

Mark Scheme (Results)

January 2020

Pearson Edexcel International GCSE
In Further Pure Mathematics (4PM1)
Paper 01R

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2020
Publications Code 4PM1_01R_2001_MS
All the material in this publication is copyright
© Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
 - Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work silve with an alternative response Crossed out work should be marked UNLESS the candidate has replaced it

Types of mark

- o M marks: method marks
- o A marks: accuracy marks can only be awarded when relevant M marks have been gained
- o B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- o cao correct answer only
- o cso correct solution only
- o ft follow through
- o isw ignore subsequent working
- o SC special case
- o oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- o awrt answer which rounds to
- o eeoo each error or omission

No working

If no working is shown then correct answers may score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

With working

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question: eg. uses 252 instead of 255; follow through their working and deduct 2A marks from any gained provided the work has not been simplified. (Do not deduct any M marks gained.)

If there is a choice of methods shown, then award the lowest mark, unless the subsequent working makes clear the method that has been used

Examiners should send any instance of a suspected misread to review (but see above for simple misreads).

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

General Principles for Further Pure Mathematics Marking

(but note that specific mark schemes may sometimes override these general principles)

Method mark for solving a 3 term quadratic equation:

1. Factorisation:

$$(x^2+bx+c)=(x+p)(x+q)$$
, where $|pq|=|c|$ leading to $x=...$
 $(ax^2+bx+c)=(mx+p)(nx+q)$ where $|pq|=|c|$ and $|mn|=|a|$ leading to $x=...$

2. Formula:

Attempt to use the **correct** formula (shown explicitly or implied by working) with values for a, b and c, leading to x = ...

3. Completing the square:

$$x^{2} + bx + c = 0$$
: $(x \pm \frac{b}{2})^{2} \pm q \pm c = 0$, $q \neq 0$ leading to $x = ...$

Method marks for differentiation and integration:

1. <u>Differentiation</u>

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration:

gration: Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$ f a formula:

Use of a formula:

Generally, the method mark is gained by **either**

quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values

or, where the formula is <u>not</u> quoted, the method mark can be gained by implication

from the substitution of <u>correct</u> values and then proceeding to a solution.

Answers without working:

The rubric states "Without sufficient working, correct answers <u>may</u> be awarded no marks".

General policy is that if it could be done "in your head" detailed working would not be required. (Mark schemes may override this eg in a case of "prove or show...."

Exact answers:

When a question demands an exact answer, all the working must also be exact. Once a candidate loses exactness by resorting to decimals the exactness cannot be regained.

Rounding answers (where accuracy is specified in the question)

Penalise only once per question for failing to round as instructed - ie giving more digits in the answers. Answers with fewer digits are automatically incorrect, but the is rule may allow the mark to be awarded before the final answer is given.

MARK SCHEME

Question number	Scheme	Marks
1	$\frac{\left(a+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)} \times \frac{\left(2+\sqrt{3}\right)}{\left(2+\sqrt{3}\right)} = \frac{2a+\sqrt{3}\left(a+2\right)+3}{1}$	M1
	$2a + \sqrt{3}(a+2) + 3 = 11 + b\sqrt{3} \Rightarrow 11 = 2a+3, b = a+2$	M1M1
	Solves the equations in a and $b \Rightarrow a = 4, b = 6$ ALT	A1 [4]
	$\begin{vmatrix} \frac{a+\sqrt{3}}{2-\sqrt{3}} = 11 + b\sqrt{3} \Rightarrow a + \sqrt{3} = (2-\sqrt{3})(11+b\sqrt{3}) \\ \Rightarrow a+\sqrt{3} = (22-3b) + (2b-11)\sqrt{3} \end{vmatrix}$	{M1}
	$\Rightarrow a + \sqrt{3} = (22 - 3b) + (2b - 11)\sqrt{3}$ \Rightarrow a = 22 - 3b and 1 = 2b - 11	{M1}{M1}
	$\Rightarrow a = 22 - 3b$ and $1 = 4b - 11$ Solves the equations in a and $b \Rightarrow a = 4, b = 6$	
	1 Tiller	{A1} [4]
	T	otal 4 marks
(a)	7.4	
M1	Multiply by $\frac{\left(2+\sqrt{3}\right)}{\left(2+\sqrt{3}\right)}$	
M1	For either $11 = 2a + 3$ or $b = a + 2$	
M1	For $11 = 2a + 3$ and $b = a + 2$	
A1	a = 4, b = 6	
ALT		
M1	Multiply by $2-\sqrt{3}$	
M1	For either $a = 22 - 3b$ or $1 = 2b - 11$	
M1	For $a = 22 - 3b$ and $1 = 2b - 11$	
A1	a = 4, b = 6	

Question number	Scheme	Marks
2 (a)	$7+4x-x^2=11-(x-2)^2$	M1A1A1
	a = 11, b = 1, c = -2	[3]
	ALT	
	$7 + 4x - x^2 = a - b(x^2 + 2cx + c^2)$	{M1}
	$a-bc^2 = 7$ $b=1$ $bc = 4$ So $a = 11, b = 1, c = -2$	{A1}{A1}
	$7 + 4x - x^2 = 11 - (x - 2)^2$	[3]
(b)	(i) 11	B1ft
	(ii) 2	B1ft
		[2]
(a)	10	tal 5 marks
(a)	\mathbf{A}	
M1	An attempt to factorise to make x^2 positive e.g. $-(x \pm p)^2 \pm q$	
A1	Complete the square to obtain an expression in the form $-(x \pm 2)^2 \pm a$	q NB Any
	expression in this form will score M1A1	
A1	$11-(x-2)^2$ or $a=11, b=1, c=-2$	
ALT	TS THE COLUMN TO THE COLUMN TH	
M 1	Expands $a - b(x + c)$	
A1	Complete the square to obtain an expression in the form $-(x \pm 2)^2 \pm a$ expression in this form will score M1A1 $11 - (x - 2)^2 \text{ or } a = 11, b = 1, c = -2$ Expands $a - b(x + c)$ $a - bc^2 = 7 \qquad b = 1 \qquad bc = 4$ $11 - (x - 2)^2 \text{ or } a = 11, b = 1, c = -2$ Mark parts b(i) and b(ii) together 11 follow through their a 2 follow through their c	
A1	$11-(x-2)^2$ or $a=11, b=1, c=-2$	
(b) (i)	Mark parts b(i) and b(ii) together	
B1ft	11 follow through their a	
(b) (ii)	2 fallow through their a	
B1ft	2 follow through their c	
	NB Answer of Max = $(2, 11)$ score B1B1	

Question number	Scheme	Marks
3(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2\mathrm{e}^{2x}\left(x^2 + 1\right) + \mathrm{e}^{2x}\left(2x\right)$	M1A1A1 [3]
(b)	When $x = 0$	
	$\frac{dy}{dx} = 2 \times 1 \times 1 + 1 \times 0 = 2 \qquad y = e^{2 \times 0} (0+1) = 1$	B1B1
	$y-1=2(x-0) \Longrightarrow y=2x+1$	B1 [3]
	То	tal 6 marks
(a) M1	Attempted use of the product rule. Sum of two terms (either way roun $x^n \to x^{n-1}$ (Condone e^{2x} instead of $2e^{2x}$) Once the correct answer is This mark may be implied by the sum of two terms with one of the two correct.	seen ISW.
A1	Either term correct	
A1 (b)	Both terms correct	
B1	When $x = 0$ $\frac{dy}{dx} = 2$	
B1	When $x = 0$ $y = 1$	
B1	y = 2x + 1	
	correct. Either term correct Both terms correct When $x = 0$ $\frac{dy}{dx} = 2$ When $x = 0$ $y = 1$ $y = 2x + 1$	

Question number	Scheme	Marks
4 (a)	$f(2) = 2 \times 2^3 + a \times 2^2 + b \times 2 + 18 = 0$	M1
	$f'(x) = 6x^2 + 2ax + b \Rightarrow f'(2) = 6 \times 2^2 + 2 \times a \times 2 + b = 5$	M1M1
	4a+2b+34=0	1,111,11
	4a+b+19=0	A1
	$\Rightarrow b = -15, \ a = -1$	M1A1 [6]
(b)	$2x^2 + 3x - 9$	M1
	$\frac{2x^2 + 3x - 9}{x - 2)2x^3 - x^2 - 15x + 18}$	
	$2x^2 + 3x - 9 = (x+3)(2x-3)$	
	$\Rightarrow (x-2)(x+3)(2x-3)$	M1A1
(c)	$x=2, -3, \frac{3}{2}$	B2ft
	9 .	[2] Total 11 marks
(a)		Total II marks
M1	f(2) = 0 leading to an equation in a and b	
M1	Attempt to differentiate	
M1	f'(2) = 5 leading to an equation in a and b	
A1	4a + 2b + 34 = 0 and $4a + b + 19 = 0$	
M 1	Solving simultaneously $b = -15$, $a = -1$ Dividing by $x - 2$ to obtain a 3TQ Factorising the 3TQ	
A1	$b = -15, \ a = -1$	
(b) M1	Dividing by $x-2$ to obtain a 3TQ	
M1	Factorising the 3TQ	
A1	All 3 terms correct	
(c)		
B2 ft	$x=2, -3, \frac{3}{2}$	
	(B1 for 2 correct)	

Question number	Scheme	Marks
5 (a)	$\log_4 32 = \frac{\log_2 32}{\log_2 4} = \frac{5}{2} \text{ or } \log_4 32 = \log_4 4^{\frac{5}{2}} = \frac{5}{2} \text{ or } \log_4 32 = \log_4 32 = \frac{5}{2} \text{ or } \log_4 32 = \log_2 2^5 = \frac{5}{2} \text{ and } \log_4 32 = \frac{5}{2} \text{ or } \log_4 32 = \log_2 2^5 = \frac{5}{2} \text{ and } \log_4 32 = \log_2 2^5 = \frac{5}{2} \text{ and } \log_4 32 = \log_4 32 =$	M1A1cso [2]
	ALT $\log_4 32 = a \Rightarrow 4^a = 32 \Rightarrow a = \frac{5}{2} *$	{M1}{A1} cso [2]
(b)	$\log_{2} x - \log_{4} 32 + \frac{1}{4} \log_{x} 16 = 0$ Let $\log_{2} x = y$ $y - \frac{5}{2} + \frac{1}{4} \left(\frac{\log_{2} 16}{\log_{2} x} \right) = 0 \text{or} y - \frac{5}{2} + \frac{1}{\log_{2} x} = 0$ $\Rightarrow y - \frac{5}{2} + \frac{1}{y} = 0$ $\Rightarrow 2y^{2} - 5y + 2 = 0$ $\Rightarrow (2y - 1)(y - 2) = 0$ $\Rightarrow y = \log_{2} x = \frac{1}{2} \text{ or } 2$ $\Rightarrow x = 2^{\frac{1}{2}} = \sqrt{2} \text{and} x = 2^{2} = 4$	M1
	$\Rightarrow 2y^2 - 5y + 2 = 0$	M1A1
	$\Rightarrow (2y-1)(y-2) = 0$	M1
	$\Rightarrow y = \log_2 x = \frac{1}{2} \text{ or } 2$	M1
	$\Rightarrow x = 2^{\frac{1}{2}} = \sqrt{2}$ and $x = 2^2 = 4$	M1A1 [7]
	T	otal 9 marks
(a)		
M1	For $\log_4 32 = \frac{\log_2 32}{\log_2 4}$ or $\log_4 32 = \log_4 4^{\frac{5}{2}}$ or $\log_4 32 = \log_{2^2} 2^5$	
ALT M1 A1 cso (b)	For $4^a = 32$ Obtains the given answer with no errors in the working	
M1	Use of $\log_a x = \frac{\log_b x}{\log_b a}$ or $\log_a b = \frac{1}{\log_b a}$	
M1	Forming a 3TQ	
A1	$2y^2 - 5y + 2 = 0$	
M1	Solving the 3TQ	
M1	For $y = \log_2 x = \frac{1}{2}$ or 2	
M1	Either $x = 2^{\frac{1}{2}} = \sqrt{2}$ or $x = 2^2 = 4$	
A1	Both $x = 2^{\frac{1}{2}} = \sqrt{2}$ and $x = 2^2 = 4$	

Question number	Scheme							Marks			
6 (a)											
		x	0.5	1	1.5	2	3	4	5	6	
		у	-11.5	-2	0.2	1.3	2.7	3.8	4.9	5.9	B2
											[2]
(b)	Points plots Points joine										B1ft B1ft [2]
(c)	Comparing	$\frac{x^3 - 3}{x^2} = ax + b \Rightarrow x^3 - 3 = ax^3 + bx^2 \Rightarrow 0 = x^3 (a - 1) + bx^2 + 3$ Comparing coefficients $x^3 (a - 1) - bx^2 + 3 = 2x^3 + 6x^2 + 3$							M1		
	$\Rightarrow a = 3, b =$				`/ <i>X</i>	=3x-	-6				M1A1
								M1			
	Draws the line $y = 3x - 6$ and identifies two intersections with the curve when $x = 0.8/0.9$ and $x = 2.8/2.9$							A1 (both) [5]			
	ALT										
	$2x^3 - 6x^2 + 3 = 0 \Rightarrow 2x - 6 = -\frac{3}{x^2}$								{M1}		
	$3x - 6 = x - \frac{3}{x^2}$ so line required is $y = 3x - 6$							{M1}{A1}			
	Draws the line $y = 3x - 6$ and identifies two intersections with the							{M1}			
	curve when $x = 0.8 / 0.9$ and $x = 2.8 / 2.9$								{A1} both [5]		
										To	otal 9 marks

(a)	
B2	All 4 points correct
102	(B1 for 3 points correct)
(b)	
B1ft	Points plotted ft their table allow half a square tolerance
B1ft	Points joined together with a smooth curve ft their table
(c)	
M1	Setting $x - \frac{3}{x^2} = ax + b$ and simplifying to $x^3(a-1) + bx^2 + 3$
M1	Comparing coefficients
A1	Identifying that the line required is $y = 3x - 6$
M1	y = 3x - 6 drawn intersecting the curve in two places
A1	x = 0.8 / 0.9 and $x = 2.8 / 2.9$
ALT	
M1	Subtracting 3 from both sides and dividing by x^2
M1	Adding x to both sides
A1	Identifying that the line required is $y = 3x - 6$
M1	y = 3x - 6 drawn intersecting the curve in two places
A1	x = 0.8 / 0.9 and $x = 2.8 / 2.9$

12.9

Ostudentroon, wordness, com

Question number	Scheme	Marks
7 (a)(i)	a + 4d = 4x + 6	
	a + 7d = 7x + 3	M1A1cso
	$\Rightarrow 3d = 3x - 3 \Rightarrow d = x - 1*$	
(ii)	$a + 7(x-1) = 7x + 3 \Rightarrow a = 10$ or $a + 4(x-1) = 4x + 6 \Rightarrow a = 10$	M1A1 [4]
(b)	$42 = 10 + 8(x-1) \Rightarrow x = 5$	M1A1 [2]
(c)	$d = x - 1 \Rightarrow d = 5 - 1 = 4$	B1
	$S_{n+1} = 12U_n + 18 \Rightarrow \frac{n+1}{2} (2 \times 10 + [(n+1)-1]4) = 12[10 + (n-1)4] + 18$	M1
	$\Rightarrow n^2 - 18n - 40 = 0$	M1
	$\Rightarrow (n-20)(n+2) = 0 \Rightarrow n = 20$	M1A1
	6.	[5]
	Tota Tota	l 11 marks
(a) (i)	7. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	
M1 A1 cso	a+4d=4x+6 and $a+7d=7x+3Obtains the given answer with no errors in the working$	
(a) (ii)		
M1	Substitution of $d = x - 1$	
A1	a=10	
(b)	***************************************	
M1	Use of $a + 8d = 42$	
A1 (c)	x = 5	
B1	Substitution of $d = x - 1$ $a = 10$ Use of $a + 8d = 42$ $x = 5$ $d = 4$ Use of $a + 8d = 42$	
M1	Use of $\frac{n}{2}(2a+(n-1)d)$	
M1	Simplifying to $n^2 - 18n - 40 = 0$	
M1	Solving the 3TQ	
A1	n = 20 if shown must reject $n = -2$	

Question	Scheme	Marks
number		
8	$s = \int (3 + 5t - 2t^2) dt = 3t + \frac{5t^2}{2} - \frac{2t^3}{3} + c$	M1
	when $t = 0$ $s = 5$	
	5 = 0 + 0 - 0 + c	B1
	$s = 5 + 3t + \frac{5t^2}{2} - \frac{2t^3}{3}$	A1
	When $s = x$	
	$\frac{\mathrm{d}x}{\mathrm{d}t} = 3 + 5t - 2t^2 = 0 \Longrightarrow (2t+1)(t-3) = 0 \Longrightarrow t = 3$	M1A1
	$\Rightarrow x = 5 + 3 \times 3 + \frac{5 \times 3^2}{2} - \frac{2 \times 3^3}{3} = \frac{37}{2} \text{ oe}$	A1
	$\frac{d^2x}{dt^2} = 5 - 4t \text{ when } t = 3 \frac{d^2x}{dt^2} = -7 \Rightarrow \max$	M1A1
	B	[8]
	To	tal 8 marks
M1	Attempt to integrate	
B 1	c=5	
A1	$s = 5 + 3t + \frac{5t^2}{2} - \frac{2t^3}{3}$	
M1	Solving $3 + 5t - 2t^2 = 0$	
A1	$t = 3$ if shown must reject $t = -\frac{1}{2}$	
A1	$x = \frac{37}{2}$ oe	
M1	Differentiates to obtain $\left(\frac{d^2x}{dt^2}\right) = 5 - 4t$	
A1	Establish that the maximum has been obtained and give a conclusion	

Question number	Scheme	Marks
9 (a)	a = -1, b = -2	B1,B1
(1.)	1	[2]
(b)	Gradient of $l_1 = -2$, \Rightarrow Gradient of $l_2 = \frac{1}{2}$	B1,B1
	$180 = (x+1)^2 + (y-6)^2$	M1
	$\frac{1}{2} = \frac{y - 6}{x + 1} \Rightarrow x = 2y - 13$	M1
	Solves simultaneous equations;	
	$180 = ([2y-13]+1)^{2} + (y-6)^{2} \Rightarrow 0 = 5y^{2} - 60y$	M1M1
	or $180 = (x+1)^2 + \left(\frac{1}{2}x + \frac{13}{2} - 6\right)^2 \Rightarrow 0 = x^2 + 2x - 143 = 0$	
	$y = 0, y = 12 \Rightarrow x = -13, x = 11$ or $x = -13, x = 11 \Rightarrow y = 0, y = 12$	A1A1
	Coordinates are (43, 0) and (11, 12)	[8]
(c)	Area of triangle PQR	
	$PQ = \sqrt{(6+2)^2 + (-1-3)^2} = 4\sqrt{5}$	M1
	$PQ = \sqrt{(6+2)^2 + (-1-3)^2} \pm 4\sqrt{5}$ Area = $\frac{1}{2} \times 4\sqrt{5} \times 6\sqrt{5} = 60 \text{ (units)}^2$	M1A1 [3]
	ALT V. WOR	
	ALT $Area = \frac{1}{2} \begin{pmatrix} -13 & -1 & 3 & -13 \\ 0 & 6 & -2 & 0 \end{pmatrix} = \frac{1}{2} (-78 + 2 + 0 - 0 - 18 - 26) = -60$ $\Rightarrow 60 \text{ (units)}^2$	{M1}{M1}
	\Rightarrow 60 (units) ²	{A1} [3]
(d)	Coordinates of R required are $(-13, 0)$	
	$\angle RPQ = 90^{\circ}$ so RQ is a diameter	
	$\left(\frac{-13+3}{2},\frac{0-2}{2}\right) \Rightarrow (-5, -1)$	M1A1
		[2] tal 15 marks
(a)	10	tai 13 illarks
B1	a = -1	
B1	b = -2	

```
(b)
             Gradient of l_1 = -2
 B1
             Gradient of l_2 = \frac{1}{2}
 B1
             Use of PR = 6\sqrt{5} to obtain an equation
M1
             Use of gradient of the perpendicular to obtain an equation
M1
             Solves simultaneously
M1
             Simplifies to 5y^2 - 60y = 0 or x^2 + 2x - 143 = 0
M1
             All 4 values identified 0, 12, -13, 11
 A1
             (11, 12) and (-13, 0) (must be paired correctly and if written as a coordinate
 A1
             then must be in the correct order)
 (c)
             PQ = 4\sqrt{5}
M1
            Use of Area = \frac{1}{2} \times PQ \times PR
60 (units)<sup>2</sup>
M1
            Use of Area = \frac{1}{2}\begin{pmatrix} -13 & 4 & 5 \\ 0 & 6 & 2 & 0 \end{pmatrix}

\frac{1}{2}(-78+2+0-0-18-26) ft R provided e < 0

(units)<sup>2</sup>
 A1
            Use of Area = \frac{1}{2}\begin{pmatrix} -13 & 1 & 3 & -13 \\ 0 & 6 & 2 & 0 \end{pmatrix} ft R provided e < 0
ALT
M1
M1
 A1
 (d)
M1
             (-5, -1)
 A1
```

Question number	Scheme	Marks
10 (a)	$AB = AO + OB = -(2\mathbf{a} - \mathbf{b}) + 3\mathbf{a} + \mathbf{b} = \mathbf{a} + 2\mathbf{b}$	M1A1
(b)	$CC = CB + BC = 3\mathbf{a} + \mathbf{b} - \mathbf{a} + 3\mathbf{b} = 2\mathbf{a} + 4\mathbf{b} = 2(\mathbf{a} + 2\mathbf{b})$	[2] M1
	Conclusion required; same direction and \overrightarrow{OC} is a multiple of \overrightarrow{AB}	A1
	therefore OC is parallel to AB .	[2]
(c)	$AC = AB + BC = \mathbf{a} + 2\mathbf{b} + (-\mathbf{a} + 3\mathbf{b}) = 5\mathbf{b}$	B1
	$AX = \mu AC = \mu 5\mathbf{b}$	B1
	LIUIT UUT UUT	M1
	$AX = AO + OX = -(2\mathbf{a} - \mathbf{b}) + \lambda(3\mathbf{a} + \mathbf{b})$	M1
	$\Rightarrow \mu 5\mathbf{b} = -(2\mathbf{a} - \mathbf{b}) + \lambda(3\mathbf{a} + \mathbf{b})$	1711
	$\Rightarrow -2 + 3\lambda = 0 \Rightarrow \lambda = \frac{2}{3}$	M1
	$\Rightarrow -2 + 3\lambda = 0 \Rightarrow \lambda = \frac{2}{3}$ $\Rightarrow 5\mu = 1 + \lambda \Rightarrow \mu = \frac{1}{3}$ $\Rightarrow AX : XC = 1:2$	A1
	$\Rightarrow AX : XC = 1:2$	A1
		[7]
(a)	1 Ot	al 11 marks
(a) M1	Use of $AB = AO + OB$	
A1	$\mathbf{a} + 2\mathbf{b}$	
(b)	Tab	
M1	Use of $OC = OB + BC$	
A1	Correct conclusion i.e. $OC = 2AB \therefore OC$ is parallel to AB	
(c)	· · · ·	
B1	$AC = 5\mathbf{b}$ may be implied by 2^{nd} B1	
B 1	$AX = \mu 5\mathbf{b}$ or $XC = \lambda 5\mathbf{b}$	
	A correct vector for AX or OX or BX or CX or BC including an u	nknown
M1	multiple of a vector e.g. $AX = -(2\mathbf{a} - \mathbf{b}) + \lambda(3\mathbf{a} + \mathbf{b})$	
M1	Equate 2 forms of the same vector e.g. $\mu 5\mathbf{b} = -(2\mathbf{a} - \mathbf{b}) + \lambda(3\mathbf{a} + \mathbf{b})$	
M1	Comparing coefficients	
A1	$\lambda = \frac{2}{3}$ or $\mu = \frac{1}{3}$	
A1	AX:XC=1:2	

Question number	Scheme	Marks
11 (a)	at P $b = \sqrt{a-2} \Rightarrow b^2 = a-2*$	M1A1cso [2]
(b)	At $P \ y = b \Rightarrow y^2 = b^2 \Rightarrow y^2 = a - 2$	B1
	$V = \pi \int_{a}^{16} \left(\sqrt{x - 2} \right)^{2} dx - \pi \int_{a}^{16} (a - 2) dx = \pi \int_{a}^{16} (x - 2) dx - \pi \int_{a}^{16} (a - 2) dx$	M1
	$\Rightarrow \pi \int_{a}^{16} (x-a) dx \text{or} \pi \int_{a}^{16} \left(\sqrt{x-2}\right)^{2} dx - \pi (a-2)(16-a)$	
	$50\pi = \pi \left[\frac{x^2}{2} - ax\right]_a^{16}$ or $50\pi = \pi \left[\frac{x^2}{2} - 2x\right]_a^{16} - \pi (a-2)(16-a)$	depM1A1
	$50\pi = \pi \left[\left(\frac{256}{2} - 16a \right) - \left(\frac{a^2}{2} - a^2 \right) \right]$	depM1
	or $50\pi = \pi \left[\left(96 - \frac{a^2}{2} + 2a \right) - \left(18a - a^2 - 32 \right) \right]$	
	$\Rightarrow a^2 - 32a + 156 = 0$ $\Rightarrow (a - 6)(a - 26) = 0 \Rightarrow a \le 16 \text{ so } a = 6$	M1
	$\Rightarrow (a-6)(a-26) = 0 \Rightarrow a < 16 \text{ so } a = 6$ $b^2 = a-2 \Rightarrow b^2 = 4 \Rightarrow b = 2$	M1A1 A1 [9]
	Tota	l 11 marks
(a)	$b = \sqrt{a-2}$	
M1 A1 cso	$b = \sqrt{a} - 2$ Obtains the given answer with no errors in the working	
(b)	de minis die gryen ministre with he errors in the working	
B 1	$y^2 = a - 2$	
M1	Use of $V = \pi \int_{a}^{16} (\sqrt{x-2})^2 dx - \pi \int_{a}^{16} (a-2) dx$ or $V = \pi \int_{a}^{16} (x-a) dx$ or $\pi \int_{a}^{16} (\sqrt{x-2})^2 dx - \pi (a-2)(16-a)$ Ignore limits	
depM1	Attempts to integrate. Ignore limits (Dependent on previous M1)	
A1	Correct integration. Ignore limits Correct substitution of limits (Dependent on provious M1)	
depM1 M1	Correct substitution of limits (Dependent on previous M1) Obtaining the 3TQ	
M1	Solving the 3TQ	
A1	a = 6	
A1	b=2	

http://britishstudentroom.wordpress.com

http://britishstudentroom.wordpress.com

http://britishstudentroom.wordpress.com/