

January 2022

Pearson Edexcel International GCSE Mathematics A (4MA1) Paper 1FR HIDS:- (BRITISISIUGERICOOR BASCA NOS-ADD

Edexcel and BTEC Qualifications

HIDS- DTHSINGLEON CON BARDANES ADD Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2022 Publications Code 4MA1_1FR_2201_MS All the material in this publication is copyright © Pearson Education Ltd 2022

General Marking Guidance

- HIDS: BITISIS BUDGENHOOH BARDA • All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.

Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
 - M marks: method marks
 - A marks: accuracy marks
 - B marks: unconditional accuracy marks (independent of M marks)
- Abbreviations
 - cao correct answer only
 - ft follow through
 - isw ignore subsequent working
 - o SC special case
 - oe or equivalent (and appropriate)

- dep dependent
- o indep independent
- o awrt answer which rounds to
- eeoo each error or omission

• No working

If no working is shown then correct answers normally score full marks

hips, britsisisteritoon base weband

If no working is shown then incorrect (even though nearly correct) answers score no marks.

• With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review. If there is a choice of methods shown, mark the method that leads to the answer on the answer line; where no answer is given on the answer line, award the lowest mark from the methods shown.

If there is no answer on the answer line then check the working for an obvious answer.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

• Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

International	GCSE Maths

https://Tritis/Isitedentroom/bd/30a.web.app/ Apart from Questions 5b and 24 the correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method

Q	Working	Answer	Mark	Notes
1 (a)(i)		10 or 28	1	B1 accept 10 or 28 or 10 and 28
(ii)		27	1	B1
(iii)		23	1	B1
(b)(i)		3578	1	B1
(ii)		57 + 38 or 37 + 58	1	B1
				Total 5 marks

2 (a)	Isosceles	1	B 1	
(b)	Correct lines of	1	B1	with no additional lines
	symmetry drawn			
(c)	5	1	B1	
				Total 3 marks

					HIDS: Britishsut	CENTROOTH, BARDA WEB, BD
3	(a)		600	1	B1	^{3, 4} 6,
	(b)		4.5	1	B1	^{SOD}
	(c)	$3 \times 1000 (= 3000)$ or $225 \div 1000 (= 0.225)$		4	M1	
		"3000" ÷ 225 (= 13.3) oe or			M1	
		3 ÷ 0.225 (= 13.3) oe				
		"3000" – ("13" × 225) or			M1 for a complete method	
		[3-(13ד0.225")]×1000				
			75		A1	
					Total 6 marks	

4 (a)	14	1	B1	
(b)	Cruise	2	B1	correct symbol for Cruise
			B1	correct symbols for Skiing
	Skiing			
(c)		2	M1	7 h
(0)		2	1011	$\frac{7}{a}$ where $a \ge 7$ or $\frac{b}{40}$ where $b \le 40$
				<i>a</i> 40
	7		A1	oe
	$\frac{1}{40}$		111	
	40			Tetal 5 membr
				Total 5 marks

						$\frac{h_{\text{H}_{55,-},55}}{h_{15}}$	
						^{3/18} /tden	
						YOOR	1.0g
5	(a)(i)		27	1	B1		^{*30} ?. ⁴ °Cb
	(ii)		Add 5	1	B1	accept +5 or use of $5n+2$.epp
	(b)		No and reason	1	B1	e.g. 'because the unit digit of 256	
				1		is not 2 or 7' or it is not in the	
				 		form 5 <i>n</i> +2	
				1		Total 3 marks	
	(-)	1					
6	(a)		0.4, 0.407, 0.47, 0.477, 0.74	1	B1		
	(b)		7	1	B1	oe	
	(0)		$\frac{7}{10}$				
	(c)	+	10	2	M1		
			!	2	1411	for $\frac{30}{48}$ oe	
		<u> </u>	'	<u> </u>	A1	40	
			$\frac{5}{8}$	1			
	(d)	+	0.23	1	B1		
	(u) (e)	(1 2)(-1)	0.23	3	M1	for a method to find the remaining	
	(0)	$1 - \left(\frac{1}{2} + \frac{2}{5}\right) \left(=\frac{1}{10}\right) \text{oe}$				fraction of beads	
		$3 \times "10"$ or $3 \div "\frac{1}{10}$ " oe			M1		
			30		A1		
				<u> </u>		Total 8 marks	

					¹ itps://Jiiislstop	AND A STREAM AND A
7 (a)		2c + 7d	2	B2		^{39, 44} 05, 94
					(B1 for 2 <i>c</i> or 7 <i>d</i>)	nn,
(b)		40 <i>ef</i>	1	B1		
(c)	5r = 8 + 3 or $5r = 11$ or $-3 - 8 = -5r$ or		2	M1	for a correct first step	
	$-11 = -5r$ or $r - \frac{3}{5} = \frac{8}{5}$ or $(8+3) \div 5$				or for a calculation for <i>r</i>	
		2.2		A1	oe	
					Total 5 marks]

8 (a)	(DBC =) 180 - (93 + 42) (= 45)		2	M1	for method to find angle <i>DBC</i> OR
	OR ($x =$) 93 + 42				using exterior angle is equal to the sum
					of the two opposite interior angles
		135		A1	
(b)(i)	360 - (90 + 100 + 114) oe		2	M 1	for a complete method to find <i>y</i>
		56		A1	
(ii)		<u>Angles</u> at a <u>point</u> sum	1	B1	
		to 360°			
					Total 5 marks

9	0.4 × 2500 (1000) or 0.6 × 2500 (= 1500) oe		4	M1	for finding 40% or 60% of 2500
	2500 – "1000" – 300 (= 1200) oe			M1	for method to find the remaining
	or "1500" – 300 (= 1200) oe				money
	" (1200) " \div $(3 + 7) \times 7$ oe			M1	for method to find the amount of
					money spent on food
		840		A1	
					Total 4 marks

				https://Britishstuden	Tronn bester was started and
10		3	B3 (B2 (B1	for a fully correct Venn diagram for 3 correct values) for 1 or 2 correct values)	^{3, 4} 69, 3732
				Total 3 marks	

11	$0 \times 5 + 1 \times 5 + 2 \times 3 + 3 \times 10 + 4 \times 7 + 5 \times 6 (= 99)$		3	M1 f	for at least 4 correct products with
	or 0 + 5 + 6 + 30 + 28 + 30 (= 99)			i	intention to add
	"99" ÷ 36			M1	
		2.75			be If no other marks awarded,
				а	award SC B1 for 2.8(88)
					Total 3 marks

				hitts:-Britiststude	Altroom by Roam of app
12 (a)	Reflection	2	B1	for reflection with no mention of translate, enlarge, rotate, move	^{3.} ^W CB.
	x = -1		B1	for $x = -1$ with no mention of a vector, SF, centre or angle	
(b)	Triangle drawn w vertices at (4, 2) (4, 8) (8, 2)		B2 (B1	for a correct enlargement for an enlarged triangle scale factor 2 in wrong position or 2 out of out 3 vertices in the correct position)	
				Total 4 marks	

13 (a)	3(2x-5)	1	B1
(b)	T = 200c - 50d	3	B3 for $T = 200c - 50d$ oe
			(B2 for $T = 200c + kd$ or $T = kc - 50d$ or $200c - 50d$)
			(B1 for 200c or $-50d$ or $50d$ or $T = kc + pd$ where $k \neq 0$ or 200 and $p \neq 0$ or ± 50)
			Total 4 marks

				https://Brilis/Balage	Altroom, based and altro
14		2	M1 fo	or 2.72(02) or 26.01 or 8.67 or	^{4.} 4. B.
	1		11	1.4 or 11.39	PD-
	11.390(2941)		A1		
				Total 2 marks	

Q	Working	Answer	Mark	Notes
15 (a)		-2, -1, 0, 1, 2	2	B2 for -2 , -1 , 0 , 1 , 2 with no additions or
				repeats
				(B1 for 4 of -2 , -1 , 0, 1, 2 with no additions
				or repeats
				or
				for 6 values with no more than one incorrect
				value e.g. all of -2, -1, 0, 1, 2, 3
				or
				for 5 values with one error)
(b)		Closed circle at	1	B1 for a closed circle at $x = 1$ and a line with
	• • • • • •	x = 1		an arrow of any length to the left
	-3 -2 -1 0 1 2 3	and		
		a line with an		Allow] for a closed circle
		arrow to the left		
				Allow a line without an arrow if it reaches to
				at least -3
				Total 3 marks

			HUBS. Brite	Ststudentroom based and
16	0.65 × 300 oe		M1	^{3,4} 6
		195	A1	YD2
			(SCB1 for 105)	
			Total 2 marl	ks

17	$12.8^{2} + x^{2} = 16^{2} \text{ oe or}$ $163.84 + x^{2} = 256 \text{ or}$ $(x^{2} =) 16^{2} - 12.8^{2} (= 92.16) \text{ or}$ $(x^{2} =) 256 - 163.84 (= 92.16)$		4	M1 for applying Pythagoras theorem correctly Allow $\cos^{-1}\left(\frac{12.8}{16}\right) (= 36.9)$ and $\frac{x}{\sin(36.9)} = \frac{16}{(\sin 90)}$
	$(x =) \sqrt{16^2 - 12.8^2} (= \sqrt{92.16}) (= 9.6)$ or $(x =) \sqrt{256 - 163.84} (= \sqrt{92.16}) (= 9.6)$			M1 for square rooting Allow $x = \frac{16}{(\sin 90)} \times \sin(36.9)$
	(12.8 - "9.6") + "9.6" + "9.6" + 16 + 16 + 16 oe			M1 (dep on M1) for a complete method to find the perimeter
		70.4		A1 oe e.g. $\frac{352}{5}$
				Total 4 marks

					HIPS. BRITISHSUL	^(e) Itroombadde, web.
18	(a)		15, 0, -1, 3	2	B2 for 4 correct values	^{4, 4} , 69,
	(b)	(-2, 15) (-1, 8) (0, 3) (2, -1) (3, 0) (4, 3)		2	(B1 for 2 or 3 correct values)M1 (dep on B1) ft from (a) for at least 5points plotted correctly	-
			correct graph		A1 for a correct graph (clear intention to go through all the points and which must be curved at the bottom) Note: If a fully correct graph is shown, but an incomplete table is shown in (a), then award the marks for (a)	
					Total 4 marks]

19			4	B1 for 80
	for $\frac{a+75}{2} = 74$ oe or 73			M1 for setting up an equation using the median or for 73
	for 80 – 16 (= 64) oe			M1 for using the range correctly or for 64
		64, 73, 80		A1 answers can be in any order
				Total 4 marks

20 (a)	36, 72, 108, and 120, 240, 360, or 2, 2, 3, 3 and 2, 2, 2, 3, 5 or $ 3 2 \\ 2 \\ 3 \\ 3 \\ 2 \\ 2 \\ 3 \\ 3 \\ 2 \\ 5 \\ 3 \\ 2 \\ 5 \\ 2 \\ 3 \\ 3 \\ 10 \\ 12 \\ 0r \\ 2, 2, 3, 3, 5 \\ 0e$		2	M1for any correct valid method e.g. for starting to list at least three multiples of each number 2, 2, 3, 3 and 2, 2, 2, 3, 5 seen (may be in a factor tree or a ladder diagram and ignore 1) (Allow 2 × 2 as 4) or a fully correct "Venn" diagram	Iteoonedayga web and
		360		A1 or $2^3 \times 3^2 \times 5$ oe (allow $2^3 \cdot 3^2 \cdot 5$)	
(b)		$5^2 \times 7^4 \times 11$	2	B2 for $5^2 \times 7^4 \times 11$ (in any order)(B1 for 660 275 orcorrect unsimplified product or $5^a \times 7^b \times 11^c$ where 2 of a, b and c arecorrect)Total 4 marks	

			M1 for a method to find the time from B to C	
21	$220 \div 80 \ (= 2.75 \ \text{or} \ \frac{11}{4}) \ \text{oe}$		M1 for a method to find the time from B to C $\overset{\mathfrak{S}_{4}}{\overset{\mathfrak{S}_{7}}}{\overset{\mathfrak{S}_{7}}{\overset{\mathfrak{S}_{7}}}{\overset{\mathfrak{S}_{7}}}{\overset{\mathfrak{S}_{7}}}{\overset{\mathfrak{S}_{7}}}{\overset{\mathfrak{S}_{7}}}{\overset{\mathfrak{S}_{7}}{\overset{\mathfrak{S}_{7}}}{\overset{\mathfrak{S}_{7}}{\overset{\mathfrak{S}_{7}}}{\overset{\mathfrak{S}_{7}}{\overset{\mathfrak{S}_{7}}}{\overset{\mathfrak{S}_{7}}}{\overset{\mathfrak{S}_{7}}}{\overset{\mathfrak{S}_{7}}}{\overset{\mathfrak{S}_{7}}}{\overset{\mathfrak{S}_{7}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	3o
	$72 \times \frac{50}{60} (= 60)$ oe		M1 for a method to find the distance from C to D Allow 0.83(333) to 2 dp truncated or rounded	
	$\frac{245 + 220 + 60}{2.5 + 2.75} = \frac{50}{60} = \frac{525}{73/12} \text{ oe}$		M1 for a complete method to find the average speed for entire journey 0.83(333) to 2 dp truncated or rounded 6.0(8333) to 2 sf truncated or rounded	
		86.3	A1 for 86.3 – 86.4	
			Total 4 marks	

22 (a)		50 000	1	B1
(b)		6×10^{-5}	1	B1
(c)	2.5×10 ⁵¹²⁻⁷⁰⁰ or 2.5×10 ^{<i>n</i>} or 0.25×10 ⁻¹⁸⁷ or $p \times 10^{-188}$ where $1 \le p < 10$		2	M1
		2.5×10^{-188}		A1
				Total 4 marks

				https://Britishsta	Identroom by Joa web and
23 (a)		x ⁹	1	B1 cao	^{3,4} 66.3
(b)		64y ⁶	2	B2 for $64y^6$	SOD.
				(B1 for ky^6 where $k \neq 64$ or	
				$64y^m$ where $m \neq 6$)	
(c)	$(n \pm 3)(n \pm 4)$		2	M1 for $(n \pm 3)(n \pm 4)$ or	
				(n+a)(n+b) where $ab = 12$ or	
				a+b=-7	
				Condone use of a different letter to <i>n</i>	
		(n-3)(n-4)		A1	
				Total 5 marks	

				HIDS-BIIISISHULE	STIRCOUT BASDO WEB ADD
24	$3 \times 2.5 (= 7.5)$ oe or $2 \times 3 \times 2.5 (= 15)$ oe or $12 \times 3 (= 36)$ oe or $2 \times 12 \times 3 (= 72)$ oe or $12 \times 2.5 (= 30)$		6	M1 for area of rectangle	"basication to a start
	$(2 \times 3 \times 2.5) + (2 \times 12 \times 3) + (12 \times 2.5) (= 117) \text{ or} (2 \times 7.5) + (2 \times 36) + (12 \times 2.5) (= 117) \text{ or} 15 + 72 + 30 (= 117)$			M1 for a complete method to find the surface area	
	$\frac{1+0.1 (= 1.1) \text{ or}}{100(\%) + 10(\%) (= 110(\%)) \text{ or}}$ $\frac{26.95}{110} (= 0.245) \text{ oe}$			M1	
	$\begin{array}{c} 26.95 \div ``1.1" (= 24.5(0)) \text{ or} \\ 26.95 \div ``110" \times 100 (= 24.5(0)) \text{ or} \\ 26.95 \times 100 \div ``110" (= 24.5(0)) \text{ or} \\ ``0.245" \times 100 (= 24.5(0)) \text{ oe} \end{array}$			M1 dep on previous M1	
	"117" ÷ 15 (= 7.8 or 8) and "8" × "24.50" (= 196) or "117" ÷ 15 (= 7.8 or 8) and 200 ÷ "24.5" (= 8.1) or "117" ÷ 15 (= 7.8 or 8) and 200 ÷ "8" (= 25)			M1for working with a whole number of tins (rounded up) to reach figures where a decision can be made	
		Correct figures to show that Jonty is correct		A1 e.g. 196 7.8 or 8 and 8.1 24.5 and 25	1
				Total 6 marks	J

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom https://britiststudentroom/ba3Clawebatto/