| Please check the examination d        | etails below before enteri | ng your candidate information |  |  |  |  |  |  |  |
|---------------------------------------|----------------------------|-------------------------------|--|--|--|--|--|--|--|
| Candidate surname                     |                            | Other names                   |  |  |  |  |  |  |  |
| Pearson Edexcel<br>International GCSE | Centre Number              | Candidate Number              |  |  |  |  |  |  |  |
| Monday 21 January 2019                |                            |                               |  |  |  |  |  |  |  |
| Morning (Time: 2 hours) Paper         |                            | Reference <b>4PM0/02</b>      |  |  |  |  |  |  |  |
| Further Pure Mathematics<br>Paper 2   |                            |                               |  |  |  |  |  |  |  |
| Calculators may be used.              |                            | Total Marks                   |  |  |  |  |  |  |  |

### Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided there may be more space than you need.

# Information

- The total mark for this paper is 100.
- The marks for each question are shown in brackets
  use this as a guide as to how much time to spend on each question.

# Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.





Turn over 🕨

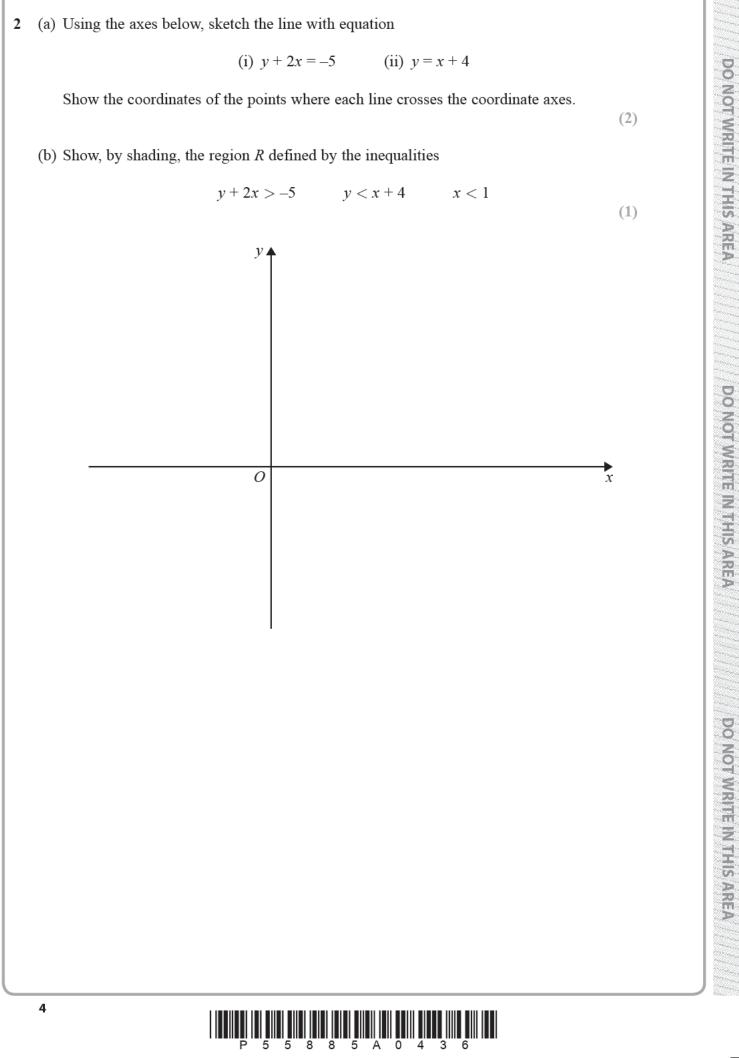


|                                                     | Write your answers in the spaces provid | ed. |  |  |  |
|-----------------------------------------------------|-----------------------------------------|-----|--|--|--|
| You must write down all the stages in your working. |                                         |     |  |  |  |
| Solve the equation                                  | $3\log_3 x - 8\log_x 3 = 10$            | (6) |  |  |  |
|                                                     |                                         |     |  |  |  |
|                                                     |                                         |     |  |  |  |
|                                                     |                                         |     |  |  |  |
|                                                     |                                         |     |  |  |  |
|                                                     |                                         |     |  |  |  |
|                                                     |                                         |     |  |  |  |
|                                                     |                                         |     |  |  |  |
|                                                     |                                         |     |  |  |  |
|                                                     |                                         |     |  |  |  |
|                                                     |                                         |     |  |  |  |
|                                                     |                                         |     |  |  |  |
|                                                     |                                         |     |  |  |  |



(Total for Question 1 is 6 marks)







(Total for Question 2 is 3 marks)



- 3 Referred to a fixed origin O, the position vectors of the points P and Q are (5i + 6j) and (3i 4j) respectively.
  - (a) Find, as a simplified expression in terms of **i** and **j**,  $\overrightarrow{PQ}$ .
  - (b) Find a unit vector parallel to  $\overrightarrow{PQ}$ .

The position vector of the fixed point R is (13i + aj), where a is a constant.

Given that  $\overrightarrow{QR} = 5\overrightarrow{QP}$ 

(c) find the value of *a*.

(2)

(2)

(2)







(Total for Question 3 is 6 marks)



7

- 4 A particle P is moving along the x-axis. At time t seconds  $(t \ge 0)$  the velocity, v m/s, of P is given by  $v = 4 \sin 2t$ 
  - (a) Find the least value of t for which the velocity of P is 2 m/s.
  - (b) Find the magnitude of the acceleration of P when its velocity is 2 m/s.

(3)

(2)

The particle *P* is at the point with coordinates (3, 0) when  $t = \frac{\pi}{4}$ 

(c) Find the distance of *P* from the origin when t = 0

(4)





(Total for Question 4 is 9 marks)



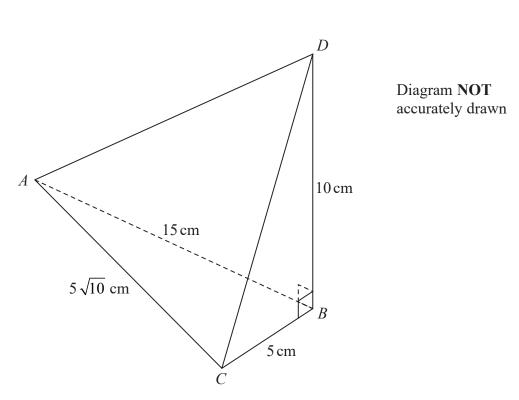


Figure 1

Figure 1 shows a triangular pyramid *ABCD* where triangle *ABC* is the base and *BD* is perpendicular to the base.

$$AB = 15 \text{ cm}$$
  $AC = 5\sqrt{10} \text{ cm}$   $BC = 5 \text{ cm}$   $BD = 10 \text{ cm}$ 

(a) Show that 
$$\angle ABC = 90^{\circ}$$

(b) Find, in degrees to 1 decimal place, the size of  $\angle DAC$ .

The point X on AC is such that BX is perpendicular to AC.

(c) Find, in degrees to 1 decimal place, the size of  $\angle DXB$ .

(4)

(2)

(4)



5





DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA



(Total for Question 5 is 10 marks)



Turn over 🕨

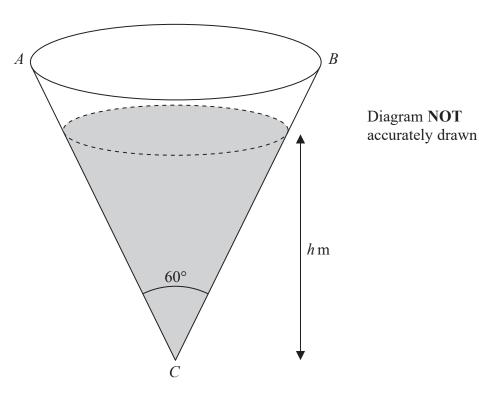


Figure 2

Figure 2 shows a water tank in the shape of a hollow right circular cone fixed with its axis of symmetry vertical. A diameter of the circular rim of the cone is AB. The vertex, C, of the cone is below AB such that  $\angle ACB = 60^{\circ}$ 

Initially, the tank is empty and water flows into the tank at a constant rate of  $0.03 \text{ m}^3/\text{s}$ . At time *t* seconds after the water starts to flow into the tank, the height of the surface of the water in the tank above *C* is *h* metres.

Find, in m/s to 3 significant figures, the rate of change of the height of the surface of the water above *C* at the instant when h = 1.5

(6)



**DO NOT WRITE IN THIS AREA** 

DO NOT WRITE IN THIS AREA



6

(Total for Question 6 is 6 marks)



7 (a) Complete the table of values for  $y = \ln(3x + 1) + 2$ , giving your answers to 2 decimal places.

| x | 0 | 1 | 2    | 3    | 4 | 5 | 6    |
|---|---|---|------|------|---|---|------|
| У | 2 |   | 3.95 | 4.30 |   |   | 4.94 |

(2)

(2)

(3)

DO NOT WRITE IN THIS AREA

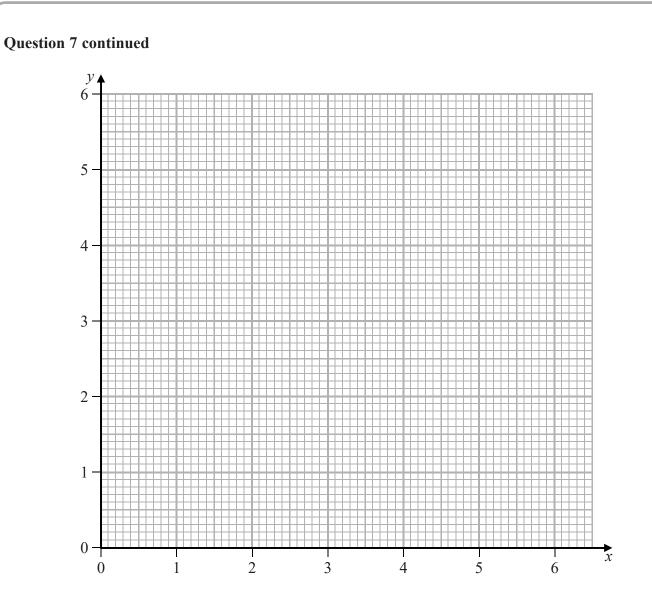
DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

- (b) On the grid opposite, draw the graph of  $y = \ln(3x + 1) + 2$  for  $0 \le x \le 6$
- (c) Use your graph to obtain an estimate, to 1 decimal place, for the value of ln10.6 You **must** show clearly how you have used your graph.
- (d) By drawing a straight line on the grid, obtain estimates, to 1 decimal place, for the roots of the equation  $(3x + 1)^2 = e^{(x+1)}$  in the interval  $0 \le x \le 6$

(5)





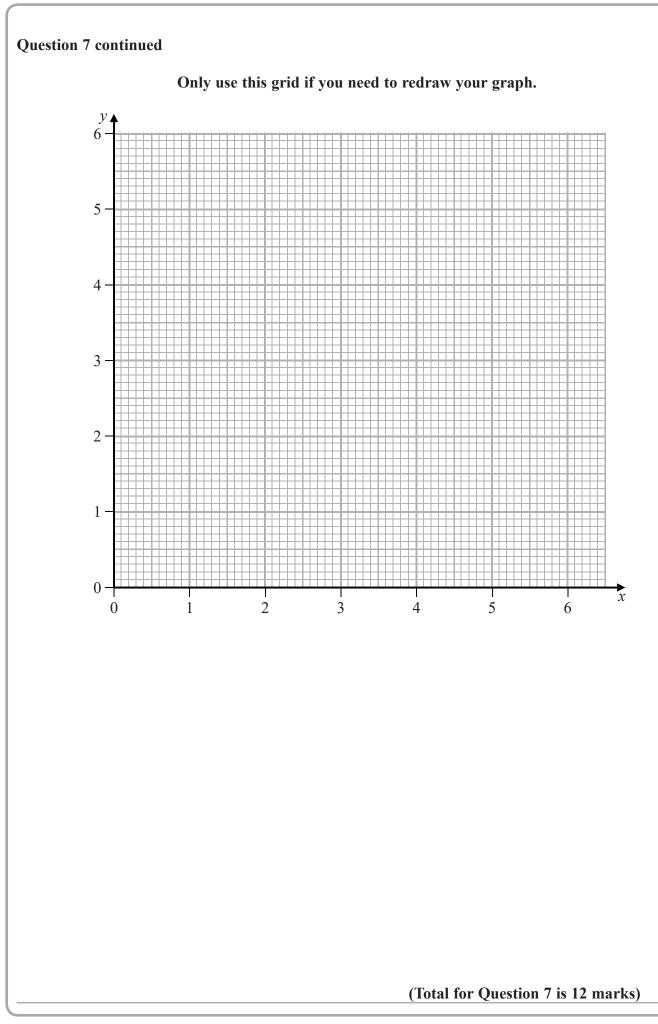
Turn over for a spare grid if you need to redraw your graph.



DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA





DO NOT WRITE IN THIS AREA

**BO NOT WRITE IN THIS AREA** 



The roots of the equation  $3x^2 - 2x - 1 = 0$  are  $\alpha$  and  $\beta$ , where  $\alpha > \beta$ 8 Without solving the equation,

(a) find the value of  $\alpha^2 + \beta^2$ 

(b) show that 
$$\alpha - \beta = \frac{4}{3}$$

(c) form a quadratic equation, with integer coefficients, that has roots  $\frac{\alpha + \beta}{\alpha}$  and  $\frac{\alpha - \beta}{\beta}$ 

(6)

(2)

(3)







DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(Total for Question 8 is 11 marks)



Diagram **NOT** accurately drawn

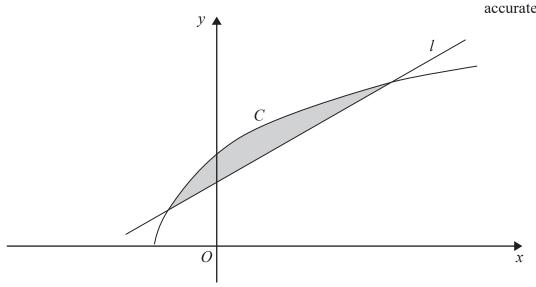




Figure 3 shows part of the curve C with equation  $y = (2x + 3)^{\frac{1}{2}}$  and the line l with equation 2y = x + 3The line l crosses C at two points.

(a) Find the coordinates of each of these points.

The finite region bounded by C and l, shown shaded in Figure 3, is rotated through  $360^{\circ}$  about the *x*-axis.

(b) Use algebraic integration to find, in terms of  $\pi$ , the volume of the solid generated.

(5)

(5)



DO NOT WRITE IN THIS AREA

P 5 5 8 8 5 A 0 2 4 3 6

9





DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(Total for Question 9 is 10 marks)



10 A geometric series has first term *a* and common ratio r (r > 0)The *n*th term of the series is  $U_n$ 

Given that  $U_1 + 3U_2 = 8$  and that  $U_2 \times U_3 = 4U_5$ 

- (a) find
  - (i) the value of r
  - (ii) the value of a

(b) Hence show that 
$$U_n = \frac{2^{n+2}}{3^n}$$

(c) Find the least value of *n* such that  $U_n < 0.05$ 



(5)

(2)











(Total for Question 10 is 10 marks)



11

 $\cos(A+B) = \cos A \cos B - \sin A \sin B$ 

(a) (i) Using the above identity, show that

$$\cos 2x = 1 - 2\sin^2 x$$

(ii) Hence show that

$$\frac{13\sin x - 2\cos 2x - 10}{4\sin x - 3} = 4 + \sin x \tag{7}$$

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

**DO NOT WRITE IN THIS AREA** 

(b) Hence solve, in radians to 3 significant figures, the equation

$$10 + 2\cos\left(2\theta + \frac{\pi}{3}\right) - 13\sin\left(\theta + \frac{\pi}{6}\right) = 2\sin\left(\theta + \frac{\pi}{6}\right) + 8$$
  
for  $\pi \le \theta \le 2\pi$  (5)

(c) Find the exact value of

$$\int_{0}^{\frac{\pi}{2}} \left( \frac{13\sin x - 2\cos 2x - 10 + 4x\sin x - 3x}{4\sin x - 3} \right) \mathrm{d}x$$
(5)











DO NOT WRITE IN THIS AREA

(Total for Question 11 is 17 marks)

**TOTAL FOR PAPER IS 100 MARKS** 

