

Mark Scheme (Results)

Summer 2023

Pearson Edexcel International GCSE In Further Pure Mathematics (4PM1) Paper 01R hrios: [british student con. com.

Edexcel and BTEC Qualifications

hitos:/britishstudentroom.com/ Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2023 Question Paper Log Number P74098A Publications Code 4PM1 01R 2306 MS All the material in this publication is copyright © Pearson Education Ltd 2023

General Marking Guidance

 All candidates must receive the same treatment. Examiners must mark the last candidate in exactly the same way as they mark the first.

hrips://britishstudentroom.com/

- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification/indicative content will not be exhaustive.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, a senior examiner must be consulted before a mark is given.
- Crossed out work should be marked unless the candidate has replaced it with an alternative response.

Types of mark

o M marks: method marks

A marks: accuracy marks

o B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- o cao correct answer only
- ft follow through
- o isw ignore subsequent working
- SC special case

- o oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- o awrt answer which rounds to
- o eeoo each error or omission

No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

hrips://britishstudentroom.com/

With working

If the final answer is wrong, always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review.

If there is a choice of methods shown, then award the lowest mark, unless the answer on the answer line makes clear the method that has been used. If there is no answer achieved then check the working for any marks appropriate from the mark scheme.

Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

General Principles for Further Pure Mathematics Marking

(but note that specific mark schemes may sometimes override these general principles)

Method mark for solving a 3 term quadratic equation:

1. Factorisation:

$$(x^2+bx+c)=(x+p)(x+q)$$
, where $|pq|=|c|$ leading to $x=...$
 $(ax^2+bx+c)=(mx+p)(nx+q)$ where $|pq|=|c|$ and $|mn|=|a|$ leading to $x=...$

2. Formula:

Attempt to use the **correct** formula (shown explicitly or implied by working) with values for a, b and c, leading to x = ...

3. Completing the square:

$$x^{2} + bx + c = 0$$
: $(x \pm \frac{b}{2})^{2} \pm q \pm c = 0$, $q \ne 0$ leading to $x = ...$

Method marks for differentiation and integration:

1. <u>Differentiation</u>

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration:

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula:

Generally, the method mark is gained by **either**

quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values

or, where the formula is <u>not</u> quoted, the method mark can be gained by implication from the substitution of <u>correct</u> values and then proceeding to a solution.

Answers without working:

The rubric states "Without sufficient working, correct answers <u>may</u> be awarded no marks".

General policy is that if it could be done "in your head" detailed working would not be required. (Mark schemes may override this eg in a case of "prove or show...."

Exact answers:

When a question demands an exact answer, all the working must also be exact. Once a candidate loses exactness by resorting to decimals the exactness cannot be regained.

Rounding answers (where accuracy is specified in the question)

Penalise only once per question for failing to round as instructed - ie giving more digits in the answers. Answers with fewer digits are automatically incorrect, but the isw rule may allow the mark to be awarded before the final answer is given.

4PM1 Paper 1R Mark Scheme

4PM1 Paper 1R Mark Scheme Scheme Marks $ \frac{(4-\sqrt{2})(a+b\sqrt{2})=10+\sqrt{2}\Rightarrow a+b\sqrt{2}=\frac{10+\sqrt{2}}{4-\sqrt{2}}}{(4-\sqrt{2})} \qquad B1 $ $ \frac{(10+\sqrt{2})}{(4-\sqrt{2})} \times \frac{(4+\sqrt{2})}{(4+\sqrt{2})} = \frac{42+14\sqrt{2}}{14} = 3+\sqrt{2} = a+b\sqrt{2} $ $ \Rightarrow a=3, b=1 \qquad A1A1 $ $ ALT $ $ \frac{(4-\sqrt{2})(a+b\sqrt{2})=4a+4b\sqrt{2}-a\sqrt{2}-2b}{\Rightarrow 4a-2b+\sqrt{2}(4b-a)=10+\sqrt{2}} $ $ 4a-2b=10 $ $ -a+4b=1 \qquad M1 $			hrtos://brit	ish _{sin}
1 $ (4-\sqrt{2})(a+b\sqrt{2}) = 10+\sqrt{2} \Rightarrow a+b\sqrt{2} = \frac{10+\sqrt{2}}{4-\sqrt{2}} $ B1 $ \frac{(10+\sqrt{2})}{(4-\sqrt{2})} \times \frac{(4+\sqrt{2})}{(4+\sqrt{2})} = \frac{42+14\sqrt{2}}{14} = 3+\sqrt{2} = a+b\sqrt{2} $ M1 $ \Rightarrow a=3, b=1 $ A1A1 $ \frac{(4-\sqrt{2})(a+b\sqrt{2})}{(4+\sqrt{2})} = 4a+4b\sqrt{2}-a\sqrt{2}-2b $ B1 $ \Rightarrow 4a-2b+\sqrt{2}(4b-a)=10+\sqrt{2} $ B1		• • • • • • • • • • • • • • • • • • •		dentioon, com
1 $ (4-\sqrt{2})(a+b\sqrt{2}) = 10+\sqrt{2} \Rightarrow a+b\sqrt{2} = \frac{10+\sqrt{2}}{4-\sqrt{2}} $ B1 $ \frac{(10+\sqrt{2})}{(4-\sqrt{2})} \times \frac{(4+\sqrt{2})}{(4+\sqrt{2})} = \frac{42+14\sqrt{2}}{14} = 3+\sqrt{2} = a+b\sqrt{2} $ M1 $ \Rightarrow a=3, b=1 $ A1A1 $ \frac{[4]}{4} $ ALT $ (4-\sqrt{2})(a+b\sqrt{2}) = 4a+4b\sqrt{2}-a\sqrt{2}-2b $ B1 $ \Rightarrow 4a-2b+\sqrt{2}(4b-a) = 10+\sqrt{2} $ B1	Question	Scheme	Marks]
$\frac{\left(10+\sqrt{2}\right)}{\left(4-\sqrt{2}\right)} \times \frac{\left(4+\sqrt{2}\right)}{\left(4+\sqrt{2}\right)} = \frac{42+14\sqrt{2}}{14} = 3+\sqrt{2} = a+b\sqrt{2}$ $\Rightarrow a = 3, b = 1$ A1A1 [4] ALT $\frac{\left(4-\sqrt{2}\right)\left(a+b\sqrt{2}\right) = 4a+4b\sqrt{2}-a\sqrt{2}-2b}{\Rightarrow 4a-2b+\sqrt{2}\left(4b-a\right) = 10+\sqrt{2}}$ B1 $\Rightarrow 4a-2b=10$ M1		$\left(4 - \sqrt{2}\right)\left(a + b\sqrt{2}\right) = 10 + \sqrt{2} \Rightarrow a + b\sqrt{2} = \frac{10 + \sqrt{2}}{4 - \sqrt{2}}$	B1	
ALT $(4 - \sqrt{2})(a + b\sqrt{2}) = 4a + 4b\sqrt{2} - a\sqrt{2} - 2b$ $\Rightarrow 4a - 2b + \sqrt{2}(4b - a) = 10 + \sqrt{2}$ $4a - 2b = 10$ M1			M1	
$(4-\sqrt{2})(a+b\sqrt{2}) = 4a+4b\sqrt{2}-a\sqrt{2}-2b$ $\Rightarrow 4a-2b+\sqrt{2}(4b-a)=10+\sqrt{2}$ $4a-2b=10$ M1		,		
$\Rightarrow 4a - 2b + \sqrt{2}(4b - a) = 10 + \sqrt{2}$ $4a - 2b = 10$ M1		ALT		
M1			B1	
			M1	
$\Rightarrow a = 3, b = 1$ A1A1 [4] Total 4 marks		,	[4]	

Mark	Notes
B1	For forming the correct equation $[a + b\sqrt{2} =] \frac{10 + \sqrt{2}}{4 - \sqrt{2}}$
	Allow as an expression with $a + b\sqrt{2}$ omitted.
	For multiplying the denominator and the numerator by $4 + \sqrt{2}$
M1	The calculation must be shown.
1411	Minimum working is: $\frac{(10+\sqrt{2})}{(4-\sqrt{2})} \times \frac{(4+\sqrt{2})}{(4+\sqrt{2})} = \frac{42+14\sqrt{2}}{14}$
A 1	Either $a = 3$ OR $b = 1$
A1	Allow embedded.
A1	Both $a = 3$ AND $b = 1$
AI	Allow embedded.
	ALT
B1	For forming a simplified expression in a and b for the area.
D1	Minimum required is expression of the form $4a + 4b\sqrt{2} - a\sqrt{2} - 2b$
M1	For solving the simultaneous equations in a and b
1V1 1	Condone arithmetic errors, but process for solving must be correct.
A1	Either $a = 3$ OR $b = 1$
AI	Allow embedded.
A1	Both $a = 3$ AND $b = 1$
111	Allow embedded.

Scheme

Marks

Question

		haras://	
		Original Control of the Control of t	Shstuden
2(a)	$6 \times \left(-\frac{1}{2}\right)^2 - \left(-\frac{1}{2}\right)q = 5 \Rightarrow \frac{3}{2} + \frac{q}{2} = 5 \Rightarrow q = 7$	M1A1	Shstudentroom.com
	$y = px + 9 \Rightarrow 7 = p \times -\frac{1}{2} + 9 \Rightarrow p = 4$	M1A1 [4]	
	ALT	[M1A1	
	$6x^{2} - x(px + 9) = 5 \Rightarrow \frac{3}{2} - \frac{p}{4} + \frac{9}{2} - 5 = 0 \Rightarrow p = 4$		
	$y = px + 9 \Rightarrow q = 4 \times -\frac{1}{2} + 9 \Rightarrow q = 7$	M1A1]	
	ALT 2		
	$6x^2 - x(px + 9) - 5 = 0 \text{ and}$		
	$(2x+1)(ax+b) = 0 \Rightarrow 2ax^2 + x(2b+a) + b = 0$		
	C = 2a and $b = 5$		
	6-p=2a and $b=-5-9=2b+a \Rightarrow -9=2\times-5+a \Rightarrow a=1$		
	$\therefore 6 - p = 2 \Rightarrow p = 4$	[M1A1	
	$q = 4 \times -\frac{1}{2} + 9 = 7$	M1A1]	
(b)	$6x^{2} - x(4x+9) = 5 \Rightarrow 6x^{2} - 4x^{2} - 9x - 5 = 0 \Rightarrow 2x^{2} - 9x - 5 = 0$	M1	
	$2x^2 - 9x - 5 = 0 \Rightarrow (2x+1)(x-5) = 0 \Rightarrow x = 5$	M1A1	
	$y = 4 \times 5 + 9 = 29 \Longrightarrow (5, 29)$	A1 [4]	
	To	tal 8 marks	

		hrtos://hritis	Studenfroom.com/
Part	Mark	Notes	Studentroo.
(a)	M1	Substitutes $\left(-\frac{1}{2}\right)$ into the quadratic to find the value of q (or y)	M.COM/
	A1	For $q = 7$	
	M1	For using the linear equation with $y = \text{their } q \text{ and } x = -\frac{1}{2}$ to find the	
	A1	value of p For $p = 4$	
	ALT	100 p - 4	
	M1	Substitutes the linear expression for y and $\left(-\frac{1}{2}\right)$ into the quadratic to	
		find the value of p	
	A1	For $p = 4$	
	M1	For using the linear equation with their p and $x = -\frac{1}{2}$ to find the value of q	
	A1	for q = 7	
	ALT 2		
	M1A1	 For the complete method which must be shown: Substituting the linear expression for y into the quadratic Writing (2x + 1)(ax + b) = 0 and expanding Comparing coefficients for form equations in a, b and p Solving simultaneous equations to find a, b and p 	
	M1	For using the linear equation with their p and $x = -\frac{1}{2}$ to find the value of q	
	A1	For $q = 7$	
(b)	M1	For substituting the linear equation (with their value of p) into the quadratic equation to form a 3TQ in x	
	M1	For solving their 3TQ, must be a 3TQ. Independent of the first M. See general guidance on what constitutes an attempt to solve a 3TQ.	
	A1	For $x = 5$	
	A1	For the other solution to the equations. Does not have to be given as coordinates.	
	M1M1	A1 may be awarded for correct work in (a) if ALT2 was used, then award	
	the fina	al A mark as per scheme.	

		hrths://brit	Thstudentroom.com
			Shstudens.
Question	Scheme	Marks	Coop
3 (a)	$BC^2 = 10^2 + 8^2 - 2 \times 10 \times 8 \times \cos 100^{\circ}$	M1	· com
	$BC = 13.848 \approx 13.8$		
		[2]	
(b)	(i) $\sin ABC = \frac{8\sin 100^{\circ}}{13.848} \Rightarrow ABC = 34.6752^{\circ} \approx 34.7^{\circ}$	M1A1	
	(ii) $\angle ACB = 180^{\circ} - 100^{\circ} - 34.6752^{\circ} = 45.324^{\circ} \approx 45.3^{\circ}$	B1FT	
		[3]	
	(1) (1) AGD 8 ² +13.848 ² -10 ² AGD 4F 222	[M1A1	
	(i)(ii) $\cos ACB = \frac{8^2 + 13.848^2 - 10^2}{2 \times 8 \times 13.848} \Rightarrow ACB = 45.330$		
	$ABC = 180^{\circ} - 100^{\circ} - 45.330 \dots = 34.6699 \dots$	B1FT]	
(c)	$\angle MBC = 34.675 \div 2 = 17.337^{\circ}$		
	and $\angle BMC = 180^{\circ} - 17.337^{\circ} = 117.33^{\circ}$	B1FT	
	$MC = \frac{13.848 \sin 17.337^{\circ}}{\sin 117.33^{\circ}} = 4.6293$	M1	
	Area of $BMC =$		
	$\frac{1}{2} \times 4.629 \times 13.848 \times \sin 45.324^{\circ} = 22.79 \approx 22.8 \text{ (cm}^2\text{)}$	M1A1 [4]	
	ALT		
	$ABM = 34.675 \div 2 = 17.337 \dots^{\circ}$	FD 4 F/F	
	and $AMB = 180 - 100 - 17.33 \dots = 62.66 \dots$	[B1FT	
	$BM = \frac{10\sin 100}{\sin 62.66} = 11.086$	M1	
	Area of $BMC =$	3.61.4.13	
	$\frac{1}{2} \times 13.848 \dots \times 11.086 \dots \times \sin 17.337 \dots = 22.87 \dots$	M1A1]	
	$\approx 22.9 \text{ (cm}^2\text{)}$		
	, ,	otal 9 marks	

Part	Mark	Notes
(a)	M1	For applying the cosine rule correctly to obtain BC^2
	A1	For awrt 13.8 (cm)
(b)(i)	M1	For applying the sine rule correctly to find angle <i>ABC</i>
		Accept any appropriate trigonometry.
		$\frac{\sin ABC}{8} = \frac{\sin 100}{13.8}$ leading to $ABC = 34.8$ is M1A0
	A1	For awrt 34.7°
(ii)	B1FT	For awrt 45.3°
		FT 180 – 100 – their 34.3752
		0 < their 34.3752 < 80
ALT		
(b)(i)(ii)	M1	For applying cosine rule correctly to find angle <i>ACB</i>

		h _{thos.}	
		Thritish Committee of the Committee of t	Stidentoon, con
		Accept any appropriate trigonometry.	Cheron.
	A1	For awrt 45.3° (angle <i>ACB</i>)	M.COA
	B1FT	FT 180 – 100 – their 45.330 (angle ABC)	2
(c)	B1ft	For both angles MBC and BMC	
	M1	For applying the sine rule using their angles and BC to find length	
		MC	
		Allow alternative correct methods to find <i>MC</i> .	
	M1	For using Area = $\frac{1}{2}ab\sin C$ using their length and angles.	
		Their $MC \neq 4$	
	A1	Awrt 22.8 or awrt 22.9	
ALT			
(c)	B1ft	For both angles <i>ABM</i> and <i>AMB</i>	
	M1	For applying sine rule using their angles to find length <i>BM</i> .	
		Allow alternative correct methods to find <i>BM</i> .	
	M1	For using Area = $\frac{1}{2}ab\sin C$ using their length and angles.	
		Their $MC \neq 4$ if used.	
	A1	Awrt 22.8 or awrt 22.9	

$ \begin{array}{ c c c c c } \hline \textbf{Question} & \textbf{Scheme} & \textbf{Marks} \\ \hline \hline x & 0 & 1 & 1.5 & 2 & 3 & 4 & 5 & 6 \\ \hline y & 7 & \textbf{2.3} & 2.0 & \textbf{2.1} & \textbf{2.5} & 3 & \textbf{3.5} & 4 \\ \hline $											https://briti	Sh _{Stude}
(e) $ 2x + \ln(24 - 5x) - \ln 36 = 0 \Rightarrow \ln\left(\frac{24 - 5x}{36}\right) = -2x $ $ \Rightarrow \frac{24 - 5x}{36} = e^{-2x} \Rightarrow \frac{2}{3} - \frac{5x}{36} = e^{-2x} $ $ \Rightarrow 4 - \frac{5x}{6} = 6e^{-2x} + 1 \Rightarrow y = 5 - \frac{x}{3} $ $ \Rightarrow x = 0.2, 4.8 $ $ \Rightarrow \frac{3}{3} + \frac{3}{3} + \frac{5}{3} + \frac{5}$	Question			,	Schem	ne .					Marks	The contract of the contract o
(e) $ 2x + \ln(24 - 5x) - \ln 36 = 0 \Rightarrow \ln\left(\frac{24 - 5x}{36}\right) = -2x $ $ \Rightarrow \frac{24 - 5x}{36} = e^{-2x} \Rightarrow \frac{2}{3} - \frac{5x}{36} = e^{-2x} $ $ \Rightarrow 4 - \frac{5x}{6} = 6e^{-2x} + 1 \Rightarrow y = 5 - \frac{x}{3} $ $ \Rightarrow x = 0.2, 4.8 $ $ \Rightarrow \frac{3}{3} + \frac{3}{3} + \frac{5}{3} + \frac{5}$	4(a)											n.com
(e) $2x + \ln(24 - 5x) - \ln 36 = 0 \Rightarrow \ln\left(\frac{24 - 5x}{36}\right) = -2x$ $\Rightarrow \frac{24 - 5x}{36} = e^{-2x} \Rightarrow \frac{2}{3} - \frac{5x}{36} = e^{-2x}$ $\Rightarrow 5 - \frac{x}{3} = \frac{x}{2} + 6e^{-2x} + 1 \Rightarrow y = 5 - \frac{x}{3}$ $\Rightarrow x = 0.2$, 4.8 [2]			<u> </u>			1					D2	
(c) $2x + \ln(24 - 5x) - \ln 36 = 0 \Rightarrow \ln\left(\frac{24 - 5x}{36}\right) = -2x$ $\Rightarrow \frac{24 - 5x}{36} = e^{-2x} \Rightarrow \frac{2}{3} - \frac{5x}{36} = e^{-2x}$ $\Rightarrow 4 - \frac{5x}{6} = 6e^{-2x}$ $\Rightarrow 5 - \frac{x}{3} = \frac{x}{2} + 6e^{-2x} + 1 \Rightarrow y = 5 - \frac{x}{3}$ $\Rightarrow x = 0.2, 4.8$ [5]		l x	0	1	1.5	2	3	4	5	6	D2	
(b) $2x + \ln(24 - 5x) - \ln 36 = 0 \Rightarrow \ln\left(\frac{24 - 5x}{36}\right) = -2x$ $\Rightarrow \frac{24 - 5x}{36} = e^{-2x} \Rightarrow \frac{2}{3} - \frac{5x}{36} = e^{-2x}$ $\Rightarrow 4 - \frac{5x}{6} = 6e^{-2x}$ $\Rightarrow 5 - \frac{x}{3} = \frac{x}{2} + 6e^{-2x} + 1 \Rightarrow y = 5 - \frac{x}{3}$ $\Rightarrow x = 0.2, 4.8$ M1A1 M1A1FT [5]											[2]	
(c) $2x + \ln(24 - 5x) - \ln 36 = 0 \Rightarrow \ln\left(\frac{24 - 5x}{36}\right) = -2x$ $\Rightarrow \frac{24 - 5x}{36} = e^{-2x} \Rightarrow \frac{2}{3} - \frac{5x}{36} = e^{-2x}$ $\Rightarrow 4 - \frac{5x}{6} = 6e^{-2x}$ $\Rightarrow 5 - \frac{x}{3} = \frac{x}{2} + 6e^{-2x} + 1 \Rightarrow y = 5 - \frac{x}{3}$ $\Rightarrow x = 0.2, 4.8$ M1A1 M1A1FT [5]		y	7	2.3	2.0	2.1	2.5	3	3.5	4		
(c) $2x + \ln(24 - 5x) - \ln 36 = 0 \Rightarrow \ln\left(\frac{24 - 5x}{36}\right) = -2x$ $\Rightarrow \frac{24 - 5x}{36} = e^{-2x} \Rightarrow \frac{2}{3} - \frac{5x}{36} = e^{-2x}$ $\Rightarrow 4 - \frac{5x}{6} = 6e^{-2x}$ $\Rightarrow 5 - \frac{x}{3} = \frac{x}{2} + 6e^{-2x} + 1 \Rightarrow y = 5 - \frac{x}{3}$ $\Rightarrow x = 0.2, 4.8$ M1A1 M1A1FT [5]												
(c) $2x + \ln(24 - 5x) - \ln 36 = 0 \Rightarrow \ln\left(\frac{24 - 5x}{36}\right) = -2x$ $\Rightarrow \frac{24 - 5x}{36} = e^{-2x} \Rightarrow \frac{2}{3} - \frac{5x}{36} = e^{-2x}$ $\Rightarrow 4 - \frac{5x}{6} = 6e^{-2x}$ $\Rightarrow 5 - \frac{x}{3} = \frac{x}{2} + 6e^{-2x} + 1 \Rightarrow y = 5 - \frac{x}{3}$ $\Rightarrow x = 0.2, 4.8$ M1A1 M1A1FT [5]	(b)											
(c) $2x + \ln(24 - 5x) - \ln 36 = 0 \Rightarrow \ln\left(\frac{24 - 5x}{36}\right) = -2x$ $\Rightarrow \frac{24 - 5x}{36} = e^{-2x} \Rightarrow \frac{2}{3} - \frac{5x}{36} = e^{-2x}$ $\Rightarrow 4 - \frac{5x}{6} = 6e^{-2x}$ $\Rightarrow 5 - \frac{x}{3} = \frac{x}{2} + 6e^{-2x} + 1 \Rightarrow y = 5 - \frac{x}{3}$ $\Rightarrow x = 0.2, 4.8$ [5] MIAI M1AIFT		6										
(c) $2x + \ln(24 - 5x) - \ln 36 = 0 \Rightarrow \ln\left(\frac{24 - 5x}{36}\right) = -2x$ $\Rightarrow \frac{24 - 5x}{36} = e^{-2x} \Rightarrow \frac{2}{3} - \frac{5x}{36} = e^{-2x}$ $\Rightarrow 4 - \frac{5x}{6} = 6e^{-2x}$ $\Rightarrow 5 - \frac{x}{3} = \frac{x}{2} + 6e^{-2x} + 1 \Rightarrow y = 5 - \frac{x}{3}$ $\Rightarrow x = 0.2, 4.8$ M1A1 M1A1FT [5]											B2ft	
(c) $2x + \ln(24 - 5x) - \ln 36 = 0 \Rightarrow \ln\left(\frac{24 - 5x}{36}\right) = -2x$ $\Rightarrow \frac{24 - 5x}{36} = e^{-2x} \Rightarrow \frac{2}{3} - \frac{5x}{36} = e^{-2x}$ $\Rightarrow 4 - \frac{5x}{6} = 6e^{-2x}$ $\Rightarrow 5 - \frac{x}{3} = \frac{x}{2} + 6e^{-2x} + 1 \Rightarrow y = 5 - \frac{x}{3}$ $\Rightarrow x = 0.2, 4.8$ M1A1 M1A1FT [5]		4									[2]	
$\Rightarrow \frac{24 - 5x}{36} = e^{-2x} \Rightarrow \frac{2}{3} - \frac{5x}{36} = e^{-2x}$ $\Rightarrow 4 - \frac{5x}{6} = 6e^{-2x}$ $\Rightarrow 5 - \frac{x}{3} = \frac{x}{2} + 6e^{-2x} + 1 \Rightarrow y = 5 - \frac{x}{3}$ $\Rightarrow x = 0.2, 4.8$ M1A1 M1A1FT [5]												
$\Rightarrow \frac{24 - 5x}{36} = e^{-2x} \Rightarrow \frac{2}{3} - \frac{5x}{36} = e^{-2x}$ $\Rightarrow 4 - \frac{5x}{6} = 6e^{-2x}$ $\Rightarrow 5 - \frac{x}{3} = \frac{x}{2} + 6e^{-2x} + 1 \Rightarrow y = 5 - \frac{x}{3}$ $\Rightarrow x = 0.2, 4.8$ M1A1 M1A1FT [5]		2-										
$\Rightarrow \frac{24 - 5x}{36} = e^{-2x} \Rightarrow \frac{2}{3} - \frac{5x}{36} = e^{-2x}$ $\Rightarrow 4 - \frac{5x}{6} = 6e^{-2x}$ $\Rightarrow 5 - \frac{x}{3} = \frac{x}{2} + 6e^{-2x} + 1 \Rightarrow y = 5 - \frac{x}{3}$ $\Rightarrow x = 0.2, 4.8$ M1A1 M1A1FT [5]												
$\Rightarrow \frac{24 - 5x}{36} = e^{-2x} \Rightarrow \frac{2}{3} - \frac{5x}{36} = e^{-2x}$ $\Rightarrow 4 - \frac{5x}{6} = 6e^{-2x}$ $\Rightarrow 5 - \frac{x}{3} = \frac{x}{2} + 6e^{-2x} + 1 \Rightarrow y = 5 - \frac{x}{3}$ $\Rightarrow x = 0.2, 4.8$ M1A1 M1A1FT [5]	(-)	0		2	4	2.4 5						
$\Rightarrow \frac{24 - 5x}{36} = e^{-2x} \Rightarrow \frac{2}{3} - \frac{5x}{36} = e^{-2x}$ $\Rightarrow 4 - \frac{5x}{6} = 6e^{-2x}$ $\Rightarrow 5 - \frac{x}{3} = \frac{x}{2} + 6e^{-2x} + 1 \Rightarrow y = 5 - \frac{x}{3}$ $\Rightarrow x = 0.2, 4.8$ M1A1 M1A1FT [5]	(c)	$2x + \ln(24 - 5x)$) – ln 3	86 = 0 =	$\Rightarrow \ln\left(\frac{1}{2}\right)$	$\frac{24 - 5x}{36}$	$\left(\frac{2}{3}\right) = -2$	2x				
$\Rightarrow 4 - \frac{5x}{6} = 6e^{-2x}$ $\Rightarrow 5 - \frac{x}{3} = \frac{x}{2} + 6e^{-2x} + 1 \Rightarrow y = 5 - \frac{x}{3}$ $\Rightarrow x = 0.2, 4.8$ $[5]$ $[5]$		$\Rightarrow \frac{24-5x}{6} = e^{-2x}$	$e_x \rightarrow \frac{2}{3}$	$\frac{2}{3} = \frac{5x}{3}$	$-e^{-2x}$							
$\Rightarrow 5 - \frac{x}{3} = \frac{x}{2} + 6e^{-2x} + 1 \Rightarrow y = 5 - \frac{x}{3}$ $\Rightarrow x = 0.2, 4.8$ $[5]$				36	- 0						M1	
$\Rightarrow 5 - \frac{x}{3} = \frac{x}{2} + 6e^{-2x} + 1 \Rightarrow y = 5 - \frac{x}{3}$ $\Rightarrow x = 0.2, 4.8$ $[5]$		$\Rightarrow 4 - \frac{5x}{6} = 6e^{-2}$	2 <i>x</i>									
$\Rightarrow x = 0.2, 4.8$ $[5]$				1 → v	-5- ³	<u>c</u>					M1A1	
$\Rightarrow x = 0.2, 4.8$				1 -> y	_3	3					M1A1FT	
		$\Rightarrow x = 0.2, 4.8$	3									
		-6-									[5]	
Total 9 marks											[2]	
Total 9 marks		4										
Total 9 marks		2				_						
Total 9 marks												
Total 9 marks		0	2	4	6	_						
Total 9 marks			Ī	1								
		<u> </u>								T	otal 9 marks	

		hrips://hrips	The finder it oom com
Part	Mark	Notes	Croop
(a)	B1	At least two correct values rounded correctly.	"COM
	B1	All values correct, rounded correctly.	
(b)	B1ft	Their points plotted within half of one square.	
	B1ft	Their points joined up in a smooth curve.	
		Note: do not allow ruled sections.	
(c)	M1	Combines the logs correctly and raises both sides to the power of base e	
	M1	Rearranges the equation to obtain the equation of the curve on one side	
		and the equation of the straight line on the other.	
	A1	Achieves a correct equation of the straight line.	
		Note: equivalent forms are acceptable.	
	M1	Draws their line provided it is of the form $y = k \pm \frac{x}{3}$ when simplified.	
	A1FT	Provided M1M1A1M1 awarded.	
		For both correct values of x to 1 decimal place, their values must follow	
		through from their graph.	
		0.2, 0.3, 0.4 and 4.8	
		Condone coordinates.	
		Note: correct values seen with no working scores M0M0A0M0A0	

		https://brit.	Ststudentroom.com/
Question	Scheme	Marks	"Studenero
5(a)	$f(1) = 2 \times 1^3 + a \times 1^2 - 14 \times 1 + b = 0 \Rightarrow a + b = 12$	M1	On. com
	$f(4) = 2 \times 4^3 + a \times 4^2 - 14 \times 4 + b = 39 \Rightarrow 16a + b = -33$	M1	
	$\Rightarrow 15a = -45 \Rightarrow a = -3*$	M1A1	
	$\Rightarrow b = 15$	cso	
		B1 [5]	
	ALT – polynomial division	[2]	
	$(2x^3 + ax^2 - 14x + b) \div (x - 1) = 2x^2 + (a + 2)x - 14 + a + 2$ and comparison of final step of division with b to obtain an equation or $(2x^3 + ax^2 - 14x + b) \div (x - 4) = 2x^2 + (a + 8)x + (18 + 4a)$ r 39 and comparison of final step of division with obtaining remainder 39 to obtain an equation	[M1	
	$(2x^3 + ax^2 - 14x + b) \div (x - 1) = 2x^2 + (a + 2)x - 14 + a + 2$ and comparison of final step of division with b to obtain an equation and $(2x^3 + ax^2 - 14x + b) \div (x - 4) = 2x^2 + (a + 8)x + (18 + 4a)$ r 39 and comparison of final step of division with obtaining remainder 39 to obtain an equation	M1	
	b = 12 - a $b + 4(18 + 4a) = 39$	M1	
	a = -3* $b = 15$	A1cso B1]	
(b)	$\frac{2x^2 - x - 15}{(x-1) 2x^3 - 3x^2 - 14x + 15}$ $f(x) = (x-1)(2x+5)(x-3)$	M1A1	
		dM1A1 [4]	
(c)	$p = -\frac{5}{2} q = 1 r = 3$	B1ft B1ft B1ft [3]	

(d)
$$A = \left| \int_{1}^{3} (2x^{3} - 3x^{2} - 14x + 15) dx \right| + \int_{-\frac{5}{2}}^{1} (2x^{3} - 3x^{2} - 14x + 15) dx$$

$$A = \left[\frac{2x^{4}}{4} - \frac{3x^{3}}{3} - \frac{14x^{2}}{2} + 15x \right]_{1}^{3} + \left[\frac{2x^{4}}{4} - \frac{3x^{3}}{3} - \frac{14x^{2}}{2} + 15x \right]_{-\frac{5}{2}}^{1}$$

$$A = \left[\left(\frac{3^{4}}{2} - 3^{3} - 7 \times 3^{2} + 15 \times 3 \right) - \left(\frac{1^{4}}{2} - 1^{3} - 7 \times 1^{2} + 15 \times 1 \right) \right]$$

$$+ \left[\left(\frac{1^{4}}{2} - 1^{3} - 7 \times 1^{2} + 15 \times 1 \right) - \left(\frac{\left(-\frac{5}{2} \right)^{4}}{2} - \left(-\frac{5}{2} \right)^{3} - 7 \times \left(-\frac{5}{2} \right)^{2} + 15 \times \left(-\frac{5}{2} \right) \right]$$

$$A = 12 + \frac{1715}{32} = \frac{2099}{32} \quad \text{or} \quad 65.59375$$

$$A1$$
[4]

Total 16 marks

		Notes For use of $f(1) = 0$ or use of $f(4) = 39$ For use of $f(1) = 0$ and use of $f(4) = 39$	
		The state of the s	hstudent.
Part _	Mark	Notes	Oom
(a)	M1	For use of $f(1) = 0$ or use of $f(4) = 39$	•
	M1		
	M1	For solving the simultaneous equations in a and b	
		Must see at least one line of working before a or b obtained.	
	4.1	Must see an equation in just one variable.	
	A1cso	For showing $a = -3*$	
		Must see expression only in terms of a	
	B1	For the correct value of $b = 15$ seen.	
	A T (T)	Note: this is an A mark in epen.	
		polynomial division	
	M1	Correct method for forming one equation by polynomial division	
		together with comparison of the final step of the division with the	
		required result (no remainder for division by $(x - 1)$ and remainder 39	
	N/1	for division by $(x-4)$	
	M1	Correct method for forming both equations by polynomial division	
		together with comparison of the final step of the division with the	
		required result (no remainder for division by $(x - 1)$ and remainder 39	
	M1	for division by $(x - 4)$ For solving the simultaneous equations in a and b	
	IVII	Must see at least one line of working before a or b obtained.	
	A1cso	For showing $a = -3$ *	
	Aicso		
	D 1	Must see expression only in terms of a ie $ka = -3k$ before $a = -3$ For the correct value of $b = 15$ seen.	
	B1		
	A ggum	Note: this is an A mark in epen.	
		a = -3 and solving to find $b = 15$ scores maximum M0A0A1	
(b)		ne (b) completed in (c)	
(U)	M1	For carrying out polynomial division/comparing coefficients to find the	
	IVII	quadratic factor. Must reach $2x^2 \pm \cdots$.	
		Allow statement of quadratic factor if polynomial division by $(x-1)$	
		used in (a).	
	A1	For the correct quadratic factor.	
	dM1	For factorising their 3TQ	
	GIVII	See general guidance for what constitutes an attempt to factorise a 3TQ.	
	A1	For the correct factorisation of $f(x)$ on one line.	
		Condone omission of $f(x) =$	
	Note: co	omplete factorisation seen with no method scores M0A0M0A0.	
(c)	B1ft	For one correct value for any of p, r or q	
(-)		FT their linear factors in (b). Values need not be identified as p , r , q , but	
		if they are labelled these should be $p < q < r$.	
	B1ft	For two correct values.	
		FT their linear factors in (b). Values need not be identified as p , r , q , but	
		if they are labelled these should be $p < q < r$.	
	B1ft	For all three correct values.	
		FT their linear factors in (b), but 1 must be one of the values .	
		Values need not be identified as p , r , q , but if they are labelled these	
		should be $p < q < r$.	

		https://brit.	Sh _{Stidentioon} , con
(d)	M1	For a correct statement for the area of the shaded regions with their limits correctly used. Minimum required is: $\int_{p}^{q} (2x^3 - 3x^2 - 14x + 15) dx - \int_{q}^{r} (2x^3 - 3x^2 - 14x + 15) dx$ with $p < q < r$ shown as numerical limits or $\int_{p}^{q} (2x^3 - 3x^2 - 14x + 15) dx + \left \int_{q}^{r} (2x^3 - 3x^2 - 14x + 15) dx \right $	"OFFOOTH COM
	M1*	 with p < q < r shown as numerical limits For an attempt to integrate their expression. Minimum required is: two powers of terms to increase by 1 no powers of terms to decrease Condone +c 	
	dM1	For substituting their limits correctly to evaluate the integrated expression. Must show the substitution if their integral or their limits are incorrect. Correct exact answer following correct integral with correct limits implies this mark. Condone +c as long as this is cancelled out during the substitution.	
	A1	For the correct area. Exact area required.	

		https://briti	Ststudentroom.com/
Question	Scheme	Marks	Cudentro.
6(a)	$\tan 30^{\circ} = \frac{r}{h} \Rightarrow r = \frac{h}{\sqrt{3}}$	B1	ORICORY
	$V = \frac{1}{3}\pi r^2 h \Rightarrow V = \frac{1}{3}\pi \left(\frac{h}{\sqrt{3}}\right)^2 h \Rightarrow V = \frac{1}{9}\pi h^3 *$	M1A1 cso [3]	
(b)	$\frac{\mathrm{d}V}{\mathrm{d}t} = -4$	B1	
	$A = \pi r^2 \Rightarrow A = \pi \left(\frac{h}{\sqrt{3}}\right)^2 = \frac{\pi h^2}{3}$	B1	
	$\frac{\mathrm{d}A}{\mathrm{d}h} = \frac{2\pi h}{3} \qquad \frac{\mathrm{d}V}{\mathrm{d}h} = \frac{3\pi h^2}{9} = \frac{\pi h^2}{3}$	M1M1A1	
	$\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{\mathrm{d}A}{\mathrm{d}h} \times \frac{\mathrm{d}V}{\mathrm{d}t} \times \frac{1}{\frac{\mathrm{d}V}{\mathrm{d}t}}$	M1	
	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{2\pi h}{3} \times (-4) \times \frac{3}{\pi h^2} = -\frac{8}{h} \Rightarrow \frac{\mathrm{d}A}{\mathrm{d}t} = -\frac{8}{24} = -\frac{1}{3} \left(\mathrm{cm}^2/\mathrm{s}\right)$	dM1A1 [8]	
	ALT – working in terms of r rather than h		
	$\frac{\mathrm{d}v}{\mathrm{d}t} = -4$	[B1	
	$V = \frac{1}{3}\pi r^2 h \implies V = \frac{1}{3}\pi r^2 (\sqrt{3}r) = \frac{\sqrt{3}}{3}\pi r^3$	В1	
	$A = \pi r^2 \Rightarrow \frac{dA}{dr} = 2\pi r$ $V = \frac{\sqrt{3}}{3}\pi r^3 \Rightarrow \frac{dV}{dr} = \sqrt{3}\pi r^2$	M1M1A1	
	$\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{\mathrm{d}A}{\mathrm{d}r} \times \frac{1}{\frac{\mathrm{d}V}{\mathrm{d}r}} \times \frac{\mathrm{d}V}{\mathrm{d}t}$	M1	
	$\frac{dA}{dt} = 2\pi r \times \frac{1}{\sqrt{3}\pi r^2} \times -4 = -\frac{8}{\sqrt{3}r} \implies \frac{dA}{dt} = -\frac{8}{\sqrt{3}\times\frac{24}{\sqrt{3}}} = -\frac{1}{3}$	dM1A1]	
		tal 11 marks	

		hts.	
		OS://Britis	
		· Marian de la companya de la compa La companya de la co	Tuder
Part	Mark	Notes For $x = \frac{h}{h}$ or $x^2 = \frac{1}{h}h^2$	niroom.c.
(a)	Mark	h 2 1,2	, ou
()		For $r = \frac{h}{\sqrt{3}}$ or $r^2 = \frac{1}{3}h^2$	
	B1	h may be implied by substitution into the correct formula for	
		$r = \frac{h}{\sqrt{3}}$ may be implied by substitution into the correct formula for	
		volume of a cone.	
	M1	For using the correct volume of a cone and substituting in their	
	1411	expression for r or r^2 to find an expression for the volume in terms of h	
	A1	For the correct expression with no errors seen.	
(b)		Must have $V =$	
(b)	B1	For stating $\frac{dV}{dt} = -4 \text{ (allow +)}$	
	DI	May be embedded in working.	
		For finding the correct expression for the area of a circle in terms of h	
		Note: if differentiation is attempted before writing in terms of <i>h</i> then	
		award	
	B1	1^{st} M1 for $\frac{dA}{dh} = \frac{dA}{dr} \times \frac{dr}{dh}$ with attempts at $\frac{dA}{dr}$, $\frac{dr}{dh}$ found and substituted in	
		and attempt to substitute for r in terms of h .	
		B1 once $\frac{dA}{dh}$ found completely in terms of h	
		For attempting to differentiate their expression for A in terms of h	
	M1	See general guidance for what constitutes an attempt to differentiate.	
	1411	A must have the form $A = kh^2$ (dimensionally correct for area).	
	N // 1	For attempting to differentiate the given <i>V</i>	
	M1	See general guidance for what constitutes an attempt to differentiate.	
	A1	Both derivatives correct. $\frac{dA}{dV}$ and $\frac{dV}{dV}$	
	AI	Both derivatives correct. $\frac{dI}{dh}$ and $\frac{dV}{dh}$	
	M1	For a correct expression of chain rule to find $\frac{dA}{dA}$	
	1711	$\mathrm{d}t$	
	dM1	For substituting their derivatives into a correct chain rule.	
		Dep on previous three M marks.	
		For the correct $\frac{dA}{dt} = -\frac{1}{3} \left(\text{cm}^2 / \text{s} \right)$	
	A1	Allow -0.3 but not -0.3 .	
		ISW once exact answer found.	
	ALT		
		For stating dV (allow 1)	
	B1	For stating $\frac{dV}{dt} = -4 \text{ (allow +)}$	
		May be embedded in working.	
	B1	For finding the correct expression for the volume in terms of r	
	<i>D</i> 1	Must be working with correct volume expression as given in (a).	
	у д 1	For attempting to differentiate expression for A in terms of r	
	M1	See general guidance for what constitutes an attempt to differentiate. A must have the form $A = kr^2$ (dimensionally correct for area).	
		For attempting to differentiate expression for V in terms of r	
	M1	See general guidance for what constitutes an attempt to differentiate.	

	h _{ttps://brit.}	Shstudenfroom.com
A1	Both derivatives correct. $\frac{dA}{dr}$ and $\frac{dV}{dr}$	Studentroom.
M1	For a correct expression of chain rule to find $\frac{dA}{dt}$	Com
dM1	For substituting their derivatives into a correct chain rule. Dep on previous three M marks.	
A1	For the correct $\frac{dA}{dt} = -\frac{1}{3} (cm^2/s)$ Allow $-0.\dot{3}$ but not -0.3 . ISW once exact answer found.	

		https://britis	Sh _{Studenfroom,com/}
Question	Scheme	Marks	itroo.
	$\frac{dy}{dx} = 2mx + \frac{1}{2} \times 64x^{-\frac{1}{2}}$ $32x^{-\frac{1}{2}} + 2mx = 0 \Rightarrow 32 \times 4^{-\frac{1}{2}} + 2m \times 4 = 0 \Rightarrow 16 + 8m = 0 \Rightarrow m = -2$ $n = 39 + 64\sqrt{4} - 2 \times 4^{2} = 135$	M1A1 dM1A1 dM1A1 [6]	O.COM/
(b)	$\frac{d^{2}y}{dx^{2}} = -\frac{1}{2} \times 32x^{-\frac{3}{2}} - 4 = -16x^{-\frac{3}{2}} - 4$ $\frac{d^{2}y}{dx^{2}} = -6 < 0 \Rightarrow \text{ maximum}$	M1 A1FT [2]	
	Tota	l 8 marks	

Part	Mark	Notes
(a)	M1	For an attempt to differentiate the given expression.
		Minimum required is two of:
		$\bullet mx^2 \to kmx, k \neq 0$
		$\bullet 64\sqrt{x} \to nx^{-\frac{1}{2}}, \ n \neq 0$
		• 32 → 0
	A1	For a correct derivative in terms of <i>m</i>
	dM1	For setting their $\frac{dy}{dx} = 0$, substitute $x = 4$ and attempting to solve to
		find the value of <i>m</i>
		Dep on 1 st M mark.
	A1	For $m = -2$
	dM1	For using their value of m to find a value for n
		$n = 4^2 \times m + 167$
	4.1	Dep on 1 st M mark.
(1-)	A1	For the correct value of <i>n</i>
(b)	M1	For finding the second derivative.
		Minimum required is $\frac{d^2y}{dx^2} = km + px^{-\frac{3}{2}}$ with k, p not 0.
		Allow for substituting x values on either side of $x = 4$ into their $\frac{dy}{dx}$
		provided $\frac{dy}{dx} = kmx + nx^{-\frac{1}{2}}$ with k , n not 0.
	A1FT	For substituting their value of m and forming a correct conclusion.
		Minimum required is substitution of their value of <i>m</i> together with
		x = 4 into their second derivative, evaluation and correct conclusion.
		Allow for evaluating of $\frac{dy}{dx}$ on either side of $x = 4$ and forming a
		correct conclusion.
		$x = 3.9, \frac{dy}{dx} = 0.6038 \dots $ $x = 4.1, \frac{dy}{dx} = -0.596 \dots$

		hetes://britis	hstidentioon, com
Question	Scheme	Marks	Studentron
8(a)	$U_5 = \left(\frac{25}{4}\right) \left(\frac{3}{5}\right)^5 = \frac{243}{500}$ oe	B1 [1]	n.com/
(b)	$U_1 = \left(\frac{25}{4}\right) \left(\frac{3}{5}\right)^1 = \frac{15}{4}$ oe	B1	
	$S_n = \left(\frac{15}{4}\right) \left(\frac{3}{5}\right)^0 + \left(\frac{15}{4}\right) \left(\frac{3}{5}\right)^1 + \dots + \left(\frac{15}{4}\right) \left(\frac{3}{5}\right)^{n-1}$	M1	
	$\Rightarrow S_n = \sum_{r=0}^{n} \left(\frac{15}{4}\right) \left(\frac{3}{5}\right)^{r-1}$ oe	A1	
	r=1 (T) (3)	[3]	
	ALT 1 $(25)(3)^1$ 15	[B1	
	$U_{1} = \left(\frac{25}{4}\right) \left(\frac{3}{5}\right)^{1} = \frac{15}{4}$	251	
	$r = \frac{3}{5} \qquad U_n = \frac{15}{4} \times \left(\frac{3}{5}\right)^{n-1}$ $S_n = \sum_{r=1}^n \frac{15}{4} \times \left(\frac{3}{5}\right)^{r-1}$	M1	
	4 (3)	A1]	
	ALT 2 $\sum_{r=25}^{n} {25 \choose 3}^r$	[B1	
	$S_n = \sum_{r=1}^n \frac{25}{4} \left(\frac{3}{5}\right)^r$ = $\sum_{r=1}^n \frac{25}{4} \times \frac{3}{5} \times \left(\frac{3}{5}\right)^{r-1}$	M1	
	$= \sum_{r=1}^{n} \frac{15}{4} \times \left(\frac{3}{5}\right)^{r-1}$	A1]	
(c)	$S_{\infty} = \frac{\frac{15}{4}}{1 - \frac{3}{5}} = \frac{75}{8} \text{ or } 9.375$ $S_{n} = \frac{\frac{15}{4} \left(1 - \left[\frac{3}{5}\right]^{n}\right)}{1 - \frac{3}{5}}$	M1M1	
	$9.375 - \frac{\frac{15}{4} \left(1 - \left[\frac{3}{5} \right]^n \right)}{1 - \frac{3}{5}} < 0.045 \Rightarrow \frac{\frac{15}{4} \left(1 - \left[\frac{3}{5} \right]^n \right)}{1 - \frac{3}{5}} > 9.33$		
	$\frac{15}{4}\left(1 - \left[\frac{3}{5}\right]^{n}\right) > 9.33 \Rightarrow 1 - \left[\frac{3}{5}\right]^{n} > 0.9952 \Rightarrow \left[\frac{3}{5}\right]^{n} < \frac{3}{625}$	dM1	
	$n\lg\left[\frac{3}{5}\right] < \lg\frac{3}{625} \Rightarrow n > 10.45$	ddM1A1	
	n = 11	A1 [6]	
	Tot	tal 10 marks	

		The state of the s	
		ns: H _{bri}	Shstudentroom.com/
			"hstuden"
Part	Mark	Notes	Croom
(-)	D1	Mark (a) and (b) together	Com
(a)	B1	For the correct value only. Decimal value is 0.486.	
(b)	B1	Finds the value of the first term. Must be identified as U ₁ / first term.	
, ,	M1	Forms the sum of the series with at least the first term and the <i>n</i> th term.	
	A1	For the correct expression.	
	ALT 1		
	B1	Finds the value of the first term. Must be identified as U ₁ / first term.	_
	M1	For finding r and writing $U_n = \frac{15}{4} \times \left(\frac{3}{5}\right)^{n-1}$	
	A1	For the correct expression.	1
	ALT 2	•	
	B1	For correct summation statement using U_n from the question]
	M1	For showing process to change index from r to $r-1$ and find the value	
		of $\frac{A}{B}$	
		Minimum working is $\frac{25}{4} \times \left(\frac{3}{5}\right)^r = \frac{25}{4} \times \frac{3}{5} \times \left(\frac{3}{5}\right)^{r-1}$. May be with n as	
		index.	
	A1	For the correct expression.	1
(c)		nd improvement approaches for (c) should be sent to review.	1
		Correct method to find the sum to infinity using the correct formula	
	M1	with their $a = \frac{15}{4}$ and $r = \frac{3}{5}$. Their a should be $\frac{A}{B}$ if found in (b).	
		Condone if working with $a = \frac{25}{4}$, r must be correct.	
	M1	Using the correct formula, forms the sum to <i>n</i> terms using their $a = \frac{15}{4}$	
		and $r = \frac{3}{5}$. Their <i>a</i> should be $\frac{A}{B}$ if found in (b).	
		Condone if working with $a = \frac{25}{4}$, r must be correct.	
	dM1	Forms the inequality in terms of n with their S_{∞} and S_n and simplifies	1
		Must have dealt with negative.	
		Allow for working with equation if inequality sign reinstated later.	
		Reinstatement can be implied by rounding up to the next integer value	
		once <i>n</i> found.	
	ddM1	Dep M1M1 Uses logarithms correctly to attempt to find the value of <i>n</i>	-
	uuivi i	They must reverse the inequality for this mark. n	
		Allow for working with equation if inequality sign reinstated later.	
		Reinstatement can be implied by rounding up to the next integer value	
		once n found.	
		Dep previous M mark. Allow use of log base $\frac{3}{5}$.	
	A1	For correct n awrt 10.5 Can be implied by $n = 11$ if decimal not seen.	
	A1	For $n = 11$	J

	h _{thos}		
		Strikish Studen	
Question	Scheme	Marks	
9(a)	$(1+2x)^{-\frac{1}{3}} = 1 + \left(-\frac{1}{3}\right)(2x) + \frac{\left(-\frac{1}{3}\right)\left(-\frac{4}{3}\right)(2x)^2}{2!} + \frac{\left(-\frac{1}{3}\right)\left(-\frac{4}{3}\right)\left(-\frac{7}{3}\right)(2x)^3}{3!} + \dots$	M1	on.
	$=1-\frac{2x}{3}+\frac{8x^2}{9}-\frac{112x^3}{81}$	A1A1 [3]	
(b)	$-\frac{1}{2} < x \leqslant \frac{1}{2} \text{accept} -\frac{1}{2} < x < \frac{1}{2}$	B1 [1]	
(c)	$f(x) = (2 + kx^2) \left(1 - \frac{2x}{3} + \frac{8x^2}{9} - \frac{112x^3}{81} \right)$	M1	
	$=2-\frac{4x}{3}+\frac{16}{9}x^2+kx^2-\frac{224}{81}x^3-\frac{2k}{3}x^3$	M1A1 [3]	
(d)	$-\frac{224}{81} - \frac{2k}{3} = -\frac{8}{3} \Rightarrow k = -\frac{4}{27}$	M1A1 [2]	
(e)	$\int_{0.1}^{0.2} \left(2 - \frac{4x}{3} + \frac{44x^2}{27} - \frac{8}{3}x^3 \right) dx = \left[2x - \frac{4x^2}{2 \times 3} + \frac{44x^3}{3 \times 27} - \frac{8x^4}{4 \times 3} \right]_{0.1}^{0.2}$	B1FT M1A1ft	
	$= \left(2 \times 0.2 - \frac{2 \times 0.2^{2}}{3} + \frac{44 \times 0.2^{3}}{81} - \frac{2}{3} \times 0.2^{4}\right) - \left(2 \times 0.1 - \frac{2 \times 0.1^{2}}{3} + \frac{44 \times 0.1^{3}}{81} - \frac{2}{3} \times 0.1^{4}\right)$ $= 0.1828$	M1	
	NB: Calculator value is 0.18301744	A1 [5]	
	Total :	14 marks	

		https://	
			ShStudentroom.com/
Part	Mark	Notes	TOOD TOO
(a)	M1	For an attempt at binomial expansion.	"con_
		• The denominators are correct.	
	A1	• The powers of <i>x</i> are correct. For at least one algebraic term correct and simplified.	
	A1	For a fully correct and simplified expansion.	
(b)	B1	For the correct range.	
		Accept $ x < \frac{1}{2}$	
		<u>L</u>	
	3.61	Do not accept $-\frac{1}{2} \le x \le \frac{1}{2}$	
(c)	M1	For showing the intent to multiply their expansion by $(2+kx^2)$	
	M1	For expanding the two brackets up to terms in x^3 . Ignore terms in higher powers.	
	A1	For the correct expansion. This does not have to be simplified.	
		Must be in ascending powers, but accept $\frac{16}{9}x^2$ and kx^2 in either order	
		and accept $-\frac{224}{81}x^3$ and $-\frac{2k}{3}x^3$ in either order.	
		$f(x) = 2 - \frac{4x}{3} + x^2 \left(\frac{16}{9} + k \right) + x^3 \left(-\frac{224}{81} - \frac{2k}{3} \right)$	
		ISW errors in collection of coefficients once correct expansion in	
		ascending powers seen.	
(d)	M1	For setting their coefficient of x^3 equal to $-\frac{8}{3}$	
	A1	For the correct value of <i>k</i>	
(e)	B1FT	For substituting in their k into coefficient for x^2 in their expansion	
		from (c) and having the coefficient of x^3 as $-\frac{8}{3}$.	
		If the coefficient of x^2 is not correct then the substitution must be seen	
		to award this mark.	
	3.71	Note: this is an M mark in epen.	
	M1	For an attempt to integrate their expansion which must have 4 terms. At least two powers of x to increase by 1 (including $c \rightarrow cx$). No	
		power of x to reduce.	
	A1ft	For a correctly integrated expression follow through their 4 term	
	71110	polynomial.	
		Simplified integrated expression is $2x - \frac{2x^2}{3} + \frac{44x^3}{81} - \frac{2}{3}x^4$	
	M1	For substituting in 0.2 and 0.1 the correct way around in their	
	1,11	integrated expression. Expression should not have been differentiated	
		and needs to have changed.	
		Not dependent on first M.	
		Must show the substitution if their integral or their limits are incorrect.	
		Correct awrt 0.1828 following correct integral with correct limits implies this mark.	
	A1	For the correct value of awrt 0.1828	
		NB: The calculator value is 0.18301744	

		hrips://britis	hstudentroom.com/
Question	Scheme	Marks	*Chiton
10(a)	(i) $\overrightarrow{AB} = -\overrightarrow{OA} + \overrightarrow{OB} \Rightarrow \overrightarrow{AB} = -2\mathbf{a} + 4\mathbf{b}$	B1	ORI CORD
	(ii) $\overrightarrow{MY} = \overrightarrow{MA} + \frac{3}{4} \left(\overrightarrow{AB} \right) = \mathbf{a} + \frac{3}{4} \left(-2\mathbf{a} + 4\mathbf{b} \right) = -\frac{\mathbf{a}}{2} + 3\mathbf{b}$	M1A1 [4]	
(b)	$ \begin{array}{cccc} $	M1	
	$\overrightarrow{OX} = \overrightarrow{OM} + \overrightarrow{MX} = \overrightarrow{OM} + \lambda \overrightarrow{MY} = \mathbf{a} + \lambda \left(-\frac{\mathbf{a}}{2} + 3\mathbf{b} \right) = \mathbf{a} \left(1 - \frac{\lambda}{2} \right) + 3\lambda \mathbf{b}$	M1	
	$\Rightarrow \mu 4\mathbf{b} = \mathbf{a} \left(1 - \frac{\lambda}{2} \right) + 3\mathbf{b}$	dM1	
	$\Rightarrow 1 - \frac{\lambda}{2} = 0 \Rightarrow \lambda = 2$ $\Rightarrow 4\mu = 3\lambda \Rightarrow \mu = \frac{6}{4} = \frac{3}{2}$	ddM1	
	OB: OX = 2:3 oe	A1 [5]	
	ALT – working with alternative vector within triangle <i>OMX</i>		
	$ \overrightarrow{MX} = \overrightarrow{MO} + \overrightarrow{OB} + \mu \overrightarrow{OB} = -\mathbf{a} + 4\mathbf{b} + \mu 4\mathbf{b} $ $ \overrightarrow{MX} = \lambda \left(-\frac{\mathbf{a}}{2} + 3\mathbf{b}\right) $	[M1 M1	
	$\Rightarrow -a = -\frac{\lambda a}{2} \Rightarrow \lambda = 2$	dM1	
	$\Rightarrow 4\mathbf{b} + \mu 4\mathbf{b} = 3\lambda \mathbf{b} \Rightarrow \mu = \frac{1}{2}$ $OB: OX = 2: 3 \text{ oe}$	ddM1 A1]	
(c)	$\frac{\Delta YBX}{\Delta ABX} = \frac{1}{4}$ $\frac{\Delta ABX}{\Delta OAX} = \frac{1}{3}$	M1	
	$\Rightarrow \frac{\Delta YBX}{\Delta OAX} = \frac{1}{4} \times \frac{1}{3} = \frac{1}{12} \Rightarrow \Delta YBX : \Delta OAX = 1:12$	M1A1 [3]	
	ALT – working with relative areas of triangles Area $\Delta YBX = a$ Area $\Delta ABX = 4a$ Area $\Delta OMX = 6a$	[M1	
	Area $\triangle AYX = 3a$ Area $\triangle OXY = 6a$ Area $\triangle OYB = 2a$	LIVII	
	Area $\triangle OAX = 12a$ $\triangle YBX : \triangle OAX = 1:12$	M1 A1]	
	Total :	11 marks	

		https://x	
			Shstudenfroom.com
Part	Mark	Notes	OOM.C
(a)	B1	For the correct simplified vector \overrightarrow{AB}	On
	M1	For the correct vector statement for MY	
	A1	For the correct simplified vector for \overrightarrow{MY}	
(b)	M1	For the statement $\overrightarrow{OX} = \mu 4\mathbf{b}$	
		Note: this is a B mark on epen.	
	M1	For the correct vector for \overrightarrow{OX} (ft their \overrightarrow{MY})	
	dM1	For equating both vectors for \overrightarrow{OX} and for comparing coefficients of \mathbf{a} and \mathbf{b}	
	ddM1	Dep on M1M1 For finding a value for their parameter for μ	
	dalvii	Note: there is no mark for only finding λ , they must find μ	
		Dep on M1M1M1	
	A1	For the correct ratio $OB: OX = 2:3$	
		Allow equivalent ratios e.g. 4:6, 1:1.5	
	ALT –	working with alternative vector within triangle <i>OMX</i>	
	M1	For a vector statement which includes $\mu 4\mathbf{b}$ (for OX or BX) (ft their MY) Note: this is a B mark on epen.	
	M1	For a correct second vector equation for the same vector (ft their <i>MY</i>)	
	dM1	For equating both vectors and comparing coefficients of a	
		and b	
	ddM1	Dep on M1M1 For finding a value for their parameter for μ	
	dalviii		
		Note: there is no mark for only finding λ , they must find μ	
	A1	Dep on M1M1M1 For the correct ratio $OB: OX = 2:3$	
	711	Allow equivalent ratios e.g. $4:6, 1:1.5$	
		Condone $OX: OB = 3: 2$ if clearly stated, but not just 3:2	
(c)	M1	For either the relationship between the of areas of triangles BYX and ABX	
		or the relationship between the areas of triangles ABX and OAX	
	M1	For finding the relationship between the of areas of triangles BYX and OAX	
	A1	For the correct ratio [1:12]	
		Allow equivalent ratios.	
		Note: do not penalise answer given as a fraction i.e. $\frac{1}{12}$ if already	
		penalised in (b).	
		working with relative areas	
	M1	For assigning a value to one triangle area and writing a second area in terms of this.	
		Note: This could also follow from working with	
		area of a triangle = $\frac{1}{2}ab \sin C$	

	h _{ths://brit}	Sh _{Studens}
	e.g. $\Delta YBX = \frac{1}{2}yz\sin B$ and $\Delta ABX = \frac{1}{2}y(4z)\sin B$	"TOOM.
M1	For finding the relationship between the of areas of triangles <i>BYX</i> and <i>OAX</i> Note: This could also follow from working with area of a triangle = $\frac{1}{2}ab\sin C$ e.g. $\Delta YBX = \frac{1}{2}yz\sin B$ and $\Delta ABX = \frac{1}{2}y(4z)\sin B$	COM
A1	For the correct ratio [1:12] Allow equivalent ratios. Note: do not penalise answer given as a fraction i.e. $\frac{1}{12}$ if already penalised in (b).	

https://britishstudentroom.com/

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom