Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You must **NOT** write anything on the formulae page. Anything you write on the formulae page will gain NO credit.

Information

- The total mark for this paper is 100.
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

Turn over ▶

International GCSE in Further Pure Mathematics Formulae sheet

Mensuration

Surface area of sphere = $4\pi r^2$

Curved surface area of cone = $\pi r \times \text{slant height}$

Volume of sphere = $\frac{4}{3}\pi r^3$

Series

Arithmetic series

Sum to *n* terms, $S_n = \frac{n}{2} [2a + (n-1)d]$

Geometric series

Sum to *n* terms,
$$S_n = \frac{a(1-r^n)}{(1-r)}$$

Sum to infinity,
$$S_{\infty} = \frac{a}{1 - r} |r| < 1$$

Binomial series

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + \frac{n(n-1)\dots(n-r+1)}{r!}x^r + \dots$$
 for $|x| < 1, n \in \mathbb{Q}$

Calculus

Quotient rule (differentiation)

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{f}(x)}{\mathrm{g}(x)} \right) = \frac{\mathrm{f}'(x)\mathrm{g}(x) - \mathrm{f}(x)\mathrm{g}'(x)}{\left[\mathrm{g}(x)\right]^2}$$

Trigonometry

Cosine rule

In triangle *ABC*: $a^2 = b^2 + c^2 - 2bc \cos A$

$$\tan\theta = \frac{\sin\theta}{\cos\theta}$$

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$

$$\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

Logarithms

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Answer all ELEVEN questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

A particle P is moving along a straight line that passes through the fixed point O. At time t seconds, $t \ge 0$, the displacement, s metres, of P from O is given by

$$s = t^3 + 4t^2 - 27t + 4$$

Find the value of t at the instant when the velocity of P is $8 \mathrm{m/s}$.	
---	--

(Total for Question 1 is 4 marks)

2	Find	the	set	of	values	of a	r for	which	ı

(a)
$$3 + 2x \le x + 2$$

(1)

(b)
$$8x^2 + 10x < 3$$

(4)

(c) **both**
$$3 + 2x \le x + 2$$
 and $8x^2 + 10x < 3$

(1)

 	 	 	 	 	 	 • • • • •	• • • • •	 																

|
 |
|------|------|------|------|------|------|------|------|------|------|------|
| | | | | | | | | | | |
| | | | | | | | | | | |
| | | | | | | | | | | |
| | | | | | | | | | | |
| | | | | | | | | | | |
| | | | | | | | | | | |
| | | | | | | | | | | |
|
 |

Figure 1

Figure 1 shows a triangular pyramid ABCD.

The base, ABC, of the pyramid is a horizontal isosceles triangle with AB = AC = 10 cm and BC = 16 cm. The midpoint of BC is M.

The face BCD of the pyramid is an isosceles triangle with $BD = CD = 26 \,\mathrm{cm}$ and D is vertically above A.

$$\angle BAD = \angle CAD = 90^{\circ}$$

(a) Calculate the length, in cm, of AM.

(2)

Calculate, in degrees to the nearest degree,

(b) the size of $\angle BCD$,

(3)

(c) the size of the angle between the planes BCA and BCD.

Question 3 continued	

(Total for Question 3 is 9 marks)

4 The points A, B, C and D are the vertices of a quadrilateral ABCD such that

$$\overrightarrow{AB} = 7\mathbf{i} + p\mathbf{j}$$
 $\overrightarrow{AC} = 11\mathbf{i} - p\mathbf{j}$ $\overrightarrow{AD} = 4\mathbf{i} - 2p\mathbf{j}$

(a) Show that, for all values of p, ABCD is a parallelogram.

(3)

Given that $|\overrightarrow{BD}| = 3\sqrt{10}$

(b) find the possible values of p.

(3)

Given that p > 0

(c) find a unit vector which is parallel to \overrightarrow{BD} .

(1)

|
 | |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|--|
|
 | |
|
 | |
|
 | |

Question 4 continued	

DO NOT WRITE IN THIS AREA

5	Given that α and β are such that $\alpha + \beta = \frac{7}{2}$ and $\alpha\beta = 2$	
	(a) form a quadratic equation with integer coefficients that has roots α and β ,	(2)
	(b) form a quadratic equation with integer coefficients that has roots $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$.	(2)
	$ ho$ α	(6)

Figure 2

The region R, shown shaded in Figure 2, is bounded by the curve with equation $y = 2x - x^2$ and the line with equation 2y - x = 0

The curve and the line intersect at the origin O and the point A.

(a) Show that the point A has coordinates $\left(\frac{3}{2}, \frac{3}{4}\right)$.

(2)

The region R is rotated through 360° about the x-axis.

(b) Use algebraic integration to find, in terms of π , the volume of the solid formed.

(6)

16

Question 6 continued	

7	The 7th term of a geometric series is 192 and the 8th term of this geometric series is 1152	
	(a) Find, as a fraction in its simplest form, the 4th term of this geometric series.	(3)
	A different geometric series G has a common ratio r and n th term t_n	
	Given that $t_3 = 24$ and $t_2 + t_3 + t_4 = -36$	
	(b) show that r satisfies the equation	
	$2r^2 + 5r + 2 = 0$	
	Given further that G is convergent with sum to infinity S ,	(5)
	(c) find the value of S.	
		(4)

DO NOT WRITE IN THIS AREA

8 Given that $y = e^{3x} \sin 2x$	
show that $\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 13y = 0$	(8)

		ı	è	Ь	
1					
Я	6	S			ľ
	2	3	2	5	
ä		۰	9		
J				я	
1			Ĺ		r
v	Λ				
	×				
	×				
				ú	
				ĺ	
.1		4			
75	7	7	₹	z	
d			и		ŀ
1	L	⊴		4	
ø	۰	9	-	9	٢
		۵	4		
a		9			
	×	ę			v
				7	
			2		
î		S	۵	ζ	
ï	Ŀ	j	P	٩	ì
ï	Ŀ	j	P	٩	ì
ï	Ŀ	j	P	٩	ì
ï	Ŀ	j	P	٩	ì
ï	Ŀ	j	P	٩	ì
ï	×				
ï	×				
ï	×				
i K					
	k X X X X X X X X X X X X X X X X X X X				
	k X X X X X X X X X X X X X X X X X X X				
	k X X X X X X X X X X X X X X X X X X X				
	k X X X X X X X X X X X X X X X X X X X				
	k X X X X X X X X X X X X X X X X X X X				

Question 8 continued	

9 A curve *C* has equation

$$y = \frac{qx - 2}{x - p} \qquad \qquad x \neq p$$

The curve crosses the y-axis at the point A.

The line *l* with equation y = x + 2 is the normal to *C* at *A*.

- (a) (i) Show that p = 1
 - (ii) Find the value of q.

(7)

(b) Using the axes on the opposite page, sketch C, showing clearly the asymptotes and the coordinates of the points where C crosses the coordinate axes.

(5)

The line l meets C again at the point D.

(c) Find the x coordinate of D.

Question 9 continued	
<i>y</i>	
	_
0	x

DO NOT WRITE IN THIS AREA

10 The volume of a	sphere is increasing	at a constant ra	ate of $40 \mathrm{cm}^3/\mathrm{s}$.		
Find the rate of i is 4 cm.	ncrease, in cm ² /s, of	the surface are	a of the sphere	at the instant when	n the radius
15 4C 111.					(9)

(10tai 101 Question 10 is / marks)
(Total for Question 10 is 9 marks)

11 (a) Express the equation

$$3\sin(A-B) = \sin(A+B)$$

in the form $\tan A = k \tan B$, giving the value of the integer k.

(4)

(b) Given that $\theta \neq \frac{(2n+1)\pi}{2}$ where $n \in \mathbb{Z}$,

show that
$$\frac{\cos^4 \theta - \sin^4 \theta}{\cos^2 \theta} = 1 - \tan^2 \theta$$

(3)

(c) Using the exact values of $\sin x^{\circ}$, $\cos x^{\circ}$ and $\tan x^{\circ}$ for x = 30, 45, 60 show that

(i)
$$\cos 15^\circ = \frac{\sqrt{6} + \sqrt{2}}{4}$$

(2)

(ii)
$$\tan 255^\circ = \frac{3 + \sqrt{3}}{3 - \sqrt{3}}$$

TOTAL FOR PAPER IS 100 MARKS

DO NOT WRITE IN THIS AREA