). Ft their part (d) for indicating need 90% of ("their 135"–50–40) or 190% of 45 <i>C</i> or 1.9×45 but 214.5 with no incorrect working will gain the 1 st and 2 nd M1
	$\frac{("129"C + "85.5"C)}{"135"C} [\times 100]$			M1 dep on both method marks awarded ft their part (d) <i>C</i> can be omitted or can be any value providing the same value throughout
		59		A1 awrt 59 (actual answer 58.888)

				hissi - I britishstu	dentroom.com/
Qu	Working	Answer	Mark	Notes	
3	9000×3+16000×23+27000×21+37000×34+51000×10 [=2730000]		4	 M2 for at least 4 correct products using midpoints with intention to add. Allow 27000 + 368000 + 567000 + 1258000 + 510000 or seeing 2730000 M1 for at least 4 products using frequency and a value within the interval with intention to add. Condone use of the lower class bound. at least 4 correct products using midpoints without adding. Allow consistent use of changed size of number eg 9×3+16×23+27×21+37×34+51×10 	
	$\frac{"2730000"}{3+23+21+10+34[=91]}$			M1 dep on M1 for forming an equation ft their product Allow consistent use of changed size of number	
				$\frac{9 \times 3 + 16 \times 23 + 27 \times 21 + 37 \times 34 + 51 \times 10}{\text{oe}}$	
				3+23+21+10+34	
		30000		A1 cas	
				Total 4 marks	

				https://britishstude
Ou	Working	Ans	Mark	Notes
4(a)	$\frac{360}{180 - 172} \text{ or } (2n - 4)90 = 172n \text{ oe}$		2	M1 A correct method or equation to find the number of sides $eg(n-2)180 = 172n$
		45		A1 cas
(b)	[UB =] 5.25 or [LB =] 5.15		6	B1 a correct upper or lower bound seen or used. Allow $\begin{bmatrix} UB_{2} \\ 2 \end{bmatrix} = 2.625 \text{ or } \begin{bmatrix} LB_{2} \\ 2 \end{bmatrix} = 2.575$
	$\tan(86) = \frac{h}{\text{UB}/2} \text{or} \tan(4) = \frac{\text{UB}/2}{h} \text{or} \frac{h}{\sin(86)} = \frac{\text{UB}/2}{\sin(4)}$			M1 for setting up an equation to find the height of the triangle (<i>h</i>) or side length (<i>S</i>) $s = \frac{s + \frac{1}{h}s}{\frac{1}{5.25}}$
	$\cos(86) = \frac{72}{S} \text{or} \sin(90 - 86[=4]) = \frac{72}{S} \text{or} \frac{5}{\sin(86)} = \frac{65}{\sin 8} \text{ or}$ $5.25^{2} = S^{2} + S^{2} - 2S^{2} \cos 8$			allow $5.1 \leq UB \leq 5.3$ or $2.55 \leq \frac{UB}{2} \leq 2.65$ condone if use $171.5 \leq angle \leq 172.5$
	$h = \frac{\text{UB}}{2} \tan(86) [= 37.539]$ or $h = \frac{\frac{\text{UB}}{2}}{\tan(4)}$ or $h = \frac{\frac{\text{UB}}{2}}{\sin(4)} \times \sin(86)$			M1 for correct method to find <i>h</i> or <i>S</i> Allow $5.1 \le \text{UB} \le 5.3 \text{ or } 2.55 \le \frac{UB}{2} \le 2.65 \text{ or}$
				awrt 37.5 or awrt 37.6
	$S = \frac{\frac{2}{2}}{\cos(86)} [= 37.63] \text{ or } S = \frac{\frac{2}{2}}{\sin(90-86)} [= 37.63] \text{ or } S = \frac{\text{UB}}{\sin(8)} \times \sin(86)$			If previous method mark is awarded allow for awrt $36.5 \le h \le$ awrt 37.9 or awrt $36.5 \le S \le$ awrt 40.0
	or $S = \sqrt{\frac{5.25^2}{2 - 2\cos(8)}}$			This mark implies the previous M1
	Area of triangle = $\frac{1}{2} \times UB \times h''$ [Area = 98.54] or $\frac{1}{2} \times h'' \times S'' \times \sin(4)$			M1 for finding the area of the triangle $s_{\frac{s}{\frac{1}{25}}}^{1}$
	or $\frac{1}{2} \times \text{UB} \times "S" \times \sin(86)$ or $\frac{1}{2} \times "S" \times "S" \sin(8)$			where $5.1 \leq UB \leq 5.3$ and $S < 5$ or $S > 5.5$ or $h < 5$ or
				h > 5.5 allow awrt 98.5
				ND $0.5 \times \text{UB} \times \text{UB} \sin 17218 \text{ MU}$

							https://britishseu	2
	or R =	$=\frac{\text{UB}+\text{UB}+S}{2}$ and $\sqrt{R(R-\text{UB})(R-UB$	<u>S)</u>					entroom
	Area o	$\frac{2}{100}$ of polygon = "45"×"98.54" or 2×"45"×"	49.27"			N	A1 dep on the 3 rd M mark being awarded	Com
					4430	А	1 dep on seeing 5.25 or 2.625 for UB throughout awrt 4430	
		XX7. 1 •	A	34.1			Total 8 marks	
Quest	tion	Working	Answer	Mark	Notes M111			
5(a)		y = 5 drawn		2		e drawn	l	
(b)			-0.4, 2.4	2	AI P2 for	· all 2 ac	prost Allow 2 275 / 1 125	
(0)			5.56, 1, 113	2	(B1 fo)	$r^2 corr$	ect we will allow $3.4 \text{ or } 3.3 \text{ or } 3.37 \text{ for } 3.38 \text{ and } 1.1 \text{ or } 1.123$	
			1.15		(D110	12 for 1	13 for B1 only)	
(c)			Correct	2	B2 F	$\frac{12}{101}$ ully cor	rect graph.	
			graph		(B1 Al	ll points	plotted correctly or 4 points plotted correctly with	
			drawn		smootl	h line j	oining them.) if you are unable to see the points then	
					allow i	if the lin	es goes through them within/on the circles.	
(d)(i)			(1.8, 3.7)	1	B1 ft t	heir graj	ph allow values within ± 0.1 (inclusive) or allow "their	
			and (-0.8,		values	" within	n±0.1 (inclusive)	
			2.4)		ignore	incorre	ct extras	
(ii)		"3.7"-"2.4"		3	M1 co	rrect me	thod to find the gradient (allow figures within ±0.1	
		$m = \frac{1}{1.8 - (-0.8)}$ or			(inclus	sive)) or	$y = (values within 0.5 \pm 0.1 (inclusive)) x \pm or their$	
		y = 0.5x +			coordi	nates wl	nich may be from part(d)(i) or any coordinates on	
					their li	ne from	the graph. Full working for finding the gradient from	
					2 point	ts must	be seen if line is incorrect.	
		y =x + 2.8 or			M1 po	int of in	tersection with y-axis (ft values within ± 0.1	
		v = "37" = "3.7" - "2.4" (r = "1.8")			(inclus	ive) wh	ere their line crosses <i>y</i> -axis) or	
		$\int y = 3.7 - \frac{1.8}{1.8} - \frac{(-0.8)}{(-0.8)} \left(x - 1.8\right)$			<i>y</i> ₁ = "0	$.5'' \times x_1 +$	<i>c</i> where (x_1, y_1) is a point on their line or	
					y =	x + (val)	ues within 2.8 ± 0.1 (inclusive)) or	
					correc	t equati	on for their coordinates if working shown	
			y = 0.5x + 2.8	\$	A1 allo	ow any	value in the ranges $0.4 \le m \le 0.6$ and / or $2.7 \le c \le 2.9$	
					Allow	fraction	s providing they lie in the range	

	https://britishstu	~
	Total 10 marks	Ontro
		OR.COM

Question	Working	Answer	Mark	Notes
6(a)		19	1	B1
(b)(i)		9	1	B1
(ii)		41	1	B1
(iii)		35	1	B1
				SC for (b) answers of (i) 2, (ii) 6, (iii) 5
				Allow B1 for all 3 of these values – mark as 100 for(i) and 0 for
				(ii) and (iii).
(c)	$\frac{3+4}{12+6+3+4}$		2	M1 Allow $\frac{7}{n}$ with (integer n) > 7 or $\frac{m}{25}$ with (integer m) < 25
				but must see the 7 or 25 in the fraction
		7		A1 cas oe Do not allow 0.28
		25		
				Total 6 marks

Question	Working	Answer	Mark	Notes
7(a)		15	1	B1
(b)	y(x+3) = 5x-4 or $x(y+3) = 5y-4$ oe		3	M1 for multiplying by $(x + 3)$ other letters may be
				used. Condone missing brackets if recovered
	xy - 5x = -3y - 4 or			M1 Isolating term in x. Other letters may be used
	xy - 5y = -3x - 4oe			Allow 1 sign error. This implies the previous method
				mark
		$\left[h^{-1}:x\mapsto\right]\frac{-3x-4}{x-5}$		A1 cas oe eg $\frac{3x+4}{5-x}$ must be in terms of x Do not ISW
(c)	$\left(1+\frac{2}{x}\right)^2 - 2\left(1+\frac{2}{x}\right)_{\text{or}}$		4	M1 correct expression for $fg(x)$ or $f^{-1}(x) = \sqrt{x+1} + 1$
	$\left(\frac{x+2}{x}\right)^2 - 2\left(\frac{x+2}{x}\right)$			
	$\left(1 + \frac{4}{x} + \frac{4}{x^2}\right) \operatorname{or} \left(1 + \frac{4}{x} + \left(\frac{2}{x}\right)^2\right)$			M1 dep on 1 st M1 being awarded. Correct method to multiply out the squared brackets leading to 3 or 4
	$\left(\frac{x^2+4x+4}{2}\right)$			terms or correct expression for $\left[f^{-1}(g)=\right]\sqrt{\frac{x}{54}+1-1}$ +1
	$\begin{pmatrix} x^2 \end{pmatrix}$			oe
	$\frac{4}{x} = \frac{x}{x}$ or $\frac{4}{x} = \frac{x}{x} = 0$			M1for simplifying down to get a correct equation with
	$\int \frac{x^2}{x^2} - \frac{54}{54} = $			a maximum of 2 algebraic terms eg $4 = \frac{x^3}{54}$ or a
				correct expression for x
		6		A1 cas Allow $x = \sqrt[3]{216}$
				Total 8 marks

https://britishstudentroom.com/

Qu	Working	Answer	Mark	Notes
8	$\angle ABC = 90^{\circ}$		7	M1 using circle theorem. May be seen on diagram with right angle symbol or 90°
	[let $x = BC$ then]			M1 using Pythagoras where AB is 2 less than BC eg
	$\left[AC^2\right]x^2 + (x-2)^2 \text{ or }$			[let $y = AB$ then] $\left[AC^2 = \right]y^2 + (y+2)^2$ or $\left[BC^2 = \right] \left(\frac{5}{4}(y+2)\right)^2 - y^2$ Allow if square
	$\left[BC^{2} = \right] \left(\frac{5}{4}x\right)^{2} - (x-2)^{2} \text{ or }$			rooted or if finding angles must clear which angle 4/5 is.
	$\cos \angle ACB = \frac{4}{5} \text{ or } \sin \angle CAB = \frac{4}{5}$			This implies the previous method mark
	$\sin \angle ACB = \frac{3}{5} \text{ or } \cos \angle CAB = \frac{3}{5}$			Note that Students may use BC or any letter instead of x throughout the question
	$(x-2)^2 + x^2 \leq \left(\frac{5}{4}x\right)^2$ or			M1 Allow any inequality or = sign. For using $AB^2 + BC^2 \leq \left(\frac{5}{4}BC\right)^2$ where AB is 2 less than
	$4^{(4)}$			BC and all 3 terms are in terms of the same letter. Allow if square rooted eg
	$\cos \angle CAB = \frac{4(x-2)}{5x} \text{ or }$			$\sqrt{\left(x-2\right)^2+x^2} \leqslant \frac{5}{4}x \text{ or } y^2 + \left(y+2\right)^2 \leqslant \left(\frac{5}{4}\left(y+2\right)\right)^2 \text{ (implies the previous M mark) or for}$
	$\sin \angle ACB = \frac{4(x-2)}{5x}$			$\frac{4(x-2)}{5x}$ seen. If $x^2 + (x-2)^2$ oe seen allow their multiplied out version. Condone $\frac{5}{4}x^2$
	$7x^2 - 64x + 64 \le 0$ or			M1 Allow any inequality or = sign. reducing to a correct 3 term quadratic eg
	4(x-2) 3			$\frac{7}{16}x^2 - 4x + 4 \leq 0$. No need for ≤ 0 eg $7y^2 - 36y \leq -36$ or setting up a correct
	$\left \frac{-\sqrt{x^2-y}}{5x} \leqslant \frac{z}{5} \right $ oe			linear equation. Implies the previous 3 method marks
	$(7x-8)(x-8) \le 0$ or			M1 eg $(7y+6)(y-6) \leq 0$ correct method to solve their 3TQ – Must multiply out to give 2
	4(x-2) = 3x			of their terms. Allow use of correct formula or completing the square/ Allow 1 sign error

https://britishstudentroom.com/

[[https://britishstuden
			fo	or both r	nethods. Working must be shown if quadratic is incorrect Implied by $[x=]\frac{6}{7}$ or 8 $\frac{6}{7}$ or 6 or remove x from the denominator to form a correct linear equation
	$x \leqslant 8$		M n	1 for the formal $\leq x \leq x$	The single inequality $x \le 8$ on its own with no other given. For $x \le 8$ allow 8 (or $x \ge n$ and $x \le 8$) where $0 < n < 8$ Allow < for \le
-	2	$2 < x \leq 8$	А	1 cas	Total 7 marks
Qu	Working	Answer	, 	Mark	Notes
9(a)	$3(-4)^{3} + a(-4)^{2} - 20(-4) + b = 0 \text{ or}$ $3(2)^{3} + a(2)^{2} - 20(2) + b = 0$			3	M1 substituting in -4 or 2 and equating to 0 (the equating to 0 may be implied when linear equations formed) Do not condone missing brackets around (-4) unless recovered.
	$16a + b = 112 \ 16a + b = 112$ $4a + b = 16 \qquad 4a + ("112 - 16a") = 16$				A1 2 simplified linear equations - one must be correct but we will allow one error only in the other one
		a = 8 and	b = -16		A1wr dep on M1 This mark will imply the previous A mark
					SC $a = 8$ and $b = -16$ with no working or no method mark awarded award B2
(b)	(2x-3)			5	B1 $(2x-3)$ seen or used
	$4x^2 \pm nx - 2$				M1 for a quadratic with any value of <i>n</i> seen. Allow multiples
	$4x^2 - 3x - 2$				A1 for a correct quadratic seen. Allow multiples
	$x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4 \times 4 \times (-2)}}{2 \times 4}$				M1 dep on the 1 st M1 for correctly solving their 3 term quadratic. Condone missing brackets around the -3. Allow simplified as far as $x = \frac{3 \pm \sqrt{9+32}}{8}$ oe
					Allow completing the square. $4\left(\left(x-\frac{3}{8}\right)^2-\left(\frac{3}{8}\right)^2-\frac{1}{2}\right)$ or $4\left(x-\frac{3}{8}\right)^2-\left(\frac{9}{16}\right)-2$ oe
		$x = \frac{3}{2}$	$\frac{\pm\sqrt{41}}{8}$		A1wr dep on B1 and 2 M awarded – needs to be simplified ignore subsequent changes to decimal form if exact form seen. Ignore extra root of 3/2
					Total 8 marks

						trips://biiishs	Ĩu.
ALT (b)	$\left(x-\frac{3}{2}\right)$			В	$B1\left(x-\frac{3}{2}\right)$	seen or used	dentroom.co
	$8x^2 \pm mx - 4$			N	A1 allow r	nultiples eg $4x^2 \pm mx - 2$	m.
	$8x^2 - 6x - 4$			A	A1 allow n	nultiples eg $4x^2 - 3x - 2$	
	$x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \times 8 \times (-4)}}{2 \times 8}$			Ν	A1 dep on	the 1 st M1 Allow simplified as far as $x = \frac{6 \pm \sqrt{36 + 128}}{16}$	
		$x = \frac{3 \pm \sqrt{8}}{8}$	/41	A iş	1 wr dep o gnore subs	on B1 and 2 M awarded sequent changes to decimal form if exact form seen	
Qu	Working		Aı	nswer	Mark	Notes	
10(a) (b) (c)			Rotation 90° clockwis Centre (3, 2 Correct triang drawn (-3, 4) ((6, 1) Correct triang drawn (3, -6) (5, -6) (6		3 4) 2 -5) 2	 B1 condone rotated. Do not allow if multiple transformations given. Multiple transformation are when more than one of reflection, rotation (turn), translation(move), enlargement(stretch/squash) is stated. Giving an equation of a line, SF, vector does not count as multiple transformations B1allow 270 anticlockwise B1allow for just (3, 2) B2 Fully correct triangle drawn (B1 for triangle drawn with same orientation and sides 3 times the length of <i>A</i> (implies SF of 3 used) or 2 correct points plotted) B2 Fully correct triangle drawn (B1 2 correct points plotted or triangle reflected in any horizontal line) 	
(d)	$\mathbf{N} = \begin{pmatrix} k & 1 \\ k^2 - 1 & k \end{pmatrix} \begin{pmatrix} -k & 1 \\ k - 3 & 0 \end{pmatrix}$ $\mathbf{N} = \begin{pmatrix} -k^2 + k - 3 & k \\ -k^3 + k + k^2 - 3k & k^2 - 1 \end{pmatrix}$ $Det \mathbf{N} =$				7	M1 matrices in terms of k in correct order. Implied by fully correct matrix for N M1 for a 2 by 2 matrix with at least 2 correct entries If matrices in incorrect order it gives $\begin{pmatrix} -1 & 0 \\ k^2 - 3k & k - 3 \end{pmatrix}$ allow for at least 2 non zero entries correct M1 Correct method for determinant of their 2 x 2 matrix	
	$(-k^{2}+k-3)(k^{2}-1)-k(-k^{3}+k+k^{2})$	-3k)				ft their matrix N (need not be labelled) as long as at least 2 entries in the matrix are in terms of k (Allow max of 1 zero)	

			hites://brite
	$-k^{4} + k^{3} - 3k^{2} + k^{2} - k + 3 + k^{4} - k^{2} - k^{3} + 3k^{2} = 2$		M1 dep on previous M being awarded for equating their det to 2
	k = 1		A1 dep on 1 st M1 this does not imply the previous marks
	$\mathbf{N} = \begin{pmatrix} "-1^{2} + 1 - 3" & "1" \\ "-1^{3} + 1 + 1^{2} - 3 \times 1" & "1^{2} - 1" \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 2 \end{pmatrix}$		M1 ft their value of k and their 2×2 matrix N Must show working if k is incorrect. Points can be in any order. May be implied by correct points
		(-1, -2), (-3, -2), (-1, 0)	A1 dependent on all previous marks being awarded. Allow $\begin{pmatrix} -1 & -3 & -1 \\ -2 & -2 & 0 \end{pmatrix}$ or correct triangle drawn. Points can be in any order
	NEXT PAGE for alternative method for (d)		Total 14 marks
ΔΙΤ	Use the MS that gives the highest mark. but do no	ot use both	
(d)	[Det] P = $-(k-3)$ and [Det] Q = $(k^2 - k^2 + 1)$		M1Correct method for determinant of their P and Q Working shown or clearly labelled P and Q
	Det N = $-(k-3) \times (k^2 - k^2 + 1)$		M1dep on 1^{st} M1being awarded. For multiplying their det P by det Q
	$-(k-3) \times (k^2 - k^2 + 1) = 2$ oe		M1dep on previous M being awarded for equating their det to 2 eg -k+3=2
	k = 1		A1dep on 2 nd M1 this does not imply the previous marks
	$ \begin{pmatrix} -k & 1 \\ k-3 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 \\ -1 & 0 & 2 \end{pmatrix} = \begin{pmatrix} -1 & -k & -k+2 \\ 0 & k-3 & k-3 \end{pmatrix} $ or $ \begin{pmatrix} k & 1 \\ k^2 - 1 & k \end{pmatrix} \begin{pmatrix} -k & 1 \\ k-3 & 0 \end{pmatrix} = \begin{pmatrix} -k^2 + k - 3 & k \\ -k^3 + k + k^2 - 3k & k^2 - 1 \end{pmatrix} $		M1 for attempt to multiply matrices. Must be a 2 by 3 or a 2 by 2 matrix and have at least 2 correct entries in terms of <i>k</i> or with their <i>k</i> value substituted. Points can be in any order If $k = 1$ then matrices are $\begin{pmatrix} -1 & -1 & 1 \\ 0 & -2 & -2 \end{pmatrix}$ or $\begin{pmatrix} -3 & 1 \\ -2 & 0 \end{pmatrix}$
	$ \begin{pmatrix} k & 1 \\ k^{2} - 1 & k \end{pmatrix} \begin{pmatrix} -k & 1 \\ k - 3 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 \\ -1 & 0 & 2 \end{pmatrix} $		M1 matrices in correct order with either k or their k value substituted $eg \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ -2 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 \\ -1 & 0 & 2 \end{pmatrix}$ may be done in steps Points can be in any order. May be implied by correct points
		(-1, -2), (-3, -2), (-1, 0)	A1 dependent on all previous marks being awarded. Allow $\begin{pmatrix} -1 & -3 & -1 \\ -2 & -2 & 0 \end{pmatrix}$ or correct triangle drawn. Points can be in any order

hites://britishstudentcon.com/

				https://britishsr.	
Question	Working	Answer	Mark	Notes	Er.
11(a)	10 or $\pm 12t$		2	M1 one non zero term correct	on.c.
		10 - 12t		A1 cas	m
(b)	"10 - 12t" = 0		2	M1 ft for equating their expression in <i>t</i> from part (a) to 0	
		5		A1 cas oe awrt 0.83	
		6		ignore subsequent changes to decimal form if a correct exact form	
				seen	
(c)	$0 = 4 + 10t - 6t^2$		5	M1 for equating $4+10t-6t^2$ to 0	
				This may be awarded if seen in part (b) This could be implied by gaining	
				either 2 or $-\frac{1}{3}$ as a solution	
	$d = 4 \times "2" + 5 \times "2"^{2} - 2 \times "2"^{3} [= 12]$			M1 substituting a positive time into d Working m ust be seen if t is incorrect. This can be any value including 5/6	
	$d = 4 \times 2 + 5 \times 2^2 - 2 \times 2^3 [-12]$ or			M1 substituting $t = 2$ in to find the distance travelled. d or	
				for realising $20 = k + d$	
	20 = k + d			M1 Catting and the exacting and and archatitating (2	
	$20 = k + 4 \times 2 + 5 \times 2^2 - 2 \times 2^3$			M1 Setting up the equation using d and substituting $t = 2$	
		8		A1 cas	
				Total 9 marks	

				https://britishstu	
Question	Working	Answer	Mark	Notes	ntro
12(a)	$\begin{bmatrix} \overrightarrow{OC} = \\ \overrightarrow{OC} = \end{bmatrix} 3\mathbf{a} + \frac{1}{3}(15\mathbf{b} - 3\mathbf{a}) \begin{bmatrix} = 2\mathbf{a} + 5\mathbf{b} \end{bmatrix} \mathbf{Or}$ $\begin{bmatrix} \overrightarrow{OC} = \\ \overrightarrow{OC} = \end{bmatrix} 15\mathbf{b} + \frac{2}{3}(3\mathbf{a} - 15\mathbf{b}) \begin{bmatrix} = 2\mathbf{a} + 5\mathbf{b} \end{bmatrix} \mathbf{Or}$ $\begin{bmatrix} \overrightarrow{OC} = \\ -3\mathbf{a} - \frac{1}{3}(15\mathbf{b} - 3\mathbf{a}) \begin{bmatrix} = -2\mathbf{a} - 5\mathbf{b} \end{bmatrix}$		3	M1 A correct method to find \overrightarrow{OC} or \overrightarrow{CO} May be embedded in \overrightarrow{BN} condone \overrightarrow{OC} for \overrightarrow{CO}	Som.com
	$\begin{bmatrix} \overrightarrow{BN} = \\ -15\mathbf{b} + \frac{3}{4}("2\mathbf{a} + 5\mathbf{b}")\mathbf{or}$ $\begin{bmatrix} \overrightarrow{BN} = \\ -\frac{1}{4}("2\mathbf{a} + 5\mathbf{b}") + \frac{2}{3}(3\mathbf{a} - 15\mathbf{b})\mathbf{or}$ $\begin{bmatrix} \overrightarrow{BN} = \\ -10\mathbf{b} + \frac{1}{4}("-2\mathbf{a} - 5\mathbf{b}") \end{bmatrix}$			M1 Correct method to find \overrightarrow{BN} or \overrightarrow{NB} Allow any correct method ft their \overrightarrow{OC} condone \overrightarrow{BN} for \overrightarrow{NB}	
		$\frac{3}{2}\mathbf{a} - \frac{45}{4}\mathbf{b}$		A1 cas oe	

		https://teritishsture
(b) $\overrightarrow{OM} = 3\lambda \mathbf{a} \text{ or } \overrightarrow{OM} = \mu \mathbf{a}$	5	$ \begin{array}{c} & & & \rightarrow & \rightarrow & \rightarrow \\ & & & & M \\ & & & &$
$\begin{cases} eg \\ \overrightarrow{OM} = 15\mathbf{b} + \beta \left(\frac{3}{2}\mathbf{a} - \frac{45}{4}\mathbf{b} \right) \mathbf{or} \\ \overrightarrow{AM} = -3\mathbf{a} + 15\mathbf{b} + \varphi \left(\frac{3}{2}\mathbf{a} - \frac{45}{4}\mathbf{b} \right) \mathbf{or} \\ using \overrightarrow{MN} = \overrightarrow{MO} + \overrightarrow{ON} \text{ gives } \gamma \left(-3\lambda\mathbf{a} + 15\mathbf{b} \right) = 3\lambda\mathbf{a} + \frac{3}{4} \left(\mathbf{''2a} + 5\mathbf{b''} \right) \\ using \overrightarrow{OM} = \overrightarrow{OB} + \overrightarrow{BM} \text{ gives } 3\lambda\mathbf{a} = 15\mathbf{b} + \beta \left(\mathbf{''}\frac{3}{2}\mathbf{a} - \frac{45}{4}\mathbf{b''} \right) \\ using \overrightarrow{OM} = \overrightarrow{ON} + \overrightarrow{NM} \text{ gives } 3\lambda\mathbf{a} = \frac{3}{4} \left(\mathbf{''2a} + 5\mathbf{b''} \right) + \alpha \left(\mathbf{''}\frac{3}{2}\mathbf{a} - \frac{45}{4}\mathbf{b''} \right) \\ using \overrightarrow{BA} = \overrightarrow{BM} + \overrightarrow{MA} \text{ gives } 3\mathbf{a} - 15\mathbf{b} = \mu \left(\mathbf{''}\frac{3}{2}\mathbf{a} - \frac{45}{4}\mathbf{b''} \right) + 3\lambda\mathbf{a} \end{cases}$		M1 A correct method to find a second expression for \overrightarrow{OM} or \overrightarrow{MO} $\overrightarrow{OM} = \overrightarrow{A}$ (has to be the same vector as for M1) eg $\overrightarrow{OM} = \frac{3}{4} ("2\mathbf{a} + 5\mathbf{b}") + \alpha ("\frac{3}{2}\mathbf{a} - \frac{45}{4}\mathbf{b}")$ or using resultant vectors using \overrightarrow{OM} or \overrightarrow{MO} or \overrightarrow{AM} or \overrightarrow{MA} to gain an equation in terms of \mathbf{a} and \mathbf{b} or for 2 correct expressions in terms of \mathbf{a} and \mathbf{b} for the same vector with at least one involving \overrightarrow{OM} or \overrightarrow{MO} or \overrightarrow{AM} or \overrightarrow{MA} eg $\overrightarrow{OB} = 15\mathbf{b}$ and $\overrightarrow{OB} = 3\lambda\mathbf{a} - \beta ("\frac{3}{2}\mathbf{a} - \frac{45}{4}\mathbf{b}")$
eg $15 - \frac{45}{4}\beta = 0 \left[\Rightarrow \beta = \frac{4}{3} \right]$ or $\frac{15}{4} - \frac{45}{4}\alpha = 0 \left[\Rightarrow \alpha = \frac{1}{3} \right]$		M1 equating coefficients of b eg $15 = \frac{45}{4}\beta = 0 \left[\Rightarrow \beta = \frac{4}{3} \right]$
\rightarrow $OM = 2a$		$\rightarrow \rightarrow$ A1 Correct vector for <i>OM</i> or <i>AM</i> Implied by correct ratio
	2:1	A1 dependent on at least one method mark being awarded.
		ft their \overrightarrow{OM} or \overrightarrow{AM} providing it is < 3a Allow equivalent eg 4:2
		NB If they gain any method mark then get 2 : 1 is full marks
		Total 8 marks

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom hittes://britishstudentroom.com/