Please check the examination de	etails below	before ente	ring your can	didate information			
Candidate surname			Other name	s			
Pearson Edexcel International GCSE	Centre	Number		Candidate Number			
Friday 11 January 2019							
Morning (Time: 2 hours)		Paper R	eference 4	PM0/01			
Further Pure Mathematics Paper 1							

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided there may be more space than you need.

Information

- The total mark for this paper is 100.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

Turn over 🕨

Write your answers in the spaces provided.

You must write down all the stages in your working.

Figure 1

Figure 1 shows a sector *OAB* of a circle, centre *O*. The area of the sector is 27 cm^2 The size of angle *AOB* is 1.5 radians.

Find the perimeter of the sector.

1

(4)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Question 1 continued

(Total for Question 1 is 4 marks)

3

2 The sum of the first *n* terms of an arithmetic series is S_n

Given that
$$S_n = \sum_{r=1}^n (4r+1)$$

(a) show that $S_n = n(3 + 2n)$

The *r*th term of this arithmetic series is t_r

Given that $S_{n+3} = S_n + 3t_{15}$

(b) find the value of *n*.

(4)

Question 2 continued

5

Question 2 continued

Question 2 continued

(Total for Question 2 is 8 marks)

7

3

$$f(x) = (2x + 1)(x^2 + 5x - 3)$$

(a) Show that $f(x) = 2x^3 + 11x^2 - x - 3$

(2)

(b) Hence use algebra to solve the equation $2x^3 + 11x^2 - x - 3 = 0$ Give your roots to 3 decimal places where appropriate.

(3)

DO NOT WRITE IN THIS AREA

Question 3 continued

(Total for Question 3 is 5 marks)

In triangle *ABC*, AC = 6 cm, BC = 14 cm, $\angle ABC = (x - 30)^{\circ}$ and $\angle BAC = (x + 30)^{\circ}$ as shown in Figure 2.

(b) Find, in degrees to 1 decimal place, the size of $\angle ACB$.

(c) Find, to 3 significant figures, the area of triangle ABC.

(4)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(2)

4

Question 4 continued

Question 4 continued

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Question 4 continued

(Total for Question 4 is 11 marks)

5

$\mathbf{f}(x) = 2x^2 + 7x - 4$	
Given that $f(x)$ can be written in the form $A(x + B)^2 + C$	
(a) find the value of A , the value of B and the value of C .	
	(3)
(b) Write down	
(i) the minimum value of $f(x)$,	
(ii) the value of x at which this minimum occurs.	
	(2)
The equation $f(x) = px - 6$ has unequal real roots.	
(c) Find the set of possible values of <i>p</i> .	

(5)

Question 5 continued

Question 5 continued

DO NOT WRITE IN THIS AREA

Question 5 continued

(Total for Question 5 is 10 marks)

6 Given that $y = x^2 \sqrt{(2x-3)}$

(a) show that
$$\frac{dy}{dx} = \frac{x(5x-6)}{\sqrt{(2x-3)}}$$
 (4)

(b) find the value of
$$\frac{dy}{dx}$$
 when $x = 2$ (1)

The curve *C* has equation $y = x^2 \sqrt{(2x-3)}$

(c) Find an equation of the normal to *C* at the point on *C* where x = 2Give your answer in the form ax + by + c = 0, where *a*, *b* and *c* are integers.

(5)

DO NOT WRITE IN THIS AREA

P 5 5 8 8 7 A 0 1 8 3 6

Question 6 continued

Question 6 continued

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Question 6 continued

(Total for Question 6 is 10 marks)

Figure 3 shows a rectangular sheet of metal 10 cm by 16 cm. A square of side x cm is cut away from each corner of the sheet. The sheet is then folded along the dotted lines to form an open box.

The volume of the box is $V \text{ cm}^3$

7

- (a) Show that $V = 4x^3 52x^2 + 160x$
- (b) Using calculus, find the value of x for which V is a maximum, justifying that this value of x gives a maximum value of V.
- (c) Find the maximum value of V.

P 5 5 8 8 7 A 0 2 2 3 6

(5)

(3)

(2)

DO NOT WRITE IN THIS AREA

Question 7 continued

Question 7 continued

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Question 7 continued

(Total for Question 7 is 10 marks)

8	A curve C has equation $y = \frac{5x-3}{2x-1}$ $x \neq \frac{1}{2}$	
	(a) Write down an equation of the asymptote to C that is	
	(i) parallel to the <i>y</i> -axis,	
	(ii) parallel to the <i>x</i> -axis.	
		(2)
	(b) Find the coordinates of the points of intersection of C with the coordinate axes.	(2)
	(c) Using calculus show that at every point on the curve, the gradient of C is positive.	(4)
	(d) Using the axes on the opposite page, sketch <i>C</i> , showing clearly the asymptotes and the coordinates of the points of intersection of <i>C</i> with the coordinate axes.	(3)
	The line <i>l</i> is the tangent to <i>C</i> at the point on the curve where $x = 1$	
	(e) Find an equation of <i>l</i> , giving your answer in the form $y = mx + c$	

(4)

Question 8 continued y ⋆ x 0

P 5 5 8 8 7 A 0 2 7 3 6

27

Question 8 continued

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Question 8 continued

(Total for Question 8 is 15 marks)

- The point A has coordinates (-3, -6) and the point B has coordinates (5, -2)9 The line *l* passes through the point *A* and the point *B*. (a) Find an equation of *l*, giving your answer in the form y = mx + c(3) The point P has coordinates (k, -2). The line through A and P is perpendicular to l. (b) Show that k = -5(3) The point Q has coordinates (e, f). The line through B and Q is also perpendicular to l. Given that the length of PQ is $\sqrt{85}$ and that f > 0(c) find the coordinates of Q. (6) (d) Calculate the area of quadrilateral ABQP.

(4)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Question 9 continued

Question 9 continued

Question 9 continued

(Total for Question 9 is 16 marks)

- 10 (a) Expand $(1 2x)^{-\frac{1}{2}}$ in ascending powers of x up to and including the term in x^3 , simplifying each term as far as possible.
- (3)

(1)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOTWRITE IN THIS AREA

(b) Write down the range of values of x for which your expansion is valid.

$$f(x) = \frac{2 - x^2}{\sqrt{(1 - 2x)}}$$

(c) Find the series expansion of f(x) in ascending powers of x up to and including the term in x^3 , simplifying each term as far as possible.

(3)

The region *R* is bounded by the curve with equation y = f(x), the positive *x*-axis, the positive *y*-axis and the line with equation x = 0.2

(d) Using your expansion of f(x) and algebraic integration, find an estimate for the area of *R*, giving your answer to 4 decimal places.

(4)

Question 10 continued

Question 10 continued

(Total for Question 10 is 11 marks)

TOTAL FOR PAPER IS 100 MARKS

