

https://bilisistetucentroom/ba30a.web.app

January 2022

Pearson Edexcel International GCSE Mathematics A (4MA1) Paper 2H

Edexcel and BTEC Qualifications

^{IIIDS-/DIIISISIIIUEIIIOOIII DA30a. MOD-and} Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visitour qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, youcan get in touch with us using the details on our contact us page atwww.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involvedin education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

January 2022 Publications Code 4MA1 2H 2201 MS All the material in this publication is copyright © Pearson Education Ltd 2022

General Marking Guidance

- ^{IIIDS-/DIIISISIIIUEIIIOOIII DA30a. MOD-and} All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.

Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
 - M marks: method marks
 - A marks: accuracy marks
 - B marks: unconditional accuracy marks (independent of M marks)

• Abbreviations

- cao correct answer only
- \circ ft follow through
- isw ignore subsequent working
- SC special case
- oe or equivalent (and appropriate)
- dep dependent

- indep independent
- o awrt answer which rounds to
- eeoo each error or omission

• No working

If no working is shown then correct answers normally score full marks

^{IIIDS-/DIIISISIIIUEIIIOOIII DA30a. MOD-and}

If no working is shown then incorrect (even though nearly correct) answers score no marks.

• With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review. If there is a choice of methods shown, mark the method that leads to the answer on the answer line; where no answer is given on the answer line, award the lowest mark from the methods shown.

If there is no answer on the answer line then check the working for an obvious answer.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

• Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

Image: Solution of the system of the syst	International GCSE MathsApart from questions 2, 7, 10, 11, 17, 18, 21b and 26 the correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct methodQWorkingAnswerMarkNotes1(a) $2y - 4y + 8 - y^2$ 2M1for 3 correct terms or								
Image: Solution of the system of the syst			Answer	Mark		Notes	"A CB . as		
(b) $5b^3c(3b^2-7c^8)$ 2 B2 fully correct or B1 for a correct partial factorisation with at least two terms outside the bracket eg $5b^3(3b^2c-7c^9)$ or $5c (3b^5-7b^3c^8)$ etc or the fully correct factor outside the bracket with a two term expression in terms of <i>b</i> and <i>c</i> inside the bracket eg	1 (a)	$2y - 4y + 8 - y^2$	$8 - 2y - y^2$	2		for 4 correct terms ignoring signs or $\dots -2y - y^2$ or $8 - 2y - \dots$	~~~~		
$\frac{5b^3c(15b^2-c^8)}{\text{Total 4 marks}}$	(b)			2		B1 for a correct partial factorisation with at least two terms outside the bracket eg $5b^3(3b^2c - 7c^9)$ or $5c (3b^5 - 7b^3c^8)$ etc or the fully correct factor outside the bracket with a two term expression in terms of <i>b</i> and <i>c</i> inside the bracket eg $5b^3c(15b^2 - c^8)$			

eg $\frac{27}{4}$ and $\frac{18}{7}$ $\frac{27}{4} \times \frac{7}{18}$ oe or eg $\frac{189}{28} \div \frac{72}{28}$		3	M1 M1	Both fractions expressed as improper fractions. Invert 2 nd fraction or for both fractions expressed as equivalent fractions with denominators that are a common multiple of 4 and 7 (seeing this stage gains M2)	^{2,44} (1),470,5
eg $\frac{27}{4} \times \frac{7}{18} = \frac{189}{72} = \frac{21}{8} = 2\frac{5}{8}$ or $\frac{27}{4} \times \frac{7}{18} = \frac{189}{72} = 2\frac{45}{72} = 2\frac{5}{8}$ or $\frac{27^3}{4} \times \frac{7}{18^2} = \frac{21}{8} = 2\frac{5}{8}$ or $\frac{189}{28} \div \frac{72}{28} = \frac{189}{72} = 2\frac{45}{72} = 2\frac{5}{8}$ oe if the student clearly shows $2\frac{5}{8} = \frac{21}{8}$ then they only need to complete the LHS to $\frac{21}{8}$ (often done in 1 st line of working)	shown		A1	dep M2 conclusion to $2\frac{5}{8}$ from correct working – either sight of the result of the multiplication e.g. $\frac{189}{72}$ must be seen then cancelled or correct cancelling prior to the multiplication with $\frac{21}{8}$ seen. NB entire solution using decimals scores no marks.	
	ıl	'		Total 3 marks	

3 (a)	$\frac{12}{4}(=3) \text{ or } \frac{4}{12}(=0.3) \text{ or } \frac{BC}{4} = \frac{16.5}{12}$ or $BC \div 16.5 = 4 \div 12$ or $(BC =)16.5 \div \frac{12}{4}$ oe		2	M1 correct scale factor (given as 3 or a fraction or a ratio) or correct equation using <i>BC</i> or a correct expression for <i>BC</i> (award for SF even if not used)
		5.5		A1
(b)		3 <i>x</i>	1	B1 allow $3 \times x$ or $x \times 3$ ft their "3" in (a)
				Total 3 marks

4 (a)	17.75	1	B1 oe
(b)	18.25	1	B1 • • • • • • • • • • • • • • • • • • •
			SC B1 for 17.5 in (a) and 18.5 (or 18.49)in (b)
			Total 2 marks

				$\begin{array}{c} \text{M1} & \text{or } 3.5 \text{ shown on diagram - within} \\ \text{bounds of overlay} \end{array} \xrightarrow{\text{H1}_{\text{H2}}, \text{H2}_{\text{H2}}, \text{H2}, \text{H2}, \text{H2}, \text{H2}, \text{H2}, \text{H2}, \text{H2}, \text{H2}, $
5 (a)	700 ÷ 200 (= 3.5)		3	M1 or 3.5 shown on diagram – within $\frac{1}{2}$
				bounds of overlay
		'		
				M1 for line drawn at correct angle $\pm 2^{\circ}$ within bounds of overlay
		<i>C</i> indicated in correct position		A1 for <i>C</i> drawn within bounds of overlay, inclusive of lines.
		concer position		overlay, melasive of mes.
(b)		(1:) 20 000	1	B1
				Total 4 marks

					hus. Britster	
6	$28 \div 0.35 (= 80)$ oe eg $(28 \div 7) \times 20 (= 80)$		5	M1		
	1-(0.2+0.35) = 0.45) oe or $(0.2+0.35) \times "80" = 44)$ or $28 + "16" = 44)$				space)	OUL BANDA SCO.
	"0.45" ÷ 3 (= 0.15) oe or "0.45" × "80" (= 36) or "80" – "44" (= 36)			M1	(or 0.15 or 0.3 seen in table – either order)	
	"80" × "0.15" or "80" × "0.3" (= 24) or "36" ÷ 3 or "36" ÷ $\frac{3}{2}$ (= 24)			M1	A correct calculation for the number of white sweets or the number of pink sweets	
		12		A1		
6 alt	1 - (0.2 + 0.35) = 0.45 or 100(%) - 20(%) - 35(%) = 45(%)		5	M1	or for a correct equation for missing values eg x + 2x + 0.2 + 0.35 = 1 oe	
	"0.45" ÷ 3 (= 0.15) 45(%) ÷ 3 (= 15(%))			M1	(or 0.15 or 0.3 seen in table – either order)	
	$\frac{n}{28} = \frac{0.15}{0.35} \operatorname{cr} \left(\frac{n}{0.15} \right) = \frac{28}{0.35} \operatorname{cr} \operatorname{cr}$ $\frac{n}{28} = \frac{30}{0.35} \operatorname{or} \left(\frac{n}{0.3} \right) = \frac{20}{0.35} \operatorname{or} 35\% = 28 \text{ so } 5\% = 4$			M1	for using proportion with an expression for <i>n</i> white sweets or finding 5% oe to enable calculation to 15%	
	$\frac{n}{28} = \frac{6.0}{0.35} \text{ or } \left(\frac{n}{0.3}\right) = \frac{20}{0.35} \text{ or } 35\% = 28 \text{ so } 5\% = 4$ $(n =) 28 \times \frac{0.15}{0.35} \text{ or } (n =) 0.15 \times \frac{28}{0.35} \text{ or } 15\% = 3 \times 4$ $\text{or } 28 \times \frac{0.3}{0.35} \text{ or } 0.3 \times \frac{20}{0.35} \text{ or } 30\% = 6 \times 4 \ (= 24)$			M1	a calculation using proportion that would lead to finding their n or $2n$	
	0.35 0.35					
		12		A1		
					Total 5 marks	

					https://Dition	
7	2×2×7 or 2×3×7 or 3 ² ×7 oe condone 1's in factor tre or showing at least 5 correct multiples across at least 2 li (excluding 28, 42, 63) (28) 56, 84, 112, 140, 168, 196, 224, 252 (42) 84, 126, 168, 210, 252 (63) 126, 189, 252		3	M1	accept prime factors seen in factor tree or correct position in Venn diagram for at least one of the numbers given.	dop.
	$2 \times 2 \times 7$ and $2 \times 3 \times 7$ and $3 \times 3 \times 7$ or showing at least 9 correct multiples across all 3 lists (excluding 28, 42, 63)			M1	accept prime factors seen in factor tree or correct position in Venn diagram for all 3 of the numbers given.	
Γ		252		A1	or $2^2 \times 3^2 \times 7$ oe Dep on M1	
7 a	alt 7 28 42 63 2 4 6 9 3 2 3 9 2 1 3 oe $0e$ or 7 28 42 63 2 4 6 9 3 2 3 9 2 4 6 9 3 2 3 9 2 2 1 3 3 1 1 3 (1) 1 1 1		3	M1 M1	For one correct row in table eg division by 7 gives 4, 6, 9 Fully correct table – need only go as far as top table – we want to see prime factors along the side or prime factors along the sides and bottom (condone 1's)	
		252		A1	or $2^2 \times 3^2 \times 7$ oe Dep on M1	
					Total 3 marks	

						https://Britisto	
8	(a)	(231 776 – 228 314) ÷ 228 314 or 3462 ÷ 228 314 (= 0.01516) or 231 776 ÷ 228 314 (= 1.01516)		2	M1	futtes: Drivision of the defined of	
			1.5		A1	for 1.5 or better (1.516) (be careful: $3462 \div 231\ 776 \times 100 = 1.49)$	5. 900
	(b)	231 776 ÷ 1.077 oe		3	M2	If not M2 then M1 for $100 + 7.7$ (=107.7) or 1 + 0.077(=1.077) seen but not $1 + 7.7\%$	
			215 000		A1	for 215 000 or better (215 205.19)	
				L		(if no marks awarded SCB1 for 212000 or better (211990.71))	
					<u> </u>	Total 5 marks	

9	$(0 \times 13) + 1 \times 17 + 2 \times 8 + 3x + 4 \times 11$ or (0 +) 17 + 16 + 3x + 44 (= 77 + 3x)		M1	at least 3 correct products with intention to add. eg award for 77 seen as this is sum of 3 products
	(13+17+8+x+11) oe eg 49 + x or 98+2x		M1	Sum for total frequency or (frequency \times 2)
	$\frac{"77 + 3x"}{"49 + x"} = 2 \text{ oe e.g. } "77 + 3x" = 2("49 + x")$		M1	for use of mean in valid equation (ft their values for sum of products and their total frequency if M2 awarded previously)
		21	A1	
				Total 4 marks

				Aller Aller	te
10	eg $6x + 10y = 6.2$ 6x + 3y = 3.75 7y = 2.45 eg $30x + 15y = 18.75$ 9x + 15y = 9.3 21x = 9.45 or eg $6\left(\frac{3.1-5y}{3}\right) + 3y = 3.75$		3	one variable – multiplying one both equations so the coefficient of x or y is the same in both (condone one arithmetic error with the intention to subtract a terms to eliminate one variabl (intention to subtract is clearly showing a minus sign or subtracting 2 or 3 out of 3 ter	e or ent (^{4/to} com _{ba} ₃₀₀ , ^{4/tocom_{ba}₃₀₀, ^{4/tocom_{ba}}}</sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup>
				or isolating <i>x</i> or <i>y</i> in one equa and substituting into the other	
	eg. $6 \times "0.45" + 3y = 3.75$ or $3 \times "0.45" + 5y = 3.1$ or $3x + 5 \times "0.35" = 3.1$ or $6x + 3 \times "0.35" = 3.75$			M1 dep. Substitute found value in one equation or correct metho eliminate second unknown.	
		x = 0.45 oe y = 0.35 oe		A1 dep M1	
				Total 3 m	larks

					41,	
		·			²⁰⁵ : Britister	
11	$\frac{\frac{360}{10}}{10} (= 36) \text{ ext angle}$ or $\frac{(10-2) \times 180}{10} (= 144)$		4	M1	method to find interior or exterior angle. (angles may be seen on diagram)	573009.44C
	$x = "144" - 90 (= 54) \text{ or}$ $x = \frac{"540" - 3 \times "144"}{2} (= 54) \text{ or}$ $x = 90 - "36" (= 54)$ 54 on the diagram is insufficient must see working			M1	method to find x (must show it is intended to be x) eg use of int angle -90° use of ext angle $+ x = 90^{\circ}$ use of pentagon <i>GHIJA</i>	
ļ	54 on the diagram is insufficient – must see working				All figures in " " must come from correct working	
	$BAD = CDA = GDE = DGF = \frac{360 - 2 \times "144"}{2} (= 36)$			M1	A correct method to find an angle of 36° within the shape (not exterior angle) or 36° shown in correct place in diagram	
	There are other correct methods. Please check for correct working.	x = 54 $y = 54$		A1	dep on M3 to find each of x and y and the correct value of 54 for both from correct working	
· = -		ا بــــــــــــــــــــــــــــــــــــ	 '		Total 4 marks	
ALT	$ADG = "144" - 2 \times "36" (= 72)$	ا ا	 '	M1		
l	JA is parallel to GD	ا ا	 '	M1		
	DGA = DAG(y) [isosceles triangle]	ا ا	 '	M1		
	x = DGA = y	shown	 '	A1		
	There are other correct methods. Please check for correct working.	ļ			Total 4 marks	

						https://dilisite.	
12	216 or 2.16 or 10^{120} or 10^{122} or $6^3 \times 10^{40 \times 3}$		3	M1	or for digits 216	ada.	24.
	216×10^{120} oe or or 2.16×10^n where $n \neq 122$			M1			YOOHA BAJOA
		2.16×10 ¹²²		A1			
						Total 3 marks	² eb. (1)

13	$x \ge -1$	1	B1	oe condone > in place of \geq
	$y \ge x$	1	B1	oe condone > in place of \geq
	$x + 2y \le 8$	1	B1	oe condone < in place of \leq
			SCB1	if all inequalities reversed
				Total 3 marks

14	$\frac{12 \times \tan 5 \ (=1.05) \ \text{or}}{\tan 5 = \frac{'y'}{12} \ \text{or} \ 12\tan 5 \ \text{or} \ \tan 85 = \frac{12}{'y'} \ \text{or} \ \frac{12}{\tan 85}}{\frac{y}{\sin 5} = \frac{12}{\sin 85} \ \text{oe} \ \text{or} \ (y =) \ 1.04986 \ \text{oe}}$		3	M1	oe correct expression using tan or the sine rule or $\sqrt{\left(\frac{12}{\cos 5}\right)^2 - 12^2}$ (= 1.04986)
	(AB =) 2.6 + "1.05" oe			M1	
		3.65		A1	allow awrt 3.65
					Total 3 marks

15	5 5 7 8 10 12 13 14 16 21 23		3	M1	For ordering the numbers Allow one error or omission in the list.
	16 & 7 identified for LQ and UQ			M1	For identifying 16 and 7 – may also have identified the median (12)
		9		A1	
					Total 3 marks

16	$DFE = 42^{\circ} \text{ or } DOG = 180 - 2 \times 42 \ (= 96)$ or $EFG = 90^{\circ} \text{ or } EDG = 90^{\circ}$ or $DEG = 90 - 42 \ (= 48)$		4	M1	https://driving. used or seen in diagram (must be clearly labelled if not in diagram)	ATHOOTH DARD AND AND A
		48°		A1	award 2 marks for 48 unless from an incorrect method	· Web app
	anglesin same segment oranglesfrom same chord oranglesfrom same chord oranglesat the circumference subtended from the samearcof the circleanglesin a semicircle are 90° anglesin a semicircle are 90° anglesubtended by diameter is 90° angleat centre twice angle at circumference oeanglesin a triangle add to 180 anglesin a triangle add to 180			B2	Dep on a fully correct method to find angle <i>DFG</i> for a full set of reasons relevant to their method. B1 dep on M1 for at least one relevant circle theorem.	
		-			Total 4 marks	

				https://Biliste
17	eg $\frac{\sqrt{12}}{\sqrt{3}+2} \times \frac{\sqrt{3}-2}{\sqrt{3}-2}$		3	M1 rationalise denominator – award for the seeing multiplication by $\frac{\sqrt{3}-2}{\sqrt{3}-2}$ or $-\sqrt{3}+2$
				$\frac{-\sqrt{3}+2}{-\sqrt{3}+2}$
	$(\sqrt{36} - 2\sqrt{12})$ 6 2 /12			M1 dep M1 correctly simplifying
	eg $\frac{\left(\sqrt{36}-2\sqrt{12}\right)}{3-4}$ or $\frac{6-2\sqrt{12}}{-1}$ or $-6+2\sqrt{12}$ or $\frac{6-4\sqrt{3}}{-1}$ or $-6+4\sqrt{5}$			numerator and denominator.
	or $\frac{-1}{-1}$ or $-6+4\sqrt{5}$	/		(denominator could be $3 - 4$ or -1)
		$-6 + \sqrt{48}$		A1 dep M2 must be in correct form (including $\sqrt{48}$) allow $a = -6$ and $b = 48$
				$\frac{1}{1000} a = -0 and b = 48$ Total 3 marks

					^{tit} los. ³ biliste
18	eg $(2n + 1)^2 + (2n - 1)^2$ or $(2n + 1)^2 + (2n + 3)^2$ oe		3	M1	for setting up a correct algebraic to the setting up a correct algebraic to the setting of the s
	Eg $4n^2 + 4n + 1 + 4n^2 - 4n + 1$ or $8n^2 + 2$ or $4n^2 + 4n + 1 + 4n^2 + 12n + 9$ or $8n^2 + 16n + 10$ oe			M1	correct expansion of brackets and correct signs or a correct result.
	eg $8 \times n^2 \pm 2$ $\frac{8n^2 + 16n + 10}{8} = n^2 + 2n \pm \frac{10}{8}$ which shows a remainder of 2 or $10 - 8 = 2$ or $\frac{8n^2 + 16n \pm 10}{8} = n^2 \pm 2n \pm 1$ remainder 2 oe $\frac{8n^2 \pm 16n \pm 10}{8} = n^2 \pm 2n \pm 1 \pm \frac{2}{8}$ oe $8(n^2 \pm 2n \pm 1) \pm 2$ oe	shown clearly		A1	conclusion dep on M2 for eg $8n^2+ 2$ and a suitable conclusion (may be shown as a calculation/in numbers). The conclusion must be an intention to show that the result is a multiple of 8 and there is 2 remaining.
					Total 3 marks

19	$(PT=) \frac{12\times 4}{3} (=16)$		3	M1	NB: 16 from 12 + 4 is incorrect working
	$(r =) ("16" + 3) \div 2$			M1	
		9.5		A1	oe
					Total 3 marks

					At least 2 frequencies for other bars or scale on FD axis	
20	at least two of 3, 8, 5, 2 seen		4	M 1	At least 2 frequencies for other bars	
	or		-		Moon 2 mo 1	
	at least two correct frequency densities from 0.6, 0.8, 1, 1.2, 0.4				or scale on FD axis	
	or				³ , ₄₀	
	eg one cm on FD axis = 0.25				- 12	0
	or				or eg 20 small squares represents 1	
	eg top of FD axis labelled 2				plant oe	
	or				plant de	
	eg 1 plant = 20 small squares					
	or					
	total small squares in at least 2 bars (60, 160, 100, 240, 40)					
	or					
	total number of 1 cm squares for at least 2 bars (2.4, 6.4, 4, 9.6, 1.6) oe					
	3+8+5+12+2 (= 30)			M1	add up 5 frequencies (allow one error)	
	or				or	
	adding the number of small squares in all bars:				adding the number of small squares in	
	60 + 160 + 100 + 240 + 40 (= 600)				all bars	
	or				(allow one error)	
	adding the number of 1 cm squares in all bars:				or	
	2.4 + 6.4 + 4 + 9.6 + 1.6 (= 24)				adding the number of 1 cm squares in	
	oe				all bars (allow one error)	
					oe	
 I	$\frac{0.25 \times "12" + "2"}{0} \text{ or } \frac{0.25 \times "240" + "40"}{0} \text{ or } \frac{0.25 \times "9.6" + 1.6}{0} \text{ or }$			M1	ft their figures dep on the previous	
l	$\frac{0.25 \times 12^{-12}}{"30"} \text{ or } \frac{0.25 \times 240^{-140} \text{ or }}{"600"} \frac{0.25 \times 5.0^{-110} \text{ op}}{"24"}$				M1	
[1		A1	100	
i				4.1.1	oe eg	
l		6			600	
l					allow 0.16(66) ie 2 dp truncated or	
		─┤			rounded or better	
					Total 4 marks	

				hits. Britishered	
21 (a)		-0.2 and 2.2	2 B2	2 Both correct to 1 decimal place (B1 for (-0.2, 0), (2.2, 0) or a single correct value to 1 decimal place or both values within -0.2 to -0.23 and 2.2 to 2.23)	^{23.} Web
(b)	(y =) -2x + 1 oe seen		3 M	1 Written – could be label on graph	
	y = -2x + 1 drawn		M	1 dep on previous M1 for drawing y = -2x + 1 passing through (- 1, 3) and (2, -3) (allow 1 square tolerance)	
		-0.6 and 1.6	A	1 dep on M2 for both answers to 1 decimal place	
				Total 5 marks	

22	(2x+3)(x-1) < 75	5	B1	For writing the correct inequality sign with a correct calculation or correct value – this could be initially or saying that $x < 6$ at the end rearranged to form correct quadratic < 0	CARIFO OFF
				could be initially or saying that $x < 6$ at the end	'' basilia web
	$2x^2 + x - 78 < 0$		M1	rearranged to form correct quadratic < 0 (allow = 0 or other incorrect inequality sign) oe	
	$\mathbf{or} \ x = \frac{-1\pm\sqrt{(1)^2 - (4\times2\times-78)}}{2\times2}$ $\mathbf{or} \ 2\left(\frac{1}{x+\frac{1}{4}}\right)^2 - 2\left \frac{1}{4}\right ^2 - 78 = 0$		M1	first step to find critical values from the correct quadratic	
		<i>x</i> = 6	A1	x = 6 identified as critical value, ignore -6.5 if given	-
		1 < x < 6	A1	correct inequality	
				Total 5 marks	

					Hills. Brills	
23	$\frac{\sin Q}{4.2} = \frac{\sin 18}{1.6} \text{ oe or}$ 1.6 ² = 4.2 ² + RQ ² - 2×4.2×RQ×cos18 oe		6	M1	correct sine ratio - could be rearranged or correct substitution into the cosine rule using angle R	Coentrooth Day De web and
	$\frac{\sin^{-1}\left(4.2 \times \frac{\sin 18}{1.6}\right) (= 54.2) \text{ or } \sin^{-1}\left(0.811\right)}{2 \times 4.2 \times \cos 18 \pm \sqrt{(2 \times 4.2 \times \cos 18)^2 - 4 \times 1 \times 15.08}}$			M1		- ⁻ '\$J <u>J</u> _
	180 - 54.2 (=125.8) or RQ = 3.0585 and 4.933			M1	This can be implied by the correct value(s) (125.8 or 3.0585) used later	-
	(P =) 180 - "125.8" - 18 (=36.2) or $RQ = \sqrt{4.2^2 + 1.6^2 - 2 \times 4.2 \times 1.6 \times \cos"36.2"} (= 3.0585)$ or 3.0585 chosen as value from cosine rule above or perpendicular height = 4.2sin"36.2" (= 2.4805) (where "36.2" comes from correct working)			M1		
	(Area =) $\frac{1}{2} \times 4.2 \times 1.6 \times \sin("36.2")$ or (Area =) $\frac{1}{2} \times 4.2 \times "3.0585" \times \sin 18$ or (Area =) $\frac{1}{2} \times 1.6 \times "2.4805"$			M1		-
		1.98		A1	awrt 1.98	
					Total 6 marks	-

					https://Britishe	
24	$(v =) 12t^2 - 27 (= 0)$		5	M1	Correct differentiation	LOOHA ,
	$t^{2} = \frac{27}{12} (= \frac{9}{4})$ oe or $(3)(2t+3)(2t-3) (= 0)$			M1	Correct differentiation dep M1 first stage to solve $v = 0$ by rearranging, factorising, quadratic formula, or completing the square	104309.4480 970-
	$\sqrt{\frac{9}{4}}$ oe $(=\frac{3}{2})$ or $\pm \sqrt{\frac{9}{4}}$ oe $(=\pm\frac{3}{2})$			A1	Correct value of t (allow \pm)	
	(a =) 24t			M1	dep 1st M1 for differentiating v	
		36		A1	correct answer	
			, 		Total 5 marks	

					Hilly.	
25 (a)	$(x-3)^2$ or $(3-x)^2$ or $(y-3)^2$ or $(3-y)^2$		4	M1		ARTOON .
	14 or – 14			M1	As part of an expression in <i>x</i> or <i>y</i> or an equation in <i>x</i> and <i>y</i>	Chroon by Ray web and
	$3\pm\sqrt{14-x}$ or $3\pm\sqrt{14-y}$		++	M1	Can be \pm or $-$ or $+$	
		$3+\sqrt{14-x}$	++	A1	oe must be in x	
25 alt (a)	Alternative method: $x^2 - 6x + (y - 5) = 0$ oe or $y^2 - 6y + (x - 5) = 0$ oe		4	M1	rearrange to form a quadratic in x or y terms can be in any order but must be in an equation equal to zero	
	$y = \frac{6 \pm \sqrt{36 - 4(x - 5)}}{2}$ or $x = \frac{6 \pm \sqrt{36 - 4(y - 5)}}{2}$		+	M1	correct substitution into quadratic formula	
	$3\pm\sqrt{14-x}$ or $3\pm\sqrt{14-y}$			M1	Can be \pm or – or +	
		$3 + \sqrt{14 - x}$		A1	oe must be in <i>x</i>	
(b)		<i>x</i> ≤ 14	1	B1	oe must ft from part (a) dep on an answer in correct form	
			I		Total 5 marks	

					hilps. Ohilister	
26	$(Sm =) \frac{m}{2}(2a + (m-1)d) = 39$ oe or $(S_2m =) \frac{2m}{2}(2a + (2m-1)d) = 320$ oe		5	M1	one correct equation for S_m or S_{2m} (condone consistent use of <i>n</i> instead of <i>m</i>)	A THOOTH DANGE WE BUILD
	$(Sm =) \frac{m}{2}(2a + (m-1)d) = 39$ oe and $(S_2m =) \frac{2m}{2}(2a + (2m-1)d) = 320$ oe			M1	both equations correct	
	eliminate to get $dm^2 = 242$ oe			M1		
	$242 = 2 \times 11 \times 11$ or $242 = 2 \times 121$ oe			M1		
		<i>d</i> = 2		A1	Dep on M2	
		<i>m</i> = 11			Both correct	_
					Total 5 marks	

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom https://Britististictentroom/bd30a.webappy