

Mark Scheme (Results)

Summer 2023

Pearson Edexcel International Advanced Subsidiary Level In Physics (WPH14) Paper 01 Unit 4: Physics Futher Mechanics, Fields and Particles

https://britishstudentcoom.com

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

PRIDS:// BRITISHSHIDERHOOM.COM

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

Summer 2023 Question Paper Log Number: P76879A Publications Code: WPH14_01_2306_MS All the material in this publication is copyright © Pearson Education Ltd 2023

General Marking Guidance

- •All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- https://britishstudentroom.com/ • Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- •There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:

i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear

ii) select and use a form and style of writing appropriate to purpose and to complex subject matter

iii) organise information clearly and coherently, using specialist vocabulary when appropriate.

Mark scheme notes

Underlying principle

https://britishstudentroom.com/ The mark scheme will clearly indicate the concept that is being rewarded, backed up by examples. It is not a set of model answers.

1. Mark scheme format

- 1.1 You will not see 'wtte' (words to that effect). Alternative correct wording should be credited in every answer unless the MS has specified specific words that must be present. Such words will be indicated by underlining e.g. 'resonance'
- 1.2 Bold lower case will be used for emphasis e.g. 'and' when two pieces of information are needed for 1 mark.
- 1.3 Round brackets () indicate words that are not essential e.g. "(hence) distance is increased".
- 1.4 Square brackets [] indicate advice to examiners or examples e.g. [Do not accept gravity] [ecf].

2. Unit error penalties

- 2.1 A separate mark is not usually given for a unit but a missing or incorrect unit will normally mean that the final calculation mark will not be awarded.
- 2.2 This does not apply in 'show that' questions or in any other question where the units to be used have been given, for example in a spreadsheet. Units will be bracketed on the mark scheme in this case, e.g. 7.2 (m).
- 2.3 The mark will not be awarded for the same missing or incorrect unit only once within one clip in epen.
- 2.4 Occasionally, it may be decided not to insist on a unit e.g the candidate may be calculating the gradient of a graph, resulting in a unit that is not one that should be known and is complex.

3. Significant figures

- 3.1 Use of too many significant figures in the theory questions will not be prevent a mark being awarded if the answer given rounds to the answer in the MS.
- 3.2 Too few significant figures will mean that the final mark cannot be awarded in 'show that' questions where one more significant figure than the value in the question is needed for the candidate to demonstrate the validity of the given answer.
- 3.3 The use of one significant figure might be inappropriate in the context of the question e.g. reading a value off a graph. If this is the case, there will be a clear indication in the MS.
- 3.4 The use of $g = 10 \text{ m s}^{-2}$ or 10 N kg⁻¹ instead of 9.81 m s⁻² or 9.81 N kg⁻¹ will mean that one mark will not be awarded. (but not more than once per clip). Accept 9.8 m s⁻² or 9.8 N kg⁻¹
- 3.5 In questions assessing practical skills, a specific number of significant figures will be required e.g. determining a constant from the gradient of a graph or in uncertainty calculations. The MS will clearly identify the number of significant figures required.

4. Calculations

- 4.1 Bald (i.e. no working shown) correct answers score full marks unless in a 'show that' question.
- 4.2 If a 'show that' question is worth 2 marks. then both marks will be available for a reverse working; if it is worth 3 marks then only 2 will be available.
- 4.3 use of the formula means that the candidate demonstrates substitution of physically correct values, although there may be conversion errors e.g. power of 10 error.
- 4.4 recall of the correct formula will be awarded when the formula is seen or implied by substitution.
- 4.5 The mark scheme will show a correctly worked answer for illustration only.
- 5. Graphs

- https://britiststudentroom.com/ 5.1 A mark given for axes requires both axes to be labelled with quantities and units, and drawn the correct way round.
- 5.2 Sometimes a separate mark will be given for units or for each axis if the units are complex. This will be indicated on the mark scheme.
- 5.3 A mark given for choosing a scale requires that the chosen scale allows all points to be plotted, spreads plotted points over more than half of each axis and is not an awkward scale e.g. multiples of 3, 7 etc.
- 5.4 Points should be plotted to within 1 mm.
 - Check the two points furthest from the best line. If both OK award mark. •
 - If either is 2 mm out do not award mark.
 - If both are 1 mm out do not award mark. •
 - If either is 1 mm out then check another two and award mark if both of these OK, • otherwise no mark.

For a line mark there must be a thin continuous line which is the best-fit line for the candidate's results.

		https://https//https://https://https://https://https://https://https://https://https://https://https://https://https://https://https//https://
Question Number	Answer	Mark
1	 The only correct answer is D because the emission of electrons from a heated filament is called thermionic emission. A is not correct because the emission of electrons from a heated filament is not called annihilation B is not correct because the emission of electrons from a heated filament is not called ionisation C is not correct because the emission of electrons from a heated filament is not called photoelectric effect 	1
2	The only correct answer is B because the charge stored on the capacitor in coulomb is given by $2.2 \times 10^{-4} \times 6$ A is not correct because the charge stored on the capacitor in coulomb is not given by $0.5 \times 2.2 \times 10^{-4} \times 6$ C is not correct because the charge stored on the capacitor in coulomb is $0.5 \times 2.2 \times 10^{-4}$ not given by $0.5 \times 2.2 \times 10^{-4} \times 6$ D is not correct because the charge stored on the capacitor in coulomb is not given by $\frac{0.5 \times 2.2 \times 10^{-4}}{6}$ D is not correct because the charge stored on the capacitor in coulomb is not given by $\frac{2.2 \times 10^{-4}}{6}$	1
3	 The only correct answer is B because after emission the proton number is 18 and the nucleon number is 38 A is not correct because after emission the proton number is 18 and the nucleon number is 38 C is not correct because after emission the proton number is 18 and the nucleon number is 38 D is not correct because after emission the proton number is 18 and the nucleon number is 38 	1
4	The only correct answer is A because impulse has the units of mass × velocity B is not correct because this is not units of mass × velocity C is not correct because N is not a base unit D is not correct because N is not a base unit	1
5	The only correct answer is D because this is a requirement for creating new particles rather than investigating structure A is not correct because this is a reason why particles with high energy are required B is not correct because this is a reason why particles with high energy are required C is not correct because this is a reason why particles with high energy are required	1
6	The only correct answer is A because a neutrino is a fundamental particle B is not correct because a neutron is not a fundamental particle C is not correct because a pion is not a fundamental particle D is not correct because a proton is not a fundamental particle	1
7	The only correct answer is B because the mass in kg is given by $\frac{6.5 \times 1.6 \times 10^{-13}}{(3 \times 10^8)^2}$ A is not correct because this does not take account of the M in MeV C is not correct because multiplication and division are reversed D is not correct because multiplication and division are reversed	1
8	 The only correct answer is C because there is insufficient evidence to draw this conclusion A is not correct because this is a valid conclusion B is not correct because this is a valid conclusion D is not correct because this is a valid conclusion 	1

		https://britishsto	
9	The only correct answer is B	1	Chtr
	A is not correct because there should be an antineutrino and not a neutrino		oon
	C is not correct because charge is not conserved		Com
	D is not correct because charge is not conserved		
10	The only correct answer is A	1	
	B is not correct because the length of the magnet is the length of wire		
	perpendicular to the field		
	\mathbf{C} is not correct because the force is into the page		
	D is not correct because the force is into the page		

			https://britishs	8.
Question Number	Answer		Mark	dentroon
11	Meson			i.com
	\overline{c} and one quark from cdsu	(1)		
	Charge correct for quark-antiquark combination	(1)		
	Baryon			
	3 quarks from cdsu	(1)		
	Charge correct for three-quark combination	(1)		
	Correct 5 quarks used once each such that meson and baryon charges are equal and opposite (\overline{c} d and csu or \overline{c} s and cdu) (MP5 dependent on MP1, 2, 3 and 4)	(1)	5	
	Total for question 11		5	

			https://british	
Question Number	Answer		Mark	ntr
12(a)	Equates $F = \frac{mv^2}{r}$ and $F = BQv$	(1)		oom.com
	Substitutes $p = mv$ with suitable algebra to arrive at $r = \frac{p}{BQ}$	(1)	2	
	Example of derivation $\frac{mv^2}{r} = BQv$ $\frac{mv}{r} = BQ$ $\frac{p}{r} = BQ$ $r = \frac{p}{BQ}$			
12(b)	Use of conversion factor from eV to J Use of $E_k = \frac{p^2}{2m}$ Or	(1)		
	Use of $E_k = \frac{1}{2} mv^2$ and $p = mv$	(1)		
	Use of $r = \frac{p}{BQ}$	(1)		
	B = 3.5 T	(1)	4	
	Example of calculation $E = 5.4 \text{ MeV} \times 10^{6} \times 1.6 \times 10^{-19} \text{ C}$ $= 8.64 \times 10^{-13} \text{ J}$ $8.64 \times 10^{-13} \text{ J} = \frac{p^{2}}{2 \times 6.64 \times 10^{-27} \text{ kg}}$ $p = 1.07 \times 10^{-19} \text{ Ns}$ $0.096 \text{ m} = 1.07 \times 10^{-19} \text{ Ns} / B \times 2 \times 1.6 \times 10^{-19} \text{ C}$ B = 3.48 T			
	Total for question 12		6]

			hitos://b.	
Question Number	Answer		Mark	Udentro
13(a)	The particles are accelerated by an electric field in the gaps	(1)		On.co
	The a.c. frequency is constant so the particles spend the same time in the tubes/gaps	(1)		
	(This is achieved by) increasing length of drift tubes Or (This is achieved by) increasing length of gaps	(1)		
	The (a.c) polarity changes so the (electric) field is in the same direction when the particle is in the gaps Or The (a.c.) polarity changes so it is always accelerating the particles	(1)	4	
13(b)	The particles experience a force at right angles to their motion/path/velocity.	(1)		
	Which causes centripetal acceleration/force Or Which causes circular motion	(1)	2	
	Total for question 13		6]

			https://britishe
Question Number	Answer		Mark
14(a)	Use of trigonometrical function for <i>x</i> component of alpha momentum after collision Or Use of trigonometrical function for <i>y</i> component of alpha momentum after collision Applies conservation of momentum in <i>x</i> direction Or Applies conservation of momentum in <i>y</i> direction Applies trigonometry to calculate final angle for proton Applies trigonometry or Pythagoras to calculate magnitude Angle = 17.0(°) Magnitude = 4.9×10^{-20} (N s) Example of calculation x component of alpha after = 8.06×10^{-20} Ns × cos 10.2° = 7.93×10^{-20} Ns y component of alpha after = 8.06×10^{-20} Ns × sin 10.2° = 1.43×10^{-20} Ns x component of proton = 1.26×10^{-19} Ns - 7.93×10^{-20} Ns = 4.67×10^{-20} Ns tan $\theta = 1.43 \times 10^{-20}$ Ns $\div 4.67 \times 10^{-20}$ Ns = 0.31 $\theta = 17.0^{\circ}$	 (1) (1) (1) (1) (1) 	6
14(b)	$p = 4.88 \times 10^{-20} \text{ N s}$ Use of $E_k = \frac{p^2}{2m}$ Or Use of $E_k = \frac{1}{2} mv^2$ and $p = mv$ Correct calculation of one kinetic energy (e.c.f from (a)) Correct calculation of all kinetic energies (e.c.f from (a)) Conclusion consistent with correctly calculated values of kinetic energy Example of calculation $E_k = \frac{(4.88 \times 10^{-20} \text{ N s})^2}{2 \times 1.67 \times 10^{-27} \text{ kg}} = 7.13 \times 10^{-13} \text{ J} \text{ (proton after)}$ $E_k = \frac{(8.06 \times 10^{-20} \text{ N s})^2}{2 \times 6.64 \times 10^{-27} \text{ kg}} = 4.89 \times 10^{-13} \text{ J} \text{ (alpha after)}$ $E_k = \frac{(1.26 \times 10^{-19} \text{ N s})^2}{2 \times 6.64 \times 10^{-27} \text{ kg}} = 1.20 \times 10^{-12} \text{ J} \text{ (initial alpha)}$ 7.13 × 10 ⁻¹³ J + 4.89 × 10 ⁻¹³ J = 1.2 × 10 ⁻¹² J = initial alpha kinetic energy, so it is elastic	(1) (1) (1) (1)	4
	Total for question 14		10

Question Number S 15(a)(i) S I I I	States $T = 0.16$ s Use of $\omega = 2\pi / T$ $\omega = 39$ (radian s ⁻¹) Example of calculation T = 0.16 s $\omega = 2\pi / 0.16$ s $\omega = 2\pi / 0.16$ s $\omega = 39.3$ radian s ⁻¹ Maximum force read Use of $F = m \omega^2 r$ r = 0.044 (m) (e.c.f from the second seco	on from graph ($F =$ rom (a)(i)) n, so 0.086 m was on (39 radian s ⁻¹) ² × nat value gives 0.0	Ansv 0.63	wer N) (accept 0.6 liameter in mr	2 N to 0.64	N)	(1) (1) (1) (1) (1) (1)	Mark 3
$ \begin{array}{c} 1.5(a)(i) & S \\ I & I \\ I & I \\ $	States $T = 0.16$ s Use of $\omega = 2\pi / T$ $\omega = 39$ (radian s ⁻¹) Example of calculation T = 0.16 s $\omega = 2\pi / 0.16$ s $\omega = 39.3$ radian s ⁻¹ Maximum force read Use of $F = m \omega^2 r$ r = 0.044 (m) (e.c.f from the second se	from graph ($F =$ rom (a)(i)) n, so 0.086 m was <u>on</u> (39 radian s ⁻¹) ² × nat value gives 0.0	0.63 s the c	N) (accept 0.6 liameter in mr	2 N to 0.64	N)	 (1) (1) (1) (1) (1) (1) (1) 	3
L5(b)*	Use of $\omega = 2\pi / T$ $\omega = 39$ (radian s ⁻¹) Example of calculation T = 0.16 s $\omega = 2\pi / 0.16$ s $\omega = 2\pi / 0.16$ s $\omega = 39.3$ radian s ⁻¹ Maximum force read Use of $F = m \omega^2 r$ r = 0.044 (m) (e.c.f from the second seco	from graph ($F =$ rom (a)(i)) n, so 0.086 m was on (39 radian s ⁻¹) ² × nat value gives 0.0	0.63 s the c	N) (accept 0.6 liameter in mr	2 N to 0.64	N)	 (1) (1) (1) (1) (1) (1) 	3
a E 7 a 5(a)(ii) N U r 8 E 0 r 8 E 0 r 8 E 0 r 8 10 5(b)* T a N si T a N si	$\omega = 39 \text{ (radian s}^{-1}\text{)}$ Example of calculation T = 0.16 s $\omega = 2\pi / 0.16 \text{ s}$ $\omega = 39.3 \text{ radian s}^{-1}$ Maximum force read Use of $F = m \omega^2 r$ r = 0.044 (m) (e.c.f for 86 mm is 2 × 0.043 m Example of calculation 0.63 N = 0.0095 g × 10000000000000000000000000000000000	$\frac{2n}{2}$ from graph ($F =$ rom (a)(i)) n, so 0.086 m was $\frac{2n}{(39 \text{ radian s}^{-1})^2} \times$ nat value gives 0.0	0.63	N) (accept 0.6 liameter in mr	2 N to 0.64	N)	 (1) (1) (1) (1) 	3
$ \begin{bmatrix} F \\ 7 \\ a \\ a a a a a $	Example of calculation T = 0.16 s $\omega = 2\pi / 0.16 \text{ s}$ $\omega = 39.3 \text{ radian s}^{-1}$ Maximum force read Use of $F = m \omega^2 r$ r = 0.044 (m) (e.c.f for 86 mm is 2 × 0.043 m Example of calculation 0.63 N = 0.0095 g × 10000000000000000000000000000000000	from graph ($F =$ rom (a)(i)) n, so 0.086 m was <u>on</u> (39 radian s ⁻¹) ² × nat value gives 0.0	0.63	N) (accept 0.6 diameter in mr	2 N to 0.64	N) ((1) (1)	
15(a)(ii) M 15(a)(ii) M 1 15(b)* T 15(b)* T 1 15(b)* T 1 1 1 1 1 1 1 1 1 1 1 1 1	$\omega = 2\pi / 0.16 \text{ s}$ $\omega = 39.3 \text{ radian s}^{-1}$ Maximum force read Use of $F = m \omega^2 r$ r = 0.044 (m) (e.c.f fr 86 mm is 2 × 0.043 m Example of calculation 0.63 N = 0.0095 g × 17 r = 0.044 m (Show the This question assesses and the second secon	from graph ($F =$ rom (a)(i)) n, so 0.086 m was on (39 radian s ⁻¹) ² × nat value gives 0.0	0.63	N) (accept 0.6 liameter in mr	2 N to 0.64	N)	(1) (1)	
L5(a)(ii) M L R R R R R R R R R R R R R R R R R R	$\omega = 39.3 \text{ radian s}^{-1}$ Maximum force read Use of $F = m \omega^2 r$ r = 0.044 (m) (e.c.f fr 86 mm is 2 × 0.043 m Example of calculation 0.63 N = 0.0095 g × r r = 0.044 m (Show the This question assesses and the second	from graph ($F =$ rom (a)(i)) n, so 0.086 m was <u>on</u> (39 radian s ⁻¹) ² × nat value gives 0.0	0.63 s the c	N) (accept 0.6 liameter in mr	2 N to 0.64	N)	(1) (1) (1)	
5(a)(ii) M U r 8 <u>E</u> 0 r 5(b)* T a S b)* T	Maximum force read Use of $F = m \omega^2 r$ r = 0.044 (m) (e.c.f fr 86 mm is 2 × 0.043 m Example of calculation 0.63 N = 0.0095 g × r r = 0.044 m (Show the This question assesses a property with linkages a	from graph ($F =$ rom (a)(i)) n, so 0.086 m was <u>on</u> (39 radian s ⁻¹) ² × nat value gives 0.0	0.63	N) (accept 0.6	2 N to 0.64	N) ((1) (1)	
U 7 8 <u>E</u> 0 7 5(b)* T a S J T	Use of $F = m \omega^2 r$ r = 0.044 (m) (e.c.f from $R = 0.044$ (m) (e.c.f from $R = 0.043$ m) (e.c.f from $R = 0.043$ m) (for $R = 0.043$ m) (for $R = 0.044$ m) (for	rom (a)(i)) n, so 0.086 m was on (39 radian s ⁻¹) ² × nat value gives 0.0	s the c	liameter in mr	n		(1)	
r 8 <u>E</u> 0 r 5(b)* T a M sl T	r = 0.044 (m) (e.c.f fr 86 mm is 2 × 0.043 m Example of calculation 0.63 N = 0.0095 g × m r = 0.044 m (Show the This question assesses a answer with linkages a	rom (a)(i)) n, so 0.086 m was <u>on</u> (39 radian s ⁻¹) ² × nat value gives 0.0	s the c	liameter in mr	n			
8 <u>E</u> 0 <i>r</i> 15(b)* T a S S T	86 mm is 2×0.043 m Example of calculation $0.63 \text{ N} = 0.0095 \text{ g} \times 10^{-1} \text{ m}^{-1}$ r = 0.044 m (Show the This question assesses a answer with linkages a	n, so 0.086 m was on (39 radian s ⁻¹) ² × nat value gives 0.0	s the c	liameter in mr	n		(1)	
E 0 r 15(b)* T a SI SI	Example of calculation $0.63 \text{ N} = 0.0095 \text{ g} \times r$ r = 0.044 m (Show the This question assesses a answer with linkages a	on (39 radian s ⁻¹) ² × nat value gives 0.0					(1)	4
15(b)* T a sl	This question assesses		(<i>r</i>)41)					
a Sl T	1 H C M / CHP M / H / H / H / H / H / H / H / H / H /	a student's ability to	o shov	w a coherent and	l logically str	uctured		
	Marks are awarded for shows lines of reasonin The following table sho Number of indicative marking points seen	indicative content a lg. ows how the marks Number of marks awarded for indicat	and fo <u>shoul</u> iive	r how the answe d be awarded for Max linkage mark	er is structure or indicative c Max final	d and ontent.		
	in answer 6			2	mark			
	5	3		2	5			
	4	3		1	4			
	3	2		1	3			
	2	2		0	2			
	1	1		0	1			
	0	0		0	0			
Т	The following table sho of reasoning.	ows how the marks	shoul	d be awarded fo	or structure an	d lines		
			Num of an	ber of marks awa swer and sustaine	rded for struct	ure oning		
	Answer shows a coheren structure with linkages a lines of reasoning demon	nt and logical and fully sustained nstrated throughout			2			
	Answer is partially struct linkages and lines of rea Answer has no linkages	soning between points			1			
	and is unstructured	- sen pointo			U			
C c w a p	Guidance on how the n content should be added with five indicative ma	hark scheme should d to the mark for lin rking points which scores 4 marks (3 m me linkages and lin	l be ap nes of is par narks f nes of n	plied: The mark reasoning. For tially structured or indicative co reasoning). If th	c for indicative example, an a with some line ntent and 1 m ere are no line	ve nnswer nkages nark for kages		

	https://
Indicative content:	Sritis
IC1: Magnitude of centripetal force is constant since speed is	s constant
IC2: Centripetal force on car at bottom is normal contact for $(F = N - W \text{ or } N = F + W)$	rce minus weight
IC3: When car is at bottom force is maximum	
IC4: Centripetal force on car at top is normal contact force p (F = N + W or N = F - W)	olus weight
IC5: When car is at top force is minimum	
IC6: At 0.04 s it is at the bottom and at 0.12 s it's at the top	6
Total for question 15	13

			https://britis	
Question Number	Answer		Mark	Udenr.
16(a)	(Wires) cut lines of magnetic flux Or flux <u>linkage</u> (with coil) changing	(1)	2	COOM.COM
	Induces emf	(1)		
16(b)	Use of $A = \pi (d/2)^2$	(1)		
	Applies knowledge of flux = flux density \times area	(1)		
	Flux = 8.8×10^{-5} (Wb) (at least 2 s.f)	(1)	3	
	Example of calculation $A = \pi \times (0.025 \text{ m} / 2)^2$ $= 4.9 \times 10^{-4} \text{ m}^2$ $\varphi = 0.18 \text{ T} \times 4.9 \times 10^{-4} \text{ m}^2$ $= 8.84 \times 10^{-5} \text{ Wb}$			
16(c)	Determine maximum gradient of graph	(1)		
	Use of flux linkage = $N \varphi$	(1)		
	Use of $\varepsilon = dN\varphi / dt$	(1)		
	V = 2.3 V (range rounds -2.2 V to 2.6 V)	(1)	4	
	Example of calculation max gradient = 4.62×10^{-4} Wb s ⁻¹ max V = $5000 \times 4.62 \times 10^{-4}$ Wb s ⁻¹ = 2.3 V			
16(d)	By Lenz's law, current/e.m.f./field/force produced is so as to oppose the cause of the current/e.m.f.	(1)		
	Force on wire due to interaction of induced current and field	(1)		
	Force to left, so, by (Fleming) LHR	(1)		
	current into page and student is correct (dependent on MP3)	(1)	4	
	Total for question 16		13	

		ħ.	bs://brie	
Question Number	Answer		Mark	en.
17(a)	At least 4 radial straight lines, from surface of sphere	(1)		troom.
	Equal spacing	(1)		
	Arrows outward	(1)	3	
17(b)(i)	Use of $V = \frac{Q}{4\pi\varepsilon_0 r}$	(1)		
	$Q = 1.1 \times 10^{-8}$ (C)	(1)	2	
	Example of calculation $5000 \text{ V} = 8.99 \times 10^9 \text{ Nm}^2 \text{C}^{-2} \times \frac{Q}{0.02 \text{ m}}$ $Q = 1.1 \times 10^{-8} \text{ C}$			
17(b)(ii)	Use of $E = V/d$	(1)		
	Use of $F = EQ$	(1)		
	$F = 5.2 \times 10^{-4}$ N (e.c.f from (b)(i))	(1)	3	
	Example of calculation $E = 5000 \text{ V} \div 0.105 \text{ m} = 47\ 600 \text{ V} \text{ m}^{-1}$ $F = 47\ 600 \text{ V} \text{ m}^{-1} \times 1.1 \times 10^{-8} \text{ C}$ $F = 5.24 \times 10^{-4} \text{ N}$			
17(b)(iii)	Use of $W = mg$	(1)		
	Use of suitable trigonometry, such as $\tan \theta = F/W$	(1)		
	$\theta = 1.1(^{\circ})$ (e.c.f from (b)(i) and (b)(ii))	(1)	3	
	Example of calculation $W = 0.0027 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 0.0265 \text{ N}$ $\tan \theta = 5.24 \times 10^{-4} \text{ N} / 0.0265 \text{ N} = 0.0198$ $\theta = 1.13^{\circ}$			
17(c)	Use of $F = \frac{Q_1 Q_2}{4\pi \epsilon_1 r^2}$	(1)		
	with $Q_1 = Q_2 = 1.2 \times 10^{-8} \text{ C}$	(1)		
	r = 0.051 m	(1)	3	
	$\frac{\text{Example of calculation}}{5.0 \times 10^{-4} \text{ N}} = \frac{8.99 \times 10^9 \text{ Nm}^2 \text{C}^{-2} \times 1.2 \times 10^{-8} \text{ C} \times 1.2 \times 10^{-8} \text{ C}}{r^2}$ r = 0.051 m			
	Total for question 17		14	

		h	bs://british
Question Number	Answer		Mark
18(a)	Draws best fit straight line on graph	(1)	on.
	Use of two corresponding pairs of values of <i>I</i> and <i>t</i>	(1)	
	Use of gradient = $-1 / CR$	(1)	
	$C = 2.17 \times 10^{-5}$ (F) (rounds to 2.2×10^{-5})	(1)	4
	Or		
	Draws best fit straight line on graph	(1)	
	Use of two corresponding pairs of values of I and t	(1)	
	Use of $\ln I = \ln I_0 - t / CR$		
	$C = 2.17 \times 10^{-5}$ (F) (rounds to 2.2×10^{-5})	(1)	
	Example of calculation	(1)	
	Gradient = -0.189 s^{-1} $0.191 \text{ s}^{-1} = 1 / C \times 240\ 000\ \Omega$		
	$C = 2.17 \times 10^{-5} \mathrm{F}$		
18(b)(i)	Use of $\Delta E_{\text{grav}} = mg\Delta h$	(1)	
	Use of $E_{\rm k} = \frac{1}{2} mv^2$ and conservation of energy	(1)	
	$v = 0.46 \text{ m s}^{-1}$	(1)	3
	Example of calculation $E_{\text{grav}} = 0.028 \text{ kg} \times 9.81 \text{ N kg}^{-1} \times 0.011 \text{ m} = 3.02 \times 10^{-3} \text{ J}$ $3.02 \times 10^{-3} \text{ J} = \frac{1}{2} \times 0.028 \text{ kg} \times v^2$ $v = 0.464 \text{ m s}^{-1}$		
18(b)(ii)	Use of $V = V_0 e^{-t/CR}$	(1)	
	Use of $\ln V = \ln V_0 - t / CR$		
	$t = 1.4 \times 10^{-4} \text{ s}$	(1)	2
	Example of calculation ln (5.43 V / 6.18 V) = $-t/2.2 \times 10^{-5}$ F × 49 Ω $t = 1.39 \times 10^{-4}$ s		
18(b)(iii)	Use of $W = mg$	(1)	
	Use of $p = mv$	(1)	
	Use of $F \Delta t = \Delta p$	(1)	
	F = 93 N which is (much) more than the weight of sphere A, so the suggestion is incorrect (e.c.f from (b)(i) and (b)(ii))	(1)	4
	Example of calculation W = mg $= 0.028 \text{ kg} \times 9.81 \text{ N kg}^{-1}$		

https://britishstudentroom.com/