

Mark Scheme (Results)

Summer 2023

Pearson Edexcel International GCSE In Mathematics B (4MB1) Paper 01R PRIDS:// BRITISHSHIDERHOOM.COM

Edexcel and BTEC Qualifications

https://britishstudentroom.com Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

January 2023 Question Paper Log Number P72917A Publications Code 4MB1 01R 2306 MS All the material in this publication is copyright © Pearson Education Ltd 2023

General Marking Guidance

- https://britishstudentroom.com All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.

Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Types of mark

- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- cao correct answer only
- ft follow through
- isw ignore subsequent working
- SC special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- awrt answer which rounds to 0
- eeoo each error or omission \cap

No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

With working

hittes -- Ibritishstudentroom.com If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question: eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review.

If there is a choice of methods shown, mark the method that leads to the answer on the answer line; where no answer is given on the answer line, award the lowest mark from the methods shown.

If there is no answer on the answer line then check the working for an obvious answer.

Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

_								https://britishste
Ques	tion	Workin	g			Answer	Mark	Notes Concertainty and the second sec
1		Two from	m				2	M1 for correct prime factors for 12 and one of 14 or 15. We are
		$12 = 2^2 \times$	<3(or 12	$2 = 4 \times 3$),	$14 = 2 \times 7$ or			accepting $12 = 4 \times 3$ (may be seen on factor tree)
		$15 = 3 \times 5$	5					or a list of at least 5 multiples including 420 for 12 and one of 14 or
		or						15
			12	14	15			or
		2	6	7				Use of table method for 12 and one of 14 or 15. Do not need all the
		2	3					rows but the final number in the columns should be prime eg
		3	1		5			12 14 15
		5			1			3 4 5
		7		1				
		or		•	<u>i</u>			
		15	12	14				or Venn diagram for 12 and one of 14 or 15
		5 (3	$3 2 \left(2 \right)$	7				$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
			<u> </u>			420	-	$\frac{1}{1} = 10^{10} = 2^2 = 2 = 5 = 7 = 2 = 2 = 2 = 2 = 5 = 7$
		working	g require	a		420		Alloe ISW eg $2^{-} \times 3 \times 5 \times 7$ of $2 \times 2 \times 5 \times 5 \times 7$
								Total 2 marks

Question	Working	Answer	Mark	Notes
2	$\frac{\frac{6}{5} \times \frac{7}{12}}{Working required}$	$\frac{6^{1}}{5} \times \frac{7}{12_{2}} = \frac{7}{10}$ or $\frac{1}{5} \times \frac{7}{2} = \frac{7}{10}$ or $\frac{42}{60} = \frac{7}{10}$	2	M1 Correct multiplication of an improper fraction. $ALT[1\times]\frac{7}{12} + \frac{1}{5} \times \frac{7}{12}$ A1 cao dep on M1 scored and must see one of cancelling fractions prior to multiplication or a correct uncancelled single fraction eg $\frac{-6}{5} \times \frac{7}{+2_2} = \frac{7}{10} \text{ or } \frac{7}{5\times 2} = \frac{7}{10} \text{ for ALT method allow}$ $\frac{35}{60} + \frac{7}{60} = \frac{7}{10} \text{ ISW}$ Total 2 marks
				I otal 2 marks

				https://british	Stud
Question	Working	Answer	Mark	Notes	Chitroo,
3 (a)		$8x^2$	1	B1 cao Do not ISW	n.con
(b)		$6y^5$	1	B1 cao Do not ISW	2
				Total 2 marks	

Question	Working	Answer	Mark	Notes
<u>4</u> (a)			1	B1 cao two lines(allow dashed or dotted) joining opposite corners drawn on diagram. No extra incorrect lines must be drawn unless clearly crossed out
(b)		3	1	B1 cao must be a single number
				Total 2 marks

Question		Working	Answer	Mark	Notes
5	(a)		38, 45	1	B1 Ignore extra terms. Accept 45, 38
	(b)		80	1	B1
					Total 2 marks

Quest	tion	Working	Answer	Mark	Notes
6		(x-7)(x+2)		2	M1 Factorised form must expand to give 2 terms of the quadratic. eq $(x-2)(x+7) = x^2 + 5x - 14$
			(x-7)(x+2) or $(x+2)(x-7)$		A1 Do not ISW This must be the answer on the answer line or if no answer on the answer line their final answer which may be shown for example by circling or underlining.
					Total 2 marks

					hitos://britishstude	8. 7 x
Question		Working	Answer	Mark	Notes	100
7	(a)		5	1	B1 cao no other numbers must be given	7.Con
	(b)	2,3,5,5,5,7,8,9,10,11		2	M1 place numbers in order (at least 6 with none missing) or sight of	2
					$\frac{5+7}{2}$	
					May be seen in part (a) or in question. Allow with signs eg + between	
		Correct answer scores full marks (unless	6		A1 cao	
		from obvious incorrect working)				
					Total 3 marks	

Quest	ion	Working	Answer	Mark	Notes
8		$360 \div 24 = 15$ oe or $24 \times 180 - 360 = 3960$ or $(2 \times 24 - 4) \times 90 = 3960$ or $(24 - 2) \times 180 = 3960$ oe		3	M1 for a correct method to find an exterior angle or total of the interior angles. Implied by seeing 15 or 3960 or 165
		$180 - "15" \text{ or } \frac{"3960"}{24} \text{ oe}$			M1 dep on M1 correct method to find one interior angle. This may be implied by seeing 165
		Correct answer scores full marks (unless from obvious incorrect working)	165		A1 cao do not ISW This must be the answer on the answer line or if no answer on the answer line their final answer which may be shown for example by circling or underlining.
					Total 3 marks

Quest	ion	Working	Answer	Mark	Notes
9		$T^2 = \frac{2r}{g}$ or $T^2g = 2r$ or $\sqrt{g} = \frac{\sqrt{2r}}{T}$		2	M1 correctly remove square root sign or make root g the subject.
		Correct answer scores full marks (unless from obvious incorrect working)	$g = \frac{2r}{T^2}$		A1 cao Condone missing "g =" on answer line if fully correct expression seen in working. Allow $g = \left(\frac{\sqrt{2r}}{T}\right)^2$ or $g = 2rT^{-2}$
					Total 2 marks

					https://britishs	iter and the second
Ques	tion	Working	Answer	Mark	Notes	entroo,
10		$x^{2}(3x+1) = 3x^{3} + x^{2}$		3	M1 correct expansion of brackets before	n.com
					differentiating. eg $3x^3 + 1x^2$	
		$\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right] = 20x^3 + 9x^2 + 2x$			M1 at least one correct term	
		<i>Correct answer scores full marks (unless from obvious incorrect working)</i>	$20x^3 + 9x^2 + 2x$		A1 oe eg $20x^3 + 9x^2 + 2x^1$	
					Total 3 marks]

Ques	tion	Working	Answer	Mark	Notes
11		$\frac{120}{360}\pi r^2 = 48\pi \left[\Rightarrow r = 12 \right]$		3	M1 for forming an equation involving the radius using the given area. eg $\frac{1}{3}\pi r^2 = 48\pi$ or $\frac{1}{3}r^2 = 48$
		$[\text{Arc length} =]\frac{120}{360} \times 2\pi \times "12" [= 8\pi]$			M1 Find an expression for the arc length <i>ABC</i> , ft their radius. Allow awrt 25.1 May be seen as part of working eg $\frac{1}{3} \times 2 \times \pi \times "12" + 2 \times "12"$ where 12 is their radius
		Correct answer scores full marks (unless from obvious incorrect working)	8 <i>π</i> +24		A1 oe eg 8(3+ π) allow awrt15.6 π (need not be simplified) eg $\frac{120}{360} \times 2\pi \times 12 + 12 + 12$ ISW
					Total 3 marks

					https://britististudent	
Ques	tion	Working	Answer	Mark	Notes	3
12		eg $2(x+2)+3(x-3)=60$ or		3	M1 Clear intention to multiply all terms by a multiple of 12	Com
		4(x+2)+6(x-3)=120 or			of one incorrect term if the brackets are expanded or	-
		$\frac{2(x+2)}{12} + \frac{3(x-3)}{12} [=5] \text{ or} \\ \frac{4(x+2)}{24} + \frac{6(x-3)}{24} [=5] \text{ or}$			express the LHS as two fractions over a multiple of 12 or as a single fraction with a denominator which is a multiple of 12 eg $\frac{2(x+2)+3(x-3)}{12} = 5$ If correct expression with brackets in is not seen allow a maximum of one incorrect term if the brackets are expanded No need for = 5 or	
		$\frac{x}{6} + \frac{1}{3} + \frac{x}{4} - \frac{3}{4} [=5] \text{ oe}$			expressing the LHS as 4 fractions. No need for $= 5$	
		5x = 60 - 4 + 9 or 10x = 120 - 8 + 18			M1 indep for a correct equation with the terms in x combined	
		$\frac{5x}{12} = 5 - \frac{1}{3} + \frac{3}{4}$ oe			$eg\frac{5x-5}{12} = 5 \text{ or } 5x = 65 \text{ or } \frac{5}{12}x = \frac{65}{12}$	
		Working required	<i>x</i> = 13		A1 dependent on at least one M mark being awarded	
					Total 3 marks	

					https://british	
Ques	tion	Working	Answer	Mark	Notes	dentroo.
13			<i>p</i> = 15	3	B1 cao	M.Co.
		$-5-2p$ or $-5-2 \times "15"$			M1 compare coefficients of b Allow one sign error in $-5-2p$ eg	2
		$\mathbf{or} \ -5\mathbf{b} - 2p\mathbf{b} = q\mathbf{b}$			$-5+2p$ or allow ft of their p value and one sign error is $5-2 \times "15"$ or	
		or $2p + q = -5$ oe			$-5 + 2 \times "15"$ or $-5\mathbf{b} + 2p\mathbf{b} = q\mathbf{b}$ or $5\mathbf{b} - 2p\mathbf{b} = q\mathbf{b}$ or $-5\mathbf{b} - 2p\mathbf{b} = -q\mathbf{b}$ oe Allow	
					p = "15" subst	
		Correct answer scores full marks	<i>q</i> = -35		A1	
		(unless from obvious incorrect				
		working)				
					SC if p and q are correct but not written on the answer line, at least one must	
					be labelled in their working to award full marks. If both values are correct	
					but neither labelled or they are on the wrong answer lines they get 2/3 marks	
					Total 3 marks	

Question		Working	Answer	Mark	Notes
14	(a)		0.07 <i>y</i>	1	B1 cao oe $\left(\frac{7}{100}y\right)$
	(b)	number bottle $B = 0.12y$ increase = 0.05y or 5%		1	M1 for sight of 0.12y or $\frac{12}{100}$ y or 0.05y or $\frac{5}{100}$ y or 5% 12% - 7% or 12% y - 7% y
		0.12y - "0.07y" = 60 or 0.05y = 60 or $60 \div 5 \times 100 \text{ or}$ 5% = 60 or 5% y = 60 or 12% - 7% = 60 or 12% y - 7% y = 60		1	M1 oe follow through their result from part (a)
			1200	1	A1 cao Must come from a correct equation Correct answer with no working gains full marks
					Total 4 marks

					https://
					Chritishster
Ques	tion	Working	Answer	Mark	Notes
15		$\frac{20x + 7y = 4}{20x - 20y = -50} = \frac{40x + 14y = 8}{54x = -27}$ or $20\left(\frac{2y - 5}{2}\right) + 7y = 4 \text{ or}$ $20\left(\frac{2y - 5}{2}\right) + 7y = 4 \text{ or}$ $20x + 7\left(\frac{2x + 5}{2}\right) = 4 \text{ or}$ $2\left(\frac{4 - 7y}{20}\right) - 2y = -5 \text{ or}$ $2x - 2\left(\frac{4 - 20x}{7}\right) = -5 \text{ oe}$	Answer	4	M1 eliminating either <i>x</i> or <i>y</i> (equate coefficient and use correct operation) Allow 1 error either one incorrect term in equating the coefficients eg –4 instead of 8 or one error when eliminating either <i>x</i> or <i>y</i> or substitute for <i>x</i> or <i>y</i> to form an equation in only one variable. Allow 1 sign slip only
			$x = -\frac{1}{2} \text{ or}$ $y = 2$		A1 dep on M1
		$20 \times "-\frac{1}{2}" + 7y = 4 \text{ or}$ $20x + 7 \times "2" = 4 \text{ or}$ $2 \times "-\frac{1}{2}" - 2y = -5 \text{ or}$ 2x - 2x "2" = -5 or			M1dep on previous method mark For repeating first method (allow one sign error) or substitute their x or y into a correct equation
		Working required	$x = -\frac{1}{2}$ and $y = 2$		A1 dep on M1 M1
					Total 4 marks

				hits://britishstude	
Question	Working	Answer	Mark	Notes	
16	Let $t =$ total number of students and $c =$ number	er of stude	nts who	travel by car Allow any letters for t and c	0.
	$\begin{bmatrix} t = \end{bmatrix} \frac{208}{0.104} \text{or} \\ \begin{bmatrix} t = \end{bmatrix} 718 + 0.896t - 510 \text{ or} \\ \hline 208 + 510 + c \end{bmatrix} = 0.104 \text{or} \\ \begin{bmatrix} c = \end{bmatrix} \frac{208}{0.104} - 208 - 510 \text{or} \\ \begin{bmatrix} c = \end{bmatrix} \frac{208}{0.104} - 208 - 510 \text{or} \\ \begin{bmatrix} c = \end{bmatrix} 0.896 \times \frac{208}{0.104} - 510 \text{or} \\ \begin{bmatrix} c = \end{bmatrix} \frac{208}{0.104} - 718 \\ \text{or} 0.896 \times (718 + c) = 510 + c \text{or} \\ \hline \frac{510}{200} \times 10.4 \end{bmatrix}$		4	M1 correct method to find <i>t</i> or <i>c</i> or correct equation (any form) in terms of <i>t</i> or <i>c</i> or correct method to find the % that represents 510 students May be implied by seeing 25.5 or 1282 or 2000	32
	208 [t = 1 2000 or [c = 1 1282 or 25 5		-	A1 correct value for t or c or percentage	
	$\frac{"1282"}{2000} \times 100 \text{ or } \frac{"1282"}{"1282"+208+510} \times 100 \text{ or}$ $\frac{1282}{"2000"} \times 100 \text{ or } 100 - 10.4 - "25.5" \text{ or}$ $100 - 10.4 - \frac{510}{"2000"} \times 100$			M1 For an attempt at a correct method to find the percentage. Allow $\frac{n}{2000} \times 100$ or $\frac{n}{n+718} \times 100$ where $n < 2000$ or $\frac{1282}{m} \times 100$ where $m > 1282$ or $\frac{r-718}{r} \times 100$ where $r > 718$ or $100 - 10.4 - \frac{510}{"p"} \times 100$ where $p > 510$ or $100 - 10.4 - q$ where $20 < q < 30$ may be implied by 64.1 Condone rounded figures.	
	Correct answer scores full marks (unless from obvious incorrect working)	64.1		A1 cao Allow 64 Do not ISW This must be the answer on the answer line or if no answer on the answer line their final answer which may be shown for example by circling or underlining. Total 4 marks	

					https://britishstude.org
Ques	tion	Working	Answer	Mark	Notes
17	(a)	eg $\frac{16.1}{48}$ [= 0.335] or $\frac{1610}{48}$ or		2	M1 correct method or equation to find length in m or cm. Implied by 0.335
		$\frac{16.1}{12/25}$ or $\frac{x}{16.1} = \frac{1}{48}$ or $\frac{x}{1610} = \frac{1}{48}$			
		or $\frac{x}{16.1} = \frac{25}{12}$ oe			
		Correct answer scores full marks	33.5		A1 awrt 33.5
		working)			
	(b)	48 ³ [= 110 592] or 0.48 ³ [= 0.110 592]		3	M1 Consideration of cube of scale factor seen. eg $\left(\frac{16.1}{(a)}\right)^3$ or $(1610)^3 = 005 = (a)^3$
					$\left(\frac{1610}{(a)}\right)$ or $\frac{995}{V} = \frac{(a)}{1610^3}$
		$\frac{995}{100^3} [= 0.000995]$ or			M1 for unit conversion by dividing by 100 ³
		$[995 \times "110\ 592"] \div 100^3$			
		0.48^3 [= 0.110 592]			
		Correct answer scores full marks (unless from obvious incorrect working)	110		A1 awrt 110
					Total 5 marks

					hitles	^{hstudentroom, com/}
Questi	ion	Working	Answer	Mark	Notes	
18			angle bisector constructed accurately	4	B2 for a line within the limits and a pair of suitable arcs. One arc centred on a point <i>D</i> on <i>BC</i> and one centred on the point <i>E</i> on <i>AB</i> such that $BE = BD$ or 2 arcs centred at <i>B</i> with the cross to find the middle. (B1 for a line within the limits (Can be any length - does not need to cross <i>AC</i> but should remain within the guidelines if it were to be extended) or a pair of suitable arcs	
			Accurate arc drawn from <i>C</i>		B1 for an arc within the limits indicated. It does not need to cross AC or BC	
			<i>P</i> correctly labelled		B1ft dependent on at least B1 for the angle bisector and B1 for the arc. Must clearly identify it is the point.	
					Total 4 marks	

Question	Working	Answor	Mort	https://lbritiskstudentrou	OHI.COM
19 (a)	$ \begin{array}{c} B \\ $	P	2	B2 $15-x$, $16-x$ and 3 in correct regions on Venn diagram B1 2 of $15-x$, $16-x$ and 3 in correct regions or all 3 values correct, one in correct region. Allow 11 for $15 - x$ and 12 for $16 - x$ SC B1 x is replaced with a number $x \neq 4$ and they use this incorrect value, to find $15 - x$ and $16 - x$	
(b)	3 + "15 - x" + x + "16 - x" = 30 oe Correct answer scores full marks (unless from obvious incorrect)	4	2	M1 Correct equation formed, in x, ft their values for $B' \cap P$ and $B \cap P'$ May see only one of these values used eg $3+15+"16 - x" = 30$ A1 cao	
(c)	working)	$\frac{11}{30}$	1	B1 ft follow through their answer to part (b), if $0 < part(b) < 15$ only ie $\frac{15 - "their(b)"}{30}$ with numerator a single number. Allow awrt 0.367	

					https://britishstudge
Question	Working	Answer	Mark	Notes	JRFOOD
20	Throughout this question condone mis-	labelling	g. eg if t	hey label the volume of the cone as being the	he hemisphere
	$\frac{2}{3}\pi \times 10^{3} \left[= \frac{2000\pi}{3} = 2094.395 \right]$		5	M1 Allow for $\frac{4}{3}\pi \times 10^3 \left[= \frac{4000\pi}{3} = 4188.790 \right]$ Allow sight of 4189, awrt 4190 or awrt 2090 May be embedded within other working. Igr M1 or $\frac{1}{2}\pi 10^2 (h-10)$ Allow sight of 104, a	0] O or exact fraction nore labelling wrt 105 or exact fraction.
	$\begin{bmatrix} -\pi \\ 3 \end{bmatrix} = \begin{bmatrix} -\pi \\ 3 \end{bmatrix}$			Allow any letter for r (Condone h for r). Is	anore labelling
	$\frac{1}{3}\pi \times 10^{2} x = \frac{3}{4} \times \left(\frac{2}{3}\pi \times 10^{3}\right) \text{ or}$ " $\frac{100\pi}{3}$ " $x = \frac{3}{4} \times \left(\frac{2000\pi}{3}\right) \text{ or}$ $\frac{1}{3}\pi \times 10^{2} x}{\frac{2}{3}\pi \times 10^{3}} = \frac{3}{4} \text{ oe}$			M1 using $V_{\text{cone}} = \frac{3}{4} \times V_{\text{hemisphere}}$ oe with at least one of the volumes correct Allow $h - 10$ or any letter for x (condone h) You may ft their values eg "2094" $x = \frac{3}{4} \times$ "105" NB $x = 15$ NB useful number $\frac{3}{4} \times \left(\frac{2}{3}\pi \times 10^3\right) = 1570.795$	M2 for $\frac{\frac{1}{3}\pi 10^2 (h-10)}{\frac{2}{3}\pi \times 10^3} = \frac{3}{4}$ or $\frac{\frac{100\pi}{3}(h-10)}{\frac{2000\pi}{3}} = \frac{3}{4}$ oe
	"15"+10			M1 For using $h - 10$ anywhere OR if all 3 previous method marks awarded allow for "their x " + 10	
	Correct answer scores full marks (unless from obvious incorrect working)	25		A1 awrt 25	
	SC $r = 10$ not substituted could get M1 M $1^{\text{st}} \text{ M1 for } \frac{\frac{1}{3}\pi r^2 x}{\frac{2}{3}\pi r^3 x} = \frac{3}{4} \text{ (allow sphere)}$	$\frac{11 \text{ M0 }}{2^{\text{nd}} \text{ M1}} = \frac{1}{2}$	$\frac{x}{2 \times r} = \frac{3}{4}$	or $\frac{x}{4 \times r} = \frac{3}{4}$ 4 th M1 for using $h - 10$ or ad	lding 10 A0

						https://britishstude
Ques	stion	Working	Answer	Mark	Notes	Shtroo.
21	(a)	$\begin{bmatrix} AG^{2} = \\ \end{bmatrix} 12^{2} + 4^{2} (= 160) \text{ or}$ $\begin{bmatrix} AC^{2} = \\ \end{bmatrix} 12^{2} + 3^{2} (= 153) \text{ or}$ $\begin{bmatrix} AE^{2} = \\ \end{bmatrix} 4^{2} + 3^{2} (= 25)$		3	M1 A correct method to find AG^2 , AC^2 , AE^2 , AG , AC or AE . Allow use of trig but must be fully correct method eg $\left[\angle GAB = \right] \tan^{-1} \left(\frac{4}{12}\right) [= 18.434]$ and $\left[AG = \right] \frac{12}{\cos'' 18.434''}$ Ignore incorrect labels	M2 for $[AF^2 =]3^2 + 12^2 + 4^2$
		$\begin{bmatrix} AF^2 = \\ \end{bmatrix}3^2 + "160" \text{ or } 3^2 + ("4\sqrt{10}")^2 \\ \begin{bmatrix} AF^2 = \\ \end{bmatrix}4^2 + "153" \text{ or } 4^2 + ("3\sqrt{17}")^2 \\ \begin{bmatrix} AF^2 = \\ \end{bmatrix}12^2 + "25" \text{ or } \\ \begin{bmatrix} AF^2 = \\ \end{bmatrix}169 \end{bmatrix}$			M1 full method to find AF^2 For this mark allow values correct to 3sf. but condone truncation eg $4^2 + (awrt 12.3)^2$ or $3^2 + (awrt 12.64)^2$ Ignore incorrect labels NB $\sqrt{160} = 12.649 \sqrt{153} = 12.369$	
		Working required	13		A1dependedent on both method marks awarded. For AF with no incorrect working seen and 13 stated Must see 169 or a correct expression for AF^2 with e	r a full method to find exact values used.
	(b)	$\sin GAF = \frac{3}{"13"}$ or $\tan GAF = \frac{3}{"\sqrt{160}"}$ or $\cos GAF = \frac{"\sqrt{160}"}{"13"}$ oe		2	M1 A correct method to find $\angle GAF$ or trig ratio of May ft values from part (a) including their AF if it is labelled or comes from a correct calculation Allow ($\tan AFG = \frac{\sqrt{160}}{3}$ or $\sin AFG = \frac{\sqrt{160}}{13}$ or $\cos 90 - \angle AFG$ Allow use of cosine or sine rule eg $3^2 = 160 + 13^2 - 22$	$E \angle GAF$ s not 13 if it is clearly ps $AFG = \frac{3}{13}$ and $E \times \sqrt{160} \times 13 \cos GAF$
	Corr from	ect answer scores full marks (unless obvious incorrect working)	13.3		A1 awrt 13.3 Allow awrt 13.4	
						Total 5 marks

				https://britishstudentroop
Question	Working	Answer	Mark	Notes 2
22	$(-k)^{3} + 4(-k)^{2} - 20(-k) - (-k)[= 0]_{\text{or}}$		5	M1 substitutes $x = -k$ Allow 1 sign error if brackets removed or
	$-k^3 + 4k^2 + 20k + k [= 0]$ oe			long division to obtain 2 correct terms $x^2 + (4-k)x + (-20-4k+k^2)$ or two of 1 or $4-k$ or $-20k-4k+k^2$
				attempt to expand $(x+k)(x^2+gx+1)$ with at least 4 out of 6 terms
				correct cubic is $x^3 + kx^2 + gx^2 + gkx + x + k$ oe
	$-k^3 + 4k^2 + 21k = 0$ or			A1 correct simplified 3 term cubic equation or a correct quadratic
	$-20-4k+k^2=1$ or			equation or both correct equations from comparing x^2 and x
	k + g = 4 and $1 + kg = -20$ oe		_	coefficients.
	(k) $(-k^2 + 4k + 21) = 0$ or $k^2 - 4k - 21 = 0$ oe			M1 dep on first M mark. Divide by or take k out as a common factor from a cubic in k to form a 3-term quadratic equation. An answer of 7 or -3 can imply this mark
	(k)(-k+7)(k+3)=0 or (k-7)(k+3)=0			M1dep on second M mark. Correct method for solving their 3-term quadratic – either by formula, completing the square or factorising. By factorising: brackets must expand to give 2 out of 3 correct terms By formula: correct substitution into fully correct formula (allow 1 sign error)
				By completing the square: must see $(k-2)^2 \pm$
				An answer of 7 or -3 can imply this mark
	Correct answer scores full marks (unless from obvious incorrect working)	7, -3		A1 cao (both) condone 0, 7, -3 but do not allow any other incorrect extras
•				Total 5 marks

					https://britishsturge.
Ques	tion	Working	Answer	Mark	Notes
23	(a)	$\begin{bmatrix} ON^2 = \\ \end{bmatrix} 19.5^2 - 18^2 \text{ or } 19.5^2 = ON^2 + 18^2 \\ \text{or } 39^2 - 36^2 \text{ or } [ON =]19.5 \cos(67.3801) \\ \text{or } [ON =]19.5 \sin(22.6198) \text{ oe} \\ Working required \\ \end{bmatrix}$	$\sqrt{19.5^2 - 18^2} = 7.5$	2	M1 use of Pythagoras or trig seen – allow angles given to at least 3sf Allow $XD = \sqrt{39^2 - 36^2}$ where <i>BX</i> is the diameter A1 allow $\sqrt{56.25} = 7.5$ or $19.5 \cos(67.3801) = 7.5$ or $\frac{\sqrt{39^2 - 36^2}}{\sqrt{39^2 - 36^2}}$ or or $19.5 \sin(22.6198) = 7.5$ or
					$\frac{2}{ON^2} = 56.25 \Rightarrow ON = 7.5 \text{ Allow angles given to 3sf}$
-	<i>(</i> 1)				NB verification using 7.5 is M0 A0
	(b)	$EN = 36 - 18 - 8[=10] \text{ or } EN = \frac{36}{2} - 8$ $AE \times EC = 8 \times 28 \text{ or } AE \times EC = 224$ $\frac{AC}{2} + 7.5 \text{ and } \frac{AC}{2} - 7.5$ $[AM^{2} =] 19.5^{2} - "10"^{2} [= 280.25] \text{ or}$ $\left(\frac{AC}{2} + 7.5\right) \left(\frac{AC}{2} - 7.5\right) = 8 \times 28$		4	M1 Find <i>EN</i> either labelled or comes from correct working may be seen on diagram or $AE \times EC = 224$ or $AC_{/2} + 7.5$ and $AC_{/2} - 7.5$ identified as <i>AB</i> and <i>BC</i> or used in a formula. Allow $x + 7.5$ and $x - 7.5$ may be implied by the 2 nd M1 M1 correct use of Pythagoras involving <i>AM</i> where <i>M</i> is the mid-point of <i>AC</i> NB $AM = \sqrt{280.25} [= 16.7406]$ ft their 10 if clearly labelled or comes from $36 - 18 - 8$ Correct use of intersecting chord theorem Allow $(x+7.5)(x-7.5)=8\times 28$
		$[AC] = 2 \times \sqrt{19.5^2 - "10"^2} \text{ or}$ $[AC =] \frac{8 \times 28}{("16.7406"+7.5)} + ("16.7406"+7.5)$ $\left(\frac{AC}{2}\right)^2 = 224 + 7.5^2 \text{ or}$			M1 dep on previous method marks awarded. For using $AC = 2 \times$ "their AM" ft their 10 if clearly labelled or comes from $36-18-8$ or their awrt 16.7 if clearly labelled or comes from $\sqrt{19.5^2 - "10"^2}$ find value for $\left(\frac{AC}{2}\right)^2$
		Correct answer scores full marks (unless	33.5		A1 awrt 33.5
		from obvious incorrect working)			Total 6 marks

					https://b.
	4•	XX7 1 •			^{Vitishstudentroom}
Ques 24	suon	Working	Answer	Mark	D 1
		$\begin{array}{c} 1.95 \text{ of } 2.05 \text{ seen} \\ 215[\times 1] + 362 \times 2 + 181 \times 3 + \\ 94 \times 4 + 15 \times 5[=1933] \end{array}$		0	M1 Find total number of children, at least 4 correct products seen added (215 + 724 + 543 + 376 + 75) or 1933 seen
		$\frac{"1933"}{867+k} = 1.95 \text{ or } \frac{"1933"}{1.95} - 867 \text{ or}$ $\frac{"1933"}{867+k} = 2.05 \text{ or } \frac{"1933"}{2.05} - 867 \text{ oe}$			M1 for $\frac{"1933"}{867 + k} = b$ where $1.5 \le b \le 2.5$ or $\frac{"1933"}{b} - 867$ oe Allow $< \text{ or } > \text{ or } \le \text{ for } =$ Allow equivalent NB $k + 215 + 362 + 181 + 94 + 15 \equiv k + 867$
		$\frac{"1933"}{867 + k_{\min}} = 1.95 \text{ or } \frac{"1933"}{1.95} - 867 \text{ oe and}$ $\frac{"1933"}{867 + k_{\max}} = 2.05 \text{ or } \frac{"1933"}{2.05} - 867 \text{ oe}$			M1 Form two equations/expression for their mean. $\frac{"1933"}{867+k} = b \text{ or } \frac{"1933"}{b} - 867 \text{ where } 1.95 \leq b < 2 \text{ for one}$ and $\frac{"1933"}{867+k} = b \text{ or } \frac{"1933"}{b} - 867 \text{ where } 2 < b \leq 2.05 \text{ for}$ the other equation. Allow < or > or \leq or \geq for =
		$\begin{bmatrix} k = \end{bmatrix} \frac{1933}{1.95} - 867 \begin{bmatrix} = \frac{4847}{39} \text{ or } 124.282 \end{bmatrix} \text{ and} \\ \begin{bmatrix} k = \end{bmatrix} \frac{1933}{2.05} - 867 \begin{bmatrix} = \frac{3113}{41} \text{ or } 75.926 \end{bmatrix}$			A1 both equations fully correct followed by awrt 124 and awrt 75.9 or for a fully correct expression for both values of <i>k</i> seen allow 2.0499 for 2.05
			$76 \leqslant k \leqslant 124$		A1 The 3 rd M1 must be awarded. Allow [76, 124]
					Total 6 marks

					hittes://britishstury
Question		Working	Answer	Mark	Notes
25	(a)	$\begin{bmatrix} \mathbf{AC} = \end{bmatrix} \begin{pmatrix} 3 & 1 \\ 5 & 2 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -5 & 3 \end{pmatrix} \text{ or}$ $\begin{bmatrix} \mathbf{CA} = \end{bmatrix} \begin{pmatrix} 2 & -1 \\ -5 & 3 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 5 & 2 \end{pmatrix} \text{ or}$ $3 \times 2 - 1 \times 5 \text{ or}$ $3 \times 2 - (-1) \times (-5) \text{ or } 6 - 5$		2	M1 for writing down either of the multiplications or the correct method shown to find the determinant of A or C .
		working must be shown	$ \begin{pmatrix} 2 & -1 \\ -5 & 3 \end{pmatrix} \text{ or } \begin{pmatrix} 3 & 1 \\ 5 & 2 \end{pmatrix} \text{ or } \begin{pmatrix} 3 & 1 \\ 5 & 2 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -5 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ or } \begin{pmatrix} 2 & -1 \\ -5 & 3 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 5 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $		A1 for writing down an inverse or matrices multiplied = identity matrix
	(b) (i)		$\begin{pmatrix} 20 & 7 \\ 35 & 13 \end{pmatrix}$	2	B2 fully correct (B1 2 numbers correct) ignore order of matrices
	(ii)		$ \begin{pmatrix} 5 & 1 \\ 5 & 4 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 5 & 2 \end{pmatrix} $	1	B1 for seeing the matrices given in the correct order
	(c)	$\mathbf{AB} = \mathbf{BA} \text{ or } \mathbf{C}^{-1}\mathbf{B} = \mathbf{BC}^{-1}$		2	M1 for either expression implied by a fully correct expression required for the A1 (no need to see $BC = CB$)
			$\mathbf{A}^{-1}\mathbf{A}\mathbf{B}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{B}\mathbf{A}\mathbf{A}^{-1} \text{ or } \mathbf{C}\mathbf{A}\mathbf{B}\mathbf{C} = \mathbf{C}\mathbf{B}\mathbf{A}\mathbf{C}$ or $\mathbf{C}\mathbf{C}^{-1}\mathbf{B}\mathbf{C} = \mathbf{C}\mathbf{B}\mathbf{C}^{-1}\mathbf{C}$ or $\mathbf{A}\mathbf{C}^{-1}\mathbf{B}\mathbf{A} = \mathbf{A}\mathbf{B}\mathbf{C}^{-1}\mathbf{A}$ oe followed by $\mathbf{B}\mathbf{C} = \mathbf{C}\mathbf{B}$		A1 multiplies equation by C or A^{-1} both before and after (allow mixture) $AC = CA = I$ and/or $C = A^{-1}$ and/or $C^{-1} = A$ leading to correct equation
	•				Total 7 marks

						https://britishsu	¹ uden
Qu	1	Working			Mark	Notes	it toop
26	(a)	Method 1 for $c = d$ or $\angle SRT = \angle QPT$ oe Method 2 for $a = b$ or $\angle PQT = \angle RST$ oe Method 3 for $z = w$ or $\angle RPT = \angle SQT$ oe Method 1 for $a = c$ or $\angle PQT = \angle SRT$ oe	angles in the same segment are equal alternate angles		4	M1 For one pair of angles equated from these 6 M1 For both pairs of angles for the same method equated $p = \frac{p}{2} \frac{q}{2} \frac{q}{2} \frac{q}{2}$	^{A,CO} II-
		Method 2 for $b = d$ or $\angle RST = \angle QPT$ oe Method 3 for $y = x$ or $\angle PRT = \angle QSP$ oe	are equal angles in the same segment are equal			v v x c b s	
		Method 1 and Method 2 for $a = d$ or $\angle PQT = \angle QPT$ Method 3 for $PR = QS$	base angles of isosceles triangles are equal ASA congruent			$\angle PQT = \angle QPT$	
						A1 3 correct statements for the same method with conclusion B1 At least 2 relevant reasons for the method used. Need words in bold. For first reason allow Equal chords subtend equal angles at the circumference (Allow on the circle) Allow the symbol \triangle for 'triangle' and \angle for angle, opp, Alt	
	<u>(b)</u>	$PT: TS = 1:2 \text{ or } TQ: RT = 1:2 \text{ or realising ratio of sides } 1:2$ [Area of $\triangle PTR$ or $QTS =$] $eg \frac{1}{2} \times 6 - 1[=2] \text{ or } 0.5y \times 2y \times \sin\left(180 - \sin^{-1}\frac{2}{y^2}\right) [=2] y > 0$ [Area of trapezium $PQRS =$] $eg \frac{1}{2}(2PQ + PQ)(MT + 2MT) \text{ where } M = \text{midpoint of } PQ$ or $\frac{2 \times 1}{2} = 1$ and $\frac{4 \times 2}{2} = 4$ oe			4	M1 eg RT/TQ = 2 Allow any 2 sides. Implied by 2^{nd} M M1 for a correct method to find the area of triangle <i>PTR</i> or <i>QTS</i> or finding the area of the trapezium in terms of <i>MT</i> and <i>PQ</i> or using area of triangle for <i>PQT</i> and <i>RST</i> with both height and base in the ratio 1:2 eg Implied by the 3^{rd} M	
		$\frac{2}{2} = \frac{2}{2} = \frac{2}$				M1 Full method to find area of <i>ABCD</i> . eg $\frac{1}{2}\left(\frac{2}{b} + \frac{4}{b}\right)(b+2b) \text{ where } b > 0$	
		Correct answer scores full marks		9		A1 cao ISW Total 8 marks	
							J

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom hittes://britishstudentroom.com/