

Mark Scheme (Results)

Summer 2023

Pearson Edexcel International Advanced Level In Statistics S1 (WST01) Paper 01

hrios: [britishstudenticoon.com

Edexcel and BTEC Qualifications

hrios: I britishstudentioon.com Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2023 Question Paper Log Number 72904 Publications Code WST01_01_2306_MS All the material in this publication is copyright © Pearson Education Ltd 2023

General Marking Guidance

- hitos:/britishstudentroom.com/ • All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

General Instructions for Marking

hrips://britishstudentroom.com/

The total number of marks for the paper is 75.

Edexcel Mathematics mark schemes use the following types of marks:

'M' marks

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation, e.g. resolving in a particular direction; taking moments about a point; applying a suvat equation; applying the conservation of momentum principle; etc.

The following criteria are usually applied to the equation.

To earn the M mark, the equation

- (i) should have the correct number of terms
- (ii) each term needs to be dimensionally correct

For example, in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel 'g' s.

For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

'M' marks are sometimes dependent (DM) on previous M marks having been earned, e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity – this M mark is often dependent on the two previous M marks having been earned.

'A' marks

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. e.g. MO A1 is impossible.

'B' marks

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph).

A and B marks may be f.t. - follow through - marks.

General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod means benefit of doubt
- ft means follow through
 - \circ the symbol $\sqrt{}$ will be used for correct ft
- cao means correct answer only
- cso means correct solution only, i.e. there must be no errors in this part of the question to obtain this mark
- isw means ignore subsequent working

- awrt means answers which round to
- SC means special case
- oe means or equivalent (and appropriate)
- dep means dependent
- indep means independent
- dp means decimal places
- sf means significant figures
- * means the answer is printed on the question paper
- means the second mark is dependent on gaining the first mark

All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

hrips://britishstudentroom.com/

For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

Ignore wrong working or incorrect statements following a correct answer.

	the state of the s	s:// ₂	
Qu	Scheme	Marks	
1(a)	eg 60 people = 1.5 large squares/6 medium squares/150 small squares or	TUDE	
	eg 1 person = 0.025 large squares/0.6 medium squares/2.5 small squares or	"Office	
	eg [1 small square =] 0.4 people/[1 medium square =] 10 people/[1 large square =] 40 people	B1	
	eg a correct f.d. eg 60/(20 – 10) [= 6]		
	eg a correct frequency, 100, 70, 20, 24 associated with the appropriate bar		
	eg $\frac{8}{10} \times 20$ or $\frac{15}{30} \times 24$ or 8×2 or 0.8×15 or $\frac{40}{2.5}$ or $\frac{30}{2.5}$ or $8 \times 5 \times 0.4$	M1	
	$2 \times 15 \times 0.4$ or 16 or 12 or 70×0.4		
	28 people	A1	
(1)		(3)	
(b)	Median = $[5] + \frac{5}{70} \times 37$ or $[10] - \frac{5}{70} \times 33$	M1	
	= 7.642 awrt 7.64	A1	
()		(2)	
(c)	$\sum \text{midpoint} \times \text{freq} = 2.5 \times 100 + 7.5 \times 70 + 15 \times 60 + 25 \times 20 + 45 \times 24 = 3255$	M1	
	Mean = $\frac{"3255"}{274}$	dM1	
	= 11.879 awrt 11.9	A1	
	THO///	(3)	
	Notes	Total 8	
(a)	B1: for finding a ratio between people and area. Allow just the numbers for 1 person or for 1 sc 0.025, 0.6, 2.5, 0.4, 1.66 or 40 or calculating f.d. for any bar correctly, fd = 20, 14, 6, 2 or 0.8 Information may be seen on diagram. Must be clear it is a fd either by correct use, seen on axes associated with correct bar or stated as an fd. May be implied by M1 M1: for a correct method to find the number of people between 22 and 30 km or 30 and 45 km between 22 and 45 km	3	
	A1: 28		
(b)	NB An answer of 28 gains 3/3 unless from obvious incorrect working M1: Allow equivalent for $n + \frac{5}{70} \times 37$ or $\frac{Q_2 - n}{5} = \frac{137 - 100}{170 - 100}$ or $n - \frac{33}{70} \times 5$ or $\frac{n - Q_2}{5} = \frac{170 - 137}{170 - 100}$ oe		
	Allow alternative methods eg $\frac{Q_2 - 5}{10 - Q_2} = \frac{137 - 170}{170 - 137}$		
	Allow 37.5 for 37, 137.5 for 137, 32.5 for 33		
	A1: awrt 7.64 or $\frac{107}{14}$ or allow awrt 7.68 or $\frac{215}{28}$ if using $n + 1$ Allow awrt 7640 m or 7680 m b	out must	
(c)	have units. M1. Attempt at correct expression for \sum midpoint x find x at least 2 mediate with correct midpoint x .	desints	
(c)	M1: Attempt at correct expression for \sum midpoint × freq - at least 3 products with correct midpoints		
	added with at least 1 of these products fully correct. Allow for 3255		
	M1: dep on M1 being awarded for dividing "their sum" by 274		
	A1: awrt 11.9 or $\frac{3255}{274}$		
	Allow awrt 11900 m but must have units		

Qu	Scheme	Marks
2(a)	$S_{tw} = 2304.53 - \frac{297.8 \times 114.8}{15}$ or $S_{ww} = 6089.12 - \frac{297.8^2}{15}$	M1
	$S_{rw} = 25.367$ awrt 25.4	A1 00000
	$S_{ww} = 176.797$ awrt 177	Al
		(3)
(b)	"25.367"	
	$r = \frac{1}{\sqrt{5.3173 \times 176.797}}$	M1
	= 0.82735 awrt 0.827 or 0.828	A1 (2)
(a)	"25 267 "	(2)
(c)	$b = \frac{"25.367"}{5.3173} [= 4.77065]$	M1
	$a = \frac{297.8}{15} - \frac{"25.367"}{5.3173} \times \frac{114.8}{15} [= -16.658]$	M1
	b = 4.771 or better or $a = -16.66$ or better seen and $w = -16.7 + 4.77t$ *	A1*cso
		(3)
(d)	[On average,] for each cm/1 cm of tail length/t the weight/w increases by 4.77 g/grams	B1 (1)
(e)	16.7	(1)
(e)	$w = -16.7 + 4.77 \times 2[=-7.16]$ or $4.77 \times 2[=9.54]$ or $[t =]\frac{16.7}{4.77}[=3.5]$ or sd = awrt 0.6	M1
	[w =] - 7.16 or $9.54 < 16.7$ or $2 < 3.5$ which is negative/weight cannot be negative	A1
	or for sd extrapolation since a 2 cm tail is (approx 9 sd)/(more than 3 sd) from the mean	
(£)	0.927	(2) B1ft
(f)	0.827	(1)
(g)	2y+10=-16.7+4.77(x+6) oe	B1ft
		(1)
	Notes	Total 13
(a)	M1 for a correct expression for S_{tw} or S_{ww}	
	A1 awrt 25.4	
(b)	A1 awrt 177	
(b)	M1 for a valid attempt at r with their S_{tw} not equal to 2304.53 and S_{ww} not equal to 6089.12	
(a)	A1 (M2 on epen) awrt 0.827 or awrt 0.828	
(c)	1 st M1 for a correct method to find the value of <i>b</i> 2 nd M1 ft their <i>b</i> . For a correct method to find <i>a</i> . Minimum shown	
	a = awrt 19.9 - "their b" × awrt 7.65 $[= -16.658]$	
	A1* Both method marks must be awarded, equation stated (no fractions) and sight of (4.771 of the following states).	or better)
	or (-16.66 or better)	
(d)	B1 For a suitable contextual comment that implies that as length increases by 1 cm weight inc	
	4.77g. Allow multiples eg each 10 cm increase in tail length weight increases by 47.7g Allow	in terms
(e)	of <i>t</i> and <i>w</i> M1 for a correct method to calculate the value of <i>w</i> (condone if written as a fraction) or	
(E)	4.77 × 2[= 9.54] or correct method to find tail length when $w = 0$ or sd = awrt 0.6	
	A1 Method mark must be awarded. For –7.16 or 9.54 < 16.7 or 2 < 3.5 with a relevant explan	ation
	stating that weight is negative. If $sd = awrt \ 0.6$ is given allow extrapolation since a 2 cm tail is	
	9 sd)/(more than 3 sd) from the mean.	· • •
(f)	B1ft follow through their answer to (b)	
(g)		
	B1 ISW no need to be simplified. Allow equivalent eg $y = \frac{-16.7 + 4.77(x+6)}{2} - 5$ The correct	

Qu		Scheme	Marks	
3(a)	$[\overline{x} =] \frac{3711}{81} [= 45.814]$	$\left[\sum l = \right] 3711 + 81 \times 600 \left[= 52311 \right]$	M1 Troop	
	$[\bar{l}] = -45.814 + 600$	$\left[\overline{l}\right] = \frac{"52311"}{81}$	M1	
	$\left[\overline{l}\right] = 645.81$	awrt 646	A1	
		1	(3)	
(b)	$\left[\sigma_x^2 = \right] \frac{475181}{81} - \left(\frac{3711}{81}\right)^2 \left[= 3767 \right]$ $= 3767.43 \Rightarrow \sigma_l^2 = 3767.43$	$\left[\text{Var}(L) = \right] \frac{34088381}{81} - \left(\frac{"52311"}{81} \right)^2$	M1	
	$=3767.43\Rightarrow \sigma_l^2 = 3767.43$	= 3767.43 awrt 3770	A1	
			(2)	
(c)	40		B1cao	
(d)	IQR = 5400 – 3800 [= 1600]		(1) M1	
(u)	5400+1.5×"1600" [= 7800] or 3800-	-1.5×"1600" [= 1400]	M1	
	7800 > 7700 and $1400 < 1600$ therefore		A1	
			(3)	
		Notes	Total 9	
(a)	M1 for a correct method to find \bar{x} or \sum	l Allow 45.8 or better. Ignore labels		
	M1 for a correct method to find \overline{l} ft their \overline{x} if it is clearly labelled or it comes from $\frac{3711}{81}$ or ft their $\sum l$ if it is clearly labelled or comes from $3711+81\times600$			
	A1 awrt 646 or $\frac{17437}{27}$ or $\frac{52311}{81}$ oe			
(b)	M1 correct method to find Var (X) implied by awrt 3770 or a correct method to find Var (L) ft their			
	$\sum l$ or Allow calculation of sd $[\sigma_x]$ = awrt 61.4 Ignore labels			
	A1 awrt 3770 labelled clearly as $Var(L)$ or $Var(L) = Var(X)$ or $\sigma_l = \sigma_x$ stated or variance is not			
		e gained the answer from $\frac{34088381}{81} - \left(\frac{"52311"}{81}\right)$		
(c)	B1 cao			
(d)	M1 correct method to find IQR. May be NB $1.5 \times (5400 - 3800) = 2400$	implied by a correct limit.		
	M1 for a correct method to find the upper or the lower outlier boundary.			
		0 and 1600 (as the minimum not IQR) seen and	explicitly	
	stating no outliers			

		thos://
Qu	Scheme	Marks
4(a)	Bag Colour	THOCK
	0.02 Red	toon
	A	Atoon, co.
	0.3 0.98 Not Red	
	0.04 Red	
	0.45 B	B1B1
	Not Red	
	0.25	
	C 0.06 Red	
	0.94 Not Red	
(1)		(2)
(b)	0.3×"0.98" = 0.294	M1 A1
	= 0.294	(2)
(c)	(0.3×0.02)+("0.45"×"0.04")+("0.25"×"0.06")	M1
	= 0.039	A1
	0.002	(2)
(d)	$P(C Red) = \frac{"0.25" \times "0.06"}{"0.039"} \left[= \frac{0.015}{"0.039"} \right]$	M1,M1
	$= 0.3846 \text{ or } \frac{5}{13}$	A1
	13	(2)
	Notes	(3) Total 9
(a)	B1 for 0.45, 0.25 and 0.98 Allow fractions	10tal 2
	B1 0.04, 0.96 and 0.06, 0.94 Allow fractions	
(b)	M1 may ft their tree diagram if method shown 0.3 × " their 0.98"	
	A1 0.294 oe	
(c)	M1 may ft their tree diagram if method shown	
(4)	A1 0.039 oe	
(d)	M1 allow $\frac{p}{\text{"their part (c)"}}$ or $\frac{p}{0.039}$ where $0 and p < denominator and their$	(c) is a
	probability or	
	allow $\frac{"0.25" \times "0.06"}{q}$ or $\frac{0.015}{q}$ where $0 < q < 1$ and $q >$ numerator	
	allow $\frac{"0.25" \times "0.06"}{q}$ or $\frac{0.015}{q}$ where $0 < q < 1$ and $q >$ numerator M1 for $\frac{"0.25" \times "0.06"}{"0.039"}$ ft their tree diagram and their part(c) if all 3 figures shown	n in
	working. We will condone num > denom	
	A1 awrt 0.385	
	NB if correct ft on numerator and denominator leads to "num" > "denom" then m is M0M1A0	ax score

		h _{rtos://b.}	
Qu	Scheme	Marks	
5 (a)	$P(Y = y) \qquad 2k \qquad k \qquad k \qquad 8k \qquad 17k \qquad k$	M1	
	$2k+k+k+8k+17k+k=1 \text{ or } 30k=1 \left[\Rightarrow k = \frac{1}{30} \right]^*$	A1*	
		(2)	
(b)	k+k+8k or 1-(2k+17k+k)	M1	
	$=\frac{1}{3}$ oe awrt 0.333	A1	
()		(2)	
(c)	$(1 \times 2k) + (2 \times k) + (3 \times k) + (4 \times 8k) + (5 \times 17k) + (6 \times k) =$	M1	
	$\frac{13}{3}$ oe awrt 4.33	A1	
. = \		(2)	
(d)	$P(Y \ge 15 - 2Y)$ or $[X =] 13 \ 11 \ 9 \ 7 \ 5 \ 3$ only or $[Y =] 5$ or 6 only	M1	
	$[P(Y \ge 5) = P(Y = 5) + P(Y = 6)] = \frac{"17"}{30} + \frac{"1"}{30}$	M1	
	$=\frac{3}{5}$ oe	A1ft	
		(3)	
(e)	Var(X) = 4Var(Y)	M1	
	$[E(Y^2) =](1 \times 2k) + (2^2 \times k) + (3^2 \times k) + (4^2 \times 8k) + (5^2 \times 17k) + (6^2 \times k) = \frac{302}{15} \text{ or awrt } 20.1$	M1	
	$[\text{Var}(Y) =] \frac{302}{15} - \left(\frac{13}{3}\right)^2 = \frac{61}{45} \text{ or awrt } 1.36$	M1d	
	$[Var(X) =] \frac{244}{45}$ oe awrt 5.42	A1	
	ALT for 1st 3 marks	(4)	
	$[E(X) =] (13 \times 2k) + (11 \times k) + (9 \times k) + (7 \times 8k) + (5 \times 17k) + (3 \times k) = \frac{19}{3} \text{ or awrt } 6.33$	M1	
	$[E(X^2) =](13^2 \times 2k) + (11^2 \times k) + (9^2 \times k) + (7^2 \times 8k) + (5^2 \times 17k) + (3^2 \times k) = \frac{683}{15} \text{ or awrt } 45.5$	M1	
	$[\operatorname{Var}(X) =] \frac{683}{15} - \left(\frac{190}{30}\right)^2$	M1d	
	Notes	Total 13	
(a) (b)	M1 for finding the probabilities in terms of k . The individual probabilities must be seen either or in the calculation (but do not need to be simplified) A1* Method mark must be awarded. For a correct equation which would lead to $k = 1/30$ * NB Verification - $2\left(\frac{1}{30}\right) + \left(\frac{1}{30}\right) + \left(\frac{1}{30}\right) + 8\left(\frac{1}{30}\right) + 17\left(\frac{1}{30}\right) + \left(\frac{1}{30}\right) = 1$ gains M1 A0 M1 for using $P(Y = 2) + P(Y = 3) + P(Y = 4)$ or $1 - P(Y = 1) + P(Y = 5) + P(Y = 6)$ Allow in term with $k = 1/30$ subst or with their probabilities. Do not allow in terms of y	to $k = 1/30 *$	
	A1 awrt 0.333		
(c)	M1 for using $\sum xP(x)$ At least 3 terms given Allow with $k = 1/30$ subst or ft their probabilities	es.	
(d)	A1 awrt 4.33 M1 forming correct inequality in V or 13 11 0.7.5.3 seen anywhere or for 5 and 6 only. Implies	d by 2nd N/1	
(a)	M1 forming correct inequality in Y or 13,11,9,7,5,3 seen anywhere or for 5 and 6 only. Implied M1 finding their $P(Y = 5)$ + their $P(Y = 6)$ or $P(X = 5)$ + $P(X = 3)$ eg $17k + k$	d by 2 MII	
	A1ft ft their probabilities		
(e)	M1 written or used $4Var(Y)$ (may come at the end of the calculation) or written or used $E(X)$ a	llow awrt	
	6.33 NB condone $-2^2 \text{Var}(Y)$ if used $4 \text{Var}(Y)$		
	M1 Correct method, at least 3 products correct, to find $E(Y^2)$ or $E(X^2)$ condone incorrect lab M1d dep on the 2^{nd} M mark being awarded. For correct use of $E(Y^2) - [E(Y)]^2$ or $E(X^2) - [E(Y)]^2$		
	the ALT In addition to the 2 nd M1 the 1 st M1 must be awarded. Condone incorrect labelling A1 awrt 5.42		

Qu	Scheme	Marks
6(a)	0.6	B1 Cy
		(1)
(b)	$[P(A \cap B) =]0.1 \times 0.3 \text{ or } 0.3 = \frac{P(A \cap B)}{0.1}$	M1
	$0.25 = 0.1 + P(B) - 0.03$ or $0.25 = 0.1 + P(B) - P(A \cap B)$	M1
	$0.25 = 0.1 + P(B) - 0.03 \text{ or } 0.3 = \frac{P(B) - 0.15}{0.1}$:: $P(B) = 0.18*$	A1*
		(3)
(c)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 M1 B1ft B1ft A1
		(5)
	Notes	(5) Total 9
(a)	Notes B1cao	Total 9
(a) (b)	B1cao M1 for use of $P(B A) = \frac{P(A \cap B)}{P(A)}$ with 0.1 and 0.3 substituted. Allow for 0.1×0.3 se M1 $0.25 = 0.1 + P(B) - p$ where $0 or p = P(A \cap B) oe eg 0.25 - 0.1 + p = P(A \cap B) any letter for P(B)$	en (B) (allow
	B1cao M1 for use of $P(B A) = \frac{P(A \cap B)}{P(A)}$ with 0.1 and 0.3 substituted. Allow for 0.1×0.3 se M1 $0.25 = 0.1 + P(B) - p$ where $0 or p = P(A \cap B) oe eg 0.25 - 0.1 + p = P(A \cap B) and 0.3 = 0.18 depends on both previous M marks for a fully correct equation in terms of$	en (B) (allow
	B1cao M1 for use of $P(B A) = \frac{P(A \cap B)}{P(A)}$ with 0.1 and 0.3 substituted. Allow for 0.1×0.3 see M1 $0.25 = 0.1 + P(B) - p$ where $0 or p = P(A \cap B) oe eg 0.25 - 0.1 + p = P(A \cap B) any letter for P(B) any letter for P(B) and P(B) = 0.18 depends on both previous M marks for a fully correct equation in terms of (allow any letter for P(B)) followed by P(B) = 0.18$	en (B) (allow
	B1cao M1 for use of $P(B A) = \frac{P(A \cap B)}{P(A)}$ with 0.1 and 0.3 substituted. Allow for 0.1×0.3 se M1 $0.25 = 0.1 + P(B) - p$ where $0 or p = P(A \cap B) oe eg 0.25 - 0.1 + p = P(A \cap B) any letter for P(B) any letter for P(B) and P(B) = 0.18 depends on both previous M marks for a fully correct equation in terms of (allow any letter for P(B)) followed by P(B) = 0.18 NB 0.03 used/stated with no working could get M0M1A0$	en (B) (allow
	B1cao M1 for use of $P(B A) = \frac{P(A \cap B)}{P(A)}$ with 0.1 and 0.3 substituted. Allow for 0.1×0.3 see M1 $0.25 = 0.1 + P(B) - p$ where $0 or p = P(A \cap B) oe eg 0.25 - 0.1 + p = P(A \cap B) any letter for P(B) any letter for P(B) any letter for P(B) followed by P(B) = 0.18 depends on both previous M marks for a fully correct equation in terms of (allow any letter for P(B)) followed by P(B) = 0.18 NB 0.03 used/stated with no working could get M0M1A0 Using P(A \cap B) = 0.1 \times P(B) then they get M0M0A0$	en (B) (allow
	B1cao M1 for use of $P(B A) = \frac{P(A \cap B)}{P(A)}$ with 0.1 and 0.3 substituted. Allow for 0.1×0.3 see M1 $0.25 = 0.1 + P(B) - p$ where $0 or p = P(A \cap B) oe eg 0.25 - 0.1 + p = P(A \cap B) and 0.3 \times P(B) = 0.18 depends on both previous M marks for a fully correct equation in terms of (allow any letter for P(B)) followed by P(B) = 0.18 NB 0.03 used/stated with no working could get M0M1A0 Using P(A \cap B) = 0.1 \times P(B) then they get M0M0A0 Verification could get M1M1A0$	en (B) (allow
	B1cao M1 for use of $P(B A) = \frac{P(A \cap B)}{P(A)}$ with 0.1 and 0.3 substituted. Allow for 0.1×0.3 see M1 $0.25 = 0.1 + P(B) - p$ where $0 or p = P(A \cap B) oe eg 0.25 - 0.1 + p = P(A) any letter for P(B) of P(B) any letter for P(B) followed by P(B) = 0.18 NB 0.03 used/stated with no working could get M0M1A0 Using P(A \cap B) = 0.1 \times P(B) then they get M0M0A0 Verification could get M1M1A0 M1 for 0.1 \times 0.3$	en (B) (allow of P(B)
	B1cao M1 for use of $P(B A) = \frac{P(A \cap B)}{P(A)}$ with 0.1 and 0.3 substituted. Allow for 0.1×0.3 see M1 $0.25 = 0.1 + P(B) - p$ where $0 or p = P(A \cap B) oe eg 0.25 - 0.1 + p = P(A \cap B) and p = P(A \cap B) of equation in terms of p = P(B) and p = P(B) followed by p = P(B) for p = P(B)$	en $B) (allow)$ of $P(B)$
	B1cao M1 for use of $P(B A) = \frac{P(A \cap B)}{P(A)}$ with 0.1 and 0.3 substituted. Allow for 0.1×0.3 see M1 $0.25 = 0.1 + P(B) - p$ where $0 or p = P(A \cap B) oe eg 0.25 - 0.1 + p = P(A) any letter for P(B) of P(B) any letter for P(B) followed by P(B) = 0.18 NB 0.03 used/stated with no working could get M0M1A0 Using P(A \cap B) = 0.1 \times P(B) then they get M0M0A0 Verification could get M1M1A0 M1 for 0.1 \times 0.3$	en B) (allow of $P(B)$
(b)	B1cao M1 for use of $P(B A) = \frac{P(A \cap B)}{P(A)}$ with 0.1 and 0.3 substituted. Allow for 0.1×0.3 see M1 0.25 = 0.1 + $P(B) - p$ where 0 < p <1 or $p = P(A \cap B)$ oe eg 0.25 - 0.1 + $p = P(A \cap B)$ on the previous M marks for a fully correct equation in terms of (allow any letter for $P(B)$) followed by $P(B) = 0.18$ NB 0.03 used/stated with no working could get M0M1A0 Using $P(A \cap B) = 0.1 \times P(B)$ then they get M0M0A0 Verification could get M1M1A0 M1 for 0.1×0.3 M1 for $0.25 - 0.18 - 0.1 = -0.03$ or $0.3 = \frac{0.18 - 0.15}{0.1}$ or $0.25 = 0.1 + 0.18 - P(A \cap B)$ M1 for 3 circles as per either diagram. If using Diagram 2 we must see exactly 2 zeros in the intersections (as shaded). (Do Not accept blank or dash instead of 0) Condone missing reconstructions (as shaded). (Do Not accept blank or dash instead of 0) Condone missing reconstructions (as shaded). (Do Not accept blank or dash instead of 0) Condone missing reconstructions (as shaded). (Do Not accept blank or dash instead of 0) Condone missing reconstructions (as shaded). (Do Not accept blank or dash instead of 0) Condone missing reconstructions (as shaded). (Do Not accept blank or dash instead of 0) Condone missing reconstructions (as shaded). (Do Not accept blank or dash instead of 0) Condone missing reconstructions (as shaded). (Do Not accept blank or dash instead of 0) Condone missing reconstructions (as shaded). (Do Not accept blank or dash instead of 0) Condone missing reconstructions (as shaded). (Do Not accept blank or dash instead of 0) Condone missing reconstructions (as shaded). (Do Not accept blank or dash instead of 0) Condone missing reconstructions (as shaded). (Do Not accept blank or dash instead of 0) Condone missing reconstructions (as shaded). (Do Not accept blank or dash instead of 0) Condone missing reconstructions (as shaded). (Do Not accept blank or dash instead of 0) Condone missing reconstructions (as shaded).	en B) (allow of $P(B)$ one of the stangle.
(b)	B1cao M1 for use of $P(B A) = \frac{P(A \cap B)}{P(A)}$ with 0.1 and 0.3 substituted. Allow for 0.1×0.3 set M1 0.25 = 0.1+ $P(B)$ – p where $0 or p = P(A \cap B) oe eg 0.25 – 0.1+ p = P(A \cap B) any letter for P(B). A1* P(B) = 0.18 depends on both previous M marks for a fully correct equation in terms of (allow any letter for P(B)) followed by P(B) = 0.18 NB 0.03 used/stated with no working could get M0M1A0 Using P(A \cap B) = 0.1 \times P(B) then they get M0M0A0 Verification could get M1M1A0 M1 for 0.1 \times 0.3 M1 for 0.25 - 0.18 - 0.1 = -0.03 or 0.3 = \frac{0.18 - 0.15}{0.1} or 0.25 = 0.1 + 0.18 - P(A \cap B) M1 for 3 circles as per either diagram. If using Diagram 2 we must see exactly 2 zeros in a intersections (as shaded). (Do Not accept blank or dash instead of 0) Condone missing recignore labels M1 for 0.09 and 0.41 marked correctly in diagram – condone incorrect/no label but must be left or right hand circles in 1^{st} diagram or must have zeros (condone blank or dash) in the 2^{st} diagram$	en B) (allow of $P(B)$ one of the stangle.
(b)	B1cao M1 for use of $P(B A) = \frac{P(A \cap B)}{P(A)}$ with 0.1 and 0.3 substituted. Allow for 0.1×0.3 set M1 0.25 = 0.1+ $P(B) - p$ where $0 or p = P(A \cap B) oe eg 0.25 - 0.1+ p = P(A \cap B) of eq 0.25 - 0.1+ p = P(A \cap B) of eq 0.25 - 0.1+ p = P(A \cap B) of eq 0.25 - 0.1+ p = P(A \cap B) or p = P(A \cap B) of eq 0.25 - 0.1+ p = P(A \cap B) or eq 0.25 - 0.1+ p = P(A \cap B) or p = P(A \cap B) or eq 0.25 - 0.1+ p = P(A \cap B) or eq 0.25 - 0.1+ p = P(A \cap B) or eq 0.25 - 0.18 NB 0.03 used/stated with no working could get M0M1A0 Using P(A \cap B) = 0.1 \times P(B) then they get M0M0A0 Verification could get M1M1A0 M1 for p = P(A \cap B) or p = P(A \cap B)$	en (B) (allow of P(B)) one of the tangle. oe in the 2 other
(b)	B1cao M1 for use of $P(B A) = \frac{P(A \cap B)}{P(A)}$ with 0.1 and 0.3 substituted. Allow for 0.1×0.3 set M1 0.25 = 0.1+ $P(B) - p$ where $0 or p = P(A \cap B) oe eg 0.25 - 0.1+ p = P(A \cap B) of eq 0.25 - 0.1+ p = P(A \cap B) of eq 0.25 - 0.1+ p = P(A \cap B) of eq 0.25 - 0.1+ p = P(A \cap B) of eq 0.25 - 0.1+ p = P(A \cap B) of eq 0.25 - 0.1+ p = P(A \cap B) of eq 0.25 - 0.1+ p = P(A \cap B) of eq 0.25 - 0.1+ p = P(A \cap B) of eq 0.25 - 0.1+ p = P(A \cap B) of eq 0.25 - 0.1+ p = P(A \cap B) of eq 0.25 - 0.18 NB 0.03 used/stated with no working could get M0M1A0 Using P(A \cap B) = 0.1 \times P(B) then they get M0M0A0 Verification could get M1M1A0 M1 for 0.1×0.3 M1 for 0.25 - 0.18 - 0.1 = -0.03 or 0.3 = \frac{0.18 - 0.15}{0.1} or 0.25 = 0.1+0.18 - P(A \cap B) or intersections (as shaded). (Do Not accept blank or dash instead of 0) Condone missing recipions (as shaded). (Do Not accept blank or dash instead of 0) Condone missing recipions of the circle in 1st diagram or must have zeros (condone blank or dash) in the 2 regions of the circle if in 2nd diagram B1ft their "0.03" in correct place on diagram. Correct label required B1ft for 0.34 or ft 0.75 - "their 0.41" where their 0.41 \neq 0.5 No other ft accepted. Do not$	en (B) (allow of P(B)) one of the tangle. oe in the 2 other
(b)	B1cao M1 for use of $P(B A) = \frac{P(A \cap B)}{P(A)}$ with 0.1 and 0.3 substituted. Allow for 0.1×0.3 set M1 0.25 = 0.1 + $P(B) - p$ where 0 < p < 1 or $p = P(A \cap B)$ oe eg 0.25 - 0.1 + $p = P(A)$ and $p = P(A)$ of $p = P(A)$	en (B) (allow of P(B)) one of the tangle. oe in the 2 other
(b)	B1cao M1 for use of $P(B A) = \frac{P(A \cap B)}{P(A)}$ with 0.1 and 0.3 substituted. Allow for 0.1×0.3 set M1 0.25 = 0.1+ $P(B) - p$ where $0 or p = P(A \cap B) oe eg 0.25 - 0.1+ p = P(A \cap B) of eq 0.25 - 0.1+ p = P(A \cap B) of eq 0.25 - 0.1+ p = P(A \cap B) of eq 0.25 - 0.1+ p = P(A \cap B) of eq 0.25 - 0.1+ p = P(A \cap B) of eq 0.25 - 0.1+ p = P(A \cap B) of eq 0.25 - 0.1+ p = P(A \cap B) of eq 0.25 - 0.1+ p = P(A \cap B) of eq 0.25 - 0.1+ p = P(A \cap B) of eq 0.25 - 0.1+ p = P(A \cap B) of eq 0.25 - 0.18 NB 0.03 used/stated with no working could get M0M1A0 Using P(A \cap B) = 0.1 \times P(B) then they get M0M0A0 Verification could get M1M1A0 M1 for 0.1×0.3 M1 for 0.25 - 0.18 - 0.1 = -0.03 or 0.3 = \frac{0.18 - 0.15}{0.1} or 0.25 = 0.1+0.18 - P(A \cap B) or intersections (as shaded). (Do Not accept blank or dash instead of 0) Condone missing recipions (as shaded). (Do Not accept blank or dash instead of 0) Condone missing recipions of the circle in 1st diagram or must have zeros (condone blank or dash) in the 2 regions of the circle if in 2nd diagram B1ft their "0.03" in correct place on diagram. Correct label required B1ft for 0.34 or ft 0.75 - "their 0.41" where their 0.41 \neq 0.5 No other ft accepted. Do not$	en (B) (allow of P(B)) one of the stangle. one in the 2 other allow

		hetos://b	
Qu	Scheme	Marks	
7(a)(i)	$P(J > 510) = P(Z > \frac{510 - 500}{25}) \text{ or } P(Z > 0.4)$	M1	
	= 1 − 0.6554 ⇒ 0.3446 *	A1*	
		(2)	
(ii)	$\frac{d-500}{25} = -1.4 \text{ (calc } -1.3997)$	M1B1	
	d = 465 (calc 465.007)	dA1	
		(3)	
(b)	$(1-0.3446)^5$	M1	
	= 0.1209 awrt 0.121	A1	
	0.1207 awit 0.121	(2)	
(c)	$\frac{r - 520}{k} = -1.0364$	M1A1	
	$\frac{r - 520}{k} = -1.0364$ $\frac{3r - 800 - 520}{k} = 2.5758$	M1A1	
	$-240 = (3 \times -"1.0364k") - "2.5758"k \text{ or } \frac{r - 520}{"-1.0364"} = \frac{3r - 1320}{"2.5758"} \text{ oe}$	ddM1	
	k = 42.216 awrt 42	A1	
	r = 476.246 awrt 476	dA1	
		(7)	
() (*)	Notes 1.11: 500 125 All 6 0.4	Total 14	
(a)(i)	M1 for standardising using 500 and 25. Allow for 0.4	or bottor	
(ii)	A1* M1 must be awarded. For $1 - 0.6554 = 0.3446$ or using calc $0.34457 = 0.3446$ or better M1 correct standardisation using 500 and 25 equated to a z value where $1 < z < 2$		
	B1 correct expression with compatible signs eg $\frac{500-d}{25}$ = 1.4 (calc 1.3997) or allow signs with $500-("535"-500)$ SC $\frac{510-d}{25}$ = 1.4 (calc 1.3997) can get M0B1A0	incompatible	
	dA1 dependent on M1 awarded for 465 or 465.007		
(b)	M1 for $(p)^5$ where 0		
	A1 awrt 0.121		
(c)	M1 $\frac{r-520}{k} = z$ value where $ z > 1$		
	$1^{\text{st}} \text{ A1 } \frac{r - 520}{k} = \text{awrt } -1.0364 \text{ (calc } 1.036433) \text{ (signs must be compatible)}$		
	$2^{\text{nd}} \text{ M1 } \frac{3r - 800 - 520}{k} = z \text{ value where } z > 2$		
	$2^{\text{nd}} \text{ A1 } \frac{3r - 800 - 520}{k} = \text{awrt } 2.5758 \text{ (calc } 2.5758293) \text{ (signs must be compatible)}$		
	3^{rd} M1 (dep on both Ms) for forming a correct equation in k or r only using their z values . ISW once correct equation seen eg $-5.685k = -240$ or $\frac{3(-1.0364k + 520) - 800 - 520}{k} = 2.5758$ Implied by r		
	correct equation seen eg $-5.685k = -240$ or ${k}$ and k correct	implied by r	
	3 rd A1 for awrt 42		
	4th A1 for awrt 476 Must come from equations with compatible signs		
	NB awrt 476 and awrt 42 does not mean full marks. They could get M1A0M1A0 M1A	A1A1 if they do	

