

Mark Scheme (Results)

Summer 2023

Pearson Edexcel International Advanced Level In Pure Mathematics P3 (WMA13) Paper 01

Edexcel and BTEC Qualifications

https://britishstudentroom.com/ Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2023 Question Paper Log Number 72870 Publications Code WMA13_01_2306_MS All the material in this publication is copyright © Pearson Education Ltd 2023

General Marking Guidance

- https://britististudentroom.com • All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should • be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

General Instructions for Marking

https://britististudentroom.com

The total number of marks for the paper is 75.

Edexcel Mathematics mark schemes use the following types of marks:

`M' marks

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation, e.g. resolving in a particular direction; taking moments about a point; applying a suvat equation; applying the conservation of momentum principle; etc.

The following criteria are usually applied to the equation.

To earn the M mark, the equation

(i) should have the correct number of terms

(ii) each term needs to be dimensionally correct

For example, in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel 'g' s.

For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

'M' marks are sometimes dependent (DM) on previous M marks having been earned, e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity – this M mark is often dependent on the two previous M marks having been earned.

`A' marks

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. e.g. M0 A1 is impossible.

'B' marks

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph).

A and B marks may be f.t. – follow through – marks.

General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod means benefit of doubt
- ft means follow through
 - the symbol $\sqrt{}$ will be used for correct ft
- cao means correct answer only
- cso means correct solution only, i.e. there must be no errors in this part of the question to obtain this mark
- isw means ignore subsequent working

- awrt means answers which round to
- SC means special case
- oe means or equivalent (and appropriate)
- dep means dependent
- indep means independent
- dp means decimal places
- sf means significant figures
- * means the answer is printed on the question paper
- means the second mark is dependent on gaining the first mark

All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

https://britishstudentcoom.com

For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

Ignore wrong working or incorrect statements following a correct answer.

General Principles for Pure Mathematics Marking

https://britishstudentcoom.com (NB specific mark schemes may sometimes override these general principles)

Method mark for solving 3 term guadratic:

- Factorisation
 - $(x^2 + bx + c) = (x + p)(x + q)$, where |pq| = |c|, leading to x = ...

 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

- Formula
 - Attempt to use the correct formula (with values for *a*, *b*and *c*).
- Completing the square

• Solving $x^2 + bx + c = 0$: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to x = ...

Method marks for differentiation and integration:

- Differentiation
 - Power of at least one term decreased by 1. ($x^n \rightarrow x^{n-1}$)
- Integration
 - Power of at least one term increased by 1. ($x^n \rightarrow x^{n+1}$)

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be guoted first. Normal marking procedure is as follows:

- Method mark for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.
- Where the formula is not guoted, the method mark can be gained by implication from correct working with values but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these may not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does not cover this, please contact your team leader for advice.

		hitps:/
Question Number	Scheme	Marks
1. (a)	g(3) = -265, g(4) = 3104	M1 7400
	States change of sign, continuous and hence root in $[3, 4]$	A1 R
		(2)
(b)	$x_2 = \sqrt[6]{1000 - 2 \times 3} = 3.1591$	M1 A1
	$(\alpha =)3.1589$	A1
		(3) (5 marks)
Notes		
M1 Atto Not A1 Bot mir	empts the value of g at 3 and 4 with one correct (accept any value for the narrower ranges are possible but must contain the root and lies in [3,4 h values correct with reason (Sign change (stated or indicated) and cont timal conclusion (root)	e other as an attempt).]. inuous function) and
(b) M1 Atte A1 awn A1 $(\alpha$	empts to substitute $x_1 = 3$ into the formula. Implied by sight of expression t 3.1591 =)3.1589 cao - must be to 4 d.p. Do not be concerned about the labelling	on, awrt 3.159 ag of the root (x or α

			hittps:/
Quest Num	tion ber	Scheme	Marks
2 (a)	(i)	$\log_6 T = 4 - 2\log_6 x$	B1 B1
(ii)	E.g. $\log_6 T = 4 - 2\log_6 216 \Rightarrow \log_6 T = 4 - 2 \times 3 = -2 \Rightarrow T = \dots$	M1
		$\Rightarrow T = 6^{-2} = \frac{1}{36}$	A1
		$4-2\log x$	(3)
(b)	$\log_6 T = 4 - 2\log_6 x \Longrightarrow T = 6$	M1
		$\Rightarrow T = 6^4 \times 6^{\log_6 x^{-2}}$	dM1
		$\Rightarrow T = \frac{1296}{r^2}$	A1
		~	(3) (6 marks)
Notes	4h a	notion of a whole. Do not he concerned about nort labelling	
(a)(i)	the q	uestion as a whole. Do not be concerned about part labelling.	
B1	Corre	ect linear equation $\log_6 T = 4 - 2\log_6 x$ (oe) The 4 may be written as $\log_6 1296$	5
M1	A1 Substitutes $x = 216$ into an equation linking <i>T</i> and <i>x</i> arising from a linear equation in the logarithms and proceeds to make <i>T</i> the subject. They may have answered (b) first. Do not be concerned about the process for this mark. May be implied by awrt 0.028 following a correct equation.		
A1	Corre	ect value $T = \frac{1}{36}$. Do not accept 6^{-2} .	
(b) M1	Makes a first step towards achieving an answer. Use of a correct log rule or law applied at some stage in their attempt to eliminate logs from the equation. As a rule of thumb this can be awarded for e.g.		blied at some
	• a	pplication of a power rule $-"2"\log_6 x = -\log_6 x^{"2"}$ or $"4" = \log_6 6^{"4"}$ or $4 \to 6^4$	(note that e.g.
	1	$og_6 T = -2 log_6 x + 4 \rightarrow x^{-2} + 6^4$ implies this mark)	
	• a	n attempt to make T the subject. E.g. $\log_6 T = "4" - "2" \log_6 x \Longrightarrow T = 6^{"4" - "2" \log_6 x}$	
dM1	Full and complete method in proceeding from an equation of form $\log_6 T = a + b \log_6 x \ (a, b \neq 0)$		$\mathbf{g}_6 x \ \left(a, b \neq 0\right)$
	to an coeff	equation of form $T = k \times x^{\pm n}$ or equivalent. All log work must be correct but ficients.	allow slips on
A1	Achi	eves $T = \frac{1296}{x^2}$ or equivalent such as $Tx^2 = 1296$ and isw after a correct answer	. Allow 6^4 for
	1296	i.	
Note:	Allow	y the M marks if a different letter than T is used, e.g. y. But must be correct in te	erms of T and x
for the A mark.			

Question
NumberSchemeMarks3.00
$$\frac{d}{dx} \ln \left(\sin^2 3x\right) = \frac{1}{\sin^2 3x} \times 2\sin^2 3x \times 2\sin^2 3x \times 3\cos^3 x = 6\cot^3 3x$$
M1 A1(a) $\frac{d}{dx} \left(3x^2 - 4\right)^6 = 36x \left(3x^2 - 4\right)^5$ (a)(b) $\int x \left(3x^2 - 4\right)^5 dx = \left[\frac{1}{36} \left(3x^2 - 4\right)^8\right]_0^{1/2} = \frac{1}{36} \left(2\right)^6 - \frac{1}{36} \left(-4\right)^6 = -112$ M1 A1 cso(b) $\int x^2 x \left(3x^2 - 4\right)^5 dx = \left[\frac{1}{36} \left(3x^2 - 4\right)^8\right]_0^{1/2} = \frac{1}{36} \left(2\right)^6 - \frac{1}{36} \left(-4\right)^6 = -112$ M1 A1 csoNotes(a) (7 marks) (b)M1Attempts to differentiate a ln function. Award for $\frac{d}{dx} \ln \left(\sin^2 3x\right) = \frac{1}{\sin^2 3x} \times ...$ where ... could be 1An alternative could be $\frac{d}{dx} \ln \left(\sin^2 3x\right) = \frac{d}{dx} 2\ln \left(\sin 3x\right) = (2x) \frac{1}{\sin 3x} \times ...$ or $\frac{d}{dx} \ln \left(\frac{1 - \cos 6x}{\sin 3x}\right) = \frac{2}{1 - \cos 6x} \times ...$ A1 $6\cos^3 3x$ one such as $\frac{6\cos^3 3x}{\sin 3x}$ or $\frac{6}{1 \tan 3x}$ or $6\tan^3 3x$ is numerator and denominator.(ii) (a)M1Achieves $\frac{d}{dx} \left(3x^2 - 4\right)^6 - Ax \left(3x^2 - 4\right)^5$ where A is a constant which may be 1.A1 $\frac{d}{dx} \left(3x^2 - 4\right)^6 - Ax \left(3x^2 - 4\right)^6$ or $\frac{1}{A} \left(3x^2 - 4\right)^6$ following through on their (a) provided it is of the form $\frac{d}{dx} (3x^2 - 4)^6 - Ax \left(3x^2 - 4\right)^6$ or $\frac{1}{A} \left(3x^2 - 4\right)^6$ following through on their (a) provided it is of the form $\frac{d}{dx} (3x^2 - 4)^6 - Ax \left(3x^2 - 4\right)^6$ Triangle such as a sumetabult to a substitution and can be scored form a travent if (i)(i) we sincorrect. Need not be simplified and is with simplified incorrectly. Condone motation errors such as sumetabult tables with the sepression of the form $0 \left(3x^2 - 4\right)^6 - Ax \left(3x^2 - 4\right)^6$ Triangle such as a missing power if the intention is clear. Sight of the subtraction is sufficient. Implied by the correct answer for the integration.

A1cso (R =) -112 and isw if they make the answer positive after a correct answer seen. Note: Answer only with no working at all shown scores no marks. Correct integral must be seen. Note: Attempts at integration by parts are unlikely to succeed, but if done correctly and achieve the correct form of the answer may score the relevant marks.

1.com

Note (ii) may be completed by expansion.

(a)

M1 Requires expansion to form $ax^{12} + bx^{10} + cx^8 + dx^6 + ex^4 + fx^2 + g$ followed by an attempt to integrate each term (power decreased by 1)

A1 Requires correct derivative. $8748x^{11} - 58320x^9 + 155520x^7 - 207360x^5 + 138240x^3 - 36864x$

(b)

B1ft Correct answer from a restart, which may be via expansion

$$\frac{81x^{12}}{4} - 162x^{10} + 540x^8 - 960x^6 + 960x^4 - 512x^2$$

M1 Substitutes both limits and subtracts into an expression of the form $ax^{12} + bx^{10} + cx^8 + dx^6 + ex^4 + fx^2$

A1cso As main scheme.

			https://
Quest Numl	tion ber	Scheme	Marks
4. (a	ı)	$f \ge -5$	B1 (1)
		y = f(x) y $y = f^{-1}(x)$ Curve starting on negative x-axis and passing through positive y-axis, in quadrants 1 and 2 only.	M1
(b))	Shape and position correct.	A1
	`	$2r^2 - 5 - r$ or $2r^2 - 5 - \sqrt{x+5}$ or $r - \sqrt{x+5}$ or $2(2r^2 - 5)^2 - 5 - r$	(2)
(C))	$2x - 3 - x \text{ or } 2x - 3 - \sqrt{\frac{2}{2}} \text{ or } x - \sqrt{\frac{2}{2}} \text{ or } 2(2x - 3) - 3 - x$	ы
		Full attempt to solve $2x^2 - x - 5 = 0 \Rightarrow x =$ exact $1 + \sqrt{41}$	MI
		$x = \frac{-4\sqrt{4}}{4}$	A1 (3) 6 marks
Notes			U mur KS
(a)	Mark	the question as a whole - if (c) answered as (b) allow the marks. \Box	
B1	Corr	ect range. Accept $y \ge -5$, $f(x) \ge -5$, $f \in [-5, \infty)$ or correct formal set notation	n but not just
(b)	$x \ge -$	-5.	
(b) M1	For a	x curve starting on the negative x- axis and passing through the positive y - axis,	in quadrants 1
. 1	and 2	2 only.	10 11
AI	Correct shape (curvature) and position. Must be increasing (not bending back on itself) with decreasing gradient, though be tolerant with pen slips at the end. Do not penalise incorrect intercepts.		
(c) B1	Sets	up a correct equation for the solution, as shown in scheme or equivalents. Shoul	d be an
DI	equa furth	tion but allow "=0" implied if there is an attempt to solve. Just $2x^2 - x - 5$ is BC er working.) with no
M1	Full	attempt to solve a correct equation leading to exact answers. Attempts via $f(x) =$	$f^{-1}(x)$ (oe)
	will	lead a quartic $(8x^4 - 40x^2 - x + 45 = 0 \text{ if correct})$ but will likely not lead to exact	t answers.
	Note Deci	exact answers following a quadratic is fine, but method should be shown for a mal answer only is M0.	quartic.
A1	$x = -\frac{1}{2}$	$\frac{1+\sqrt{41}}{4}$ ONLY.	

Some examples of curves for question 4(b).

diagram 1

M1A0: Curve is clearly going downward on the right-hand

side.

		https://b
Question Number	Scheme	Marks
5 (i)	States $x = 2$	B1 00
	$\sqrt{3} \sec x + 2 = 0 \Longrightarrow \cos x = -\frac{\sqrt{3}}{2} \Longrightarrow x = \dots$	M1
	$x = \frac{5\pi}{6}$	A1 (3)
(ii)	Attempts to use $\cos 2\theta = 1 - 2\sin^2 \theta$	M1 (3)
	$6\sin^2\theta + 10\sin\theta - 3 = 0$	A1
	$\sin \theta = \frac{-5 \pm \sqrt{43}}{6} (= -1.926, 0.2595) \Rightarrow \theta = \arcsin()$	M1
	$\theta = 15.0^{\circ}, 165^{\circ}$	A1
		(4)
Notes		(7 marks)
(i)		
B1 St	ates $x = 2$. May be seen anywhere in (i) and don't be concerned where it con	mes from.
M1 Fo	r a correct process to solve $\sqrt{3} \sec x + 2 = 0$ E.g. $\sec x = \frac{1}{\cos x} \Rightarrow \cos x = -\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2} \Rightarrow x = \dots$ Allow
sli	ps in rearranging but must attempt to solve $\cos x = k$, $ k < 1$ or $\sec x = k$, $ k $	>1 Degree value (
14	0°) following a correct equation implies the M mark. Note some may use s	$ec^2 x = 1 + tan^2 x$ and
fo	rm a quadratic in tan x. These will need a correct identity, correct method to	solve a quadratic
(W	hich may be by calculator) and attempt to solve $\tan x = k, k \neq 0$	
A1 x	$=\frac{5\pi}{6}$ and no other extra solutions in the range. Accept awrt 2.62 (and isw).	
Note that	$\sqrt{3} \sec x + 2 = 0 \rightarrow x = \frac{5\pi}{6}$ can score M1A1 as no incorrect work is seen, method	l implied.
Question	required working to be shown $x = \frac{5\pi}{2}$ without seeing at least $\sqrt{3}$ sec $x + 2 = 0$	0 extracted first is
M	$6 \qquad \qquad$	
(ii)		
	transition to use $20 = 11 + 2\sin^2 0$ to form a quadratic equation in sin 0. If	using alternative
	tempts to use $\cos 2\theta = \pm 1 \pm 2\sin \theta$ to form a quadratic equation in $\sin \theta$. If	
10	Instol the identity, must also use $\cos \theta = 1 - \sin \theta$ before gaming this mat	K.
Al Co	prrect 3 term quadratic equation $6\sin\theta + 10\sin\theta - 3 = 0$ or a multiple of this	. Alternatively may
be	scored for $6\sin^2\theta + 10\sin\theta = 3$ if followed by completing the square on LH	S to solve.
M1 Fu	ll attempt to find one value for θ from a quadratic in sin θ . Must involved	
•	correct method to solve the quadratic in $\sin\theta$ (usual rules, may use calculat value for $\sin\theta$	or) to produce a
•	use of arcsin() to reach the value for θ (you may need to check the values	if arcsin() is not
	shown). Radian answers can imply the mark (awrt 0.263, 2.88 if correct).	
Μ	ay be scored from an incorrect identity as long as a quadratic is achieved. A	ccept arcsin
ex	pression for the M	
A1 θ	=awrt 15.0°, 165° and no other solutions in the range. Accept just 15° for 15	.0° (but not awrt
15	° if it does not round to 15.0°)	
Condone a	different variable used than θ throughout.	

		https://	
Questio Numbe	n Scheme	Marks	
6. (a)	(2,-10)	B1 B1	
		(2)	
(b)	$ff(0) = f(-4) = \dots$	M1	
	= 8	Alcso	
		(2)	
(c)	Attempts to solve $-3(x-2)-10 = 5x+10 \Rightarrow x =$	M1	
	$x > -\frac{7}{4}$ only	A1	
	4	(2)	
		(-)	
(d)	$x(\text{ or } x) = \frac{1}{3}$	BI	
	Attempts $3(x -2)-10=0 \Longrightarrow x =k, k > 0$		
	or $3(-x-2)-10 = 0 \Longrightarrow x = -k$	M1	
	or $3(x-2)-10=0 \Rightarrow x=k \Rightarrow x=-k$		
	$x = \left(\frac{16}{3} \text{ and}\right) - \frac{16}{3}$ with no other values	A1	
		(3)	
		(9 marks)	
Notes			
(a) B1 F	For one correct coordinate		
B1 F	For $(2, -10)$. Allow $x =, y =$ Do not accept e.g. 6/3 unless 2 has been seen/iden	tified with	
ť	his.		
(b) M1 T			
Alcso f (c)	For a full attempt at f f (0). Can be scored for f (-4). Allow for use of their f(0) even if incorrect as long as the process is clear, e.g. $f(0) =$ stated or calculated first then used. May be scored by first attempting $ff(x)$ before substituting. This mark is for showing the correct process of composites, so may be scored if there are slips or errors with modulus if the intent is clear. (3) ff(0) = 8 only. A0 if other values given.		
M1 .	tempts to solve $-3(x-2)-10 = 5x+10 \Rightarrow x =$ Allow with equality or any inequality for the		
N A	mark. ternatively, rearranges to $ x-2 = ax+b$, squares both sides and solves the quadratic.		
A1 2	$x > -\frac{7}{4}$ (oe) only. If another inequality or value is given and not rejected withhold th	is mark.	
(d) Work fo used in (r (d) must be seen or referred to in (d). Do not accept for work attempted in earlier pa	arts but not	
B1 1	For $x = \frac{16}{3}$. Allow when seen even from incorrect working as it could be verified. May be seen on		
S	ketch as long as referred to in (d). Allow also for $ x = \frac{16}{3}$		

M1 Correct method to find the root on the negative x-axis. E.g. attempts to solve 3(|x|-2)-10 = 0 to achieve a value for |x|, or 3(-x-2)-10 = 0 to achieve a value for x, or for reflecting in the y-axis, (making negative) their 16/3 from an attempt at 3(x-2)-10 = 0. May be part of longer winded attempts. Allow missing brackets for the M.
Note it is possible to arrive at an equation leading to x = ±16/3 from incorrect starting points, and such methods will score M0.
A1 For x = -16/3 with no other values (aside their x = 16/3). Must give the negative value, not just |x|=16/3. May be stated on a sketch as long as work seen in (d). Do not isw if they clearly reject this value later or if they try to form an inequality from the values, which is A0 as other values are included.

'com

Question		Oritic
Number	Scheme	Marks
7. (a)	States or implies that $A = 2500$	B1 Ma
	$10000 = 2500e^{k \times 8} \Longrightarrow 8k = \ln 4 \Longrightarrow k = \dots$	M1
	$\Rightarrow k = \frac{1}{8} \ln 4 \text{ or awrt } 0.1733$	A1
	dN	(3)
(b)	$\frac{dt}{dt} = 60000 \times -0.6e^{-0.003} = -1792$ So decrease is 1790	M1, A1
	-0.6t 0.1733t	(2)
(c)	$60000e^{-1} = 2500e^{-1702}$	M1
	$24 = e^{0.1733t + 0.6t} \Rightarrow 0.1733t + 0.6t = \ln 24 \Rightarrow t = \dots$	dM1
	T = 4.11	AI (3)
		8 marks
Notes		
(a)	k = 2500 F $k = 1.2500$ K $k = 2500$	
BI Stat	tes or implies that $A = 2500$. E.g award for $N = 2500e$	
M1 Atte	empts to use $N = Ae$ with $t = 8$, $N = 10000$ and their A to set up and solve an equ	ation in <i>k</i> .
	rrect ln work must be used to solve their equation.	
/	(M) (me mark (or all atomic (or tho) k (included by (M)) and (M) (in the mark (included by M) (in M	1 for the start
All	by this mark for attempts to find k first by solving simultaneously if they use $t = 1$	l for the start
of t	the study: $2500 = Ae^{k}$, $10000 = Ae^{8k} \Rightarrow e^{7k} = 4 \Rightarrow 7k = \ln 4 \Rightarrow k =$ but the index is the correct	l for the start and ln work
of t mus	by this mark for attempts to find k first by solving simultaneously if they use $t = 1$ he study: $2500 = Ae^k$, $10000 = Ae^{8k} \Rightarrow e^{7k} = 4 \Rightarrow 7k = \ln 4 \Rightarrow k =$ but the index s is be correct.	l for the start and ln work
All of t must $A1 k =$	by this mark for attempts to find k first by solving simultaneously if they use $t = 1$ he study: $2500 = Ae^{k}$, $10000 = Ae^{8k} \Rightarrow e^{7k} = 4 \Rightarrow 7k = \ln 4 \Rightarrow k =$ but the index st be correct. = awrt 0.1733. Accept the exact value $\frac{1}{8} \ln 4$ and isw after seen.	l for the start and ln work
All of t mu: All $k =$	the study: $2500 = Ae^k$, $10000 = Ae^{8k} \Rightarrow e^{7k} = 4 \Rightarrow 7k = \ln 4 \Rightarrow k =$ but the index is the correct. = awrt 0.1733. Accept the exact value $\frac{1}{8} \ln 4$ and isw after seen.	l for the start and ln work
(b) Alto of t must A1 k = dN	by this mark for attempts to find k first by solving simultaneously if they use $t = 1$ he study: $2500 = Ae^k$, $10000 = Ae^{8k} \Rightarrow e^{7k} = 4 \Rightarrow 7k = \ln 4 \Rightarrow k =$ but the index is st be correct. = awrt 0.1733. Accept the exact value $\frac{1}{8} \ln 4$ and isw after seen.	l for the start and ln work
(b) M1 $\frac{dN}{dt}$	by this mark for attempts to find k first by solving simultaneously if they use $t = 1$ he study: $2500 = Ae^{k}$, $10000 = Ae^{8k} \Rightarrow e^{7k} = 4 \Rightarrow 7k = \ln 4 \Rightarrow k =$ but the index is st be correct. = awrt 0.1733. Accept the exact value $\frac{1}{8} \ln 4$ and isw after seen.	l for the start and ln work as it is clear
(b) M1 $\frac{dN}{dt}$	by this mark for attempts to find k first by solving simultaneously if they use $t = 1$ he study: $2500 = Ae^{k}$, $10000 = Ae^{8k} \Rightarrow e^{7k} = 4 \Rightarrow 7k = \ln 4 \Rightarrow k =$ but the index is st be correct. = awrt 0.1733. Accept the exact value $\frac{1}{8} \ln 4$ and isw after seen. $t = Ce^{-0.6\times5} =$ where C is a constant. Condone $60000e^{-0.6t} \rightarrow 60000e^{-0.6t}$ as long y think they have found $\frac{dN}{dt}$. Must be correct index (not kt).	l for the start and ln work as it is clear
All of t must All $k =$ (b) Ml $\frac{dN}{dt}$ they All Aw	by this mark for attempts to find k first by solving simultaneously if they use $t = 1$ the study: $2500 = Ae^{k}$, $10000 = Ae^{8k} \Rightarrow e^{7k} = 4 \Rightarrow 7k = \ln 4 \Rightarrow k =$ but the index is st be correct. = awrt 0.1733. Accept the exact value $\frac{1}{8} \ln 4$ and isw after seen. $t = Ce^{-0.6\times5} =$ where C is a constant. Condone $60000e^{-0.6t} \rightarrow 60000e^{-0.6t}$ as long by think they have found $\frac{dN}{dt}$. Must be correct index (not kt). For 1790 from a correct derivative. Condone awrt -1790	l for the start and ln work as it is clear
All of t mu: A1 $k =$ (b) M1 $\frac{dN}{dt}$ they A1 Aw	by this mark for attempts to find k first by solving simultaneously if they use $t = 1$ he study: $2500 = Ae^{k}$, $10000 = Ae^{8k} \Rightarrow e^{7k} = 4 \Rightarrow 7k = \ln 4 \Rightarrow k =$ but the index is st be correct. = awrt 0.1733. Accept the exact value $\frac{1}{8}\ln 4$ and isw after seen. $t = Ce^{-0.6\times5} =$ where C is a constant. Condone $60000e^{-0.6t} \rightarrow 60000e^{-0.6t}$ as long by think they have found $\frac{dN}{dt}$. Must be correct index (not kt). For the transformation of tr	l for the start and ln work as it is clear
All of t mu: All $k =$ (b) Ml $\frac{dN}{dt}$ they All Aw (c)	by this mark for attempts to find k first by solving simultaneously if they use $T = 1$ he study: $2500 = Ae^{k}$, $10000 = Ae^{8k} \Rightarrow e^{7k} = 4 \Rightarrow 7k = \ln 4 \Rightarrow k =$ but the index is st be correct. awrt 0.1733. Accept the exact value $\frac{1}{8} \ln 4$ and isw after seen. $T = Ce^{-0.6\times5} =$ where C is a constant. Condone $60000e^{-0.6t} \rightarrow 60000e^{-0.6t}$ as long by think they have found $\frac{dN}{dt}$. Must be correct index (not kt). For 1790 from a correct derivative. Condone awrt -1790	I for the start and In work as it is clear
All of t mu: All $k =$ (b) Ml $\frac{dN}{dt}$ they All Aw (c) Ml Sets 600	by this mark for attempts to find k first by solving simulateously if they use $t = 1$ he study: $2500 = Ae^{k}$, $10000 = Ae^{8k} \Rightarrow e^{7k} = 4 \Rightarrow 7k = \ln 4 \Rightarrow k =$ but the index is st be correct. = awrt 0.1733. Accept the exact value $\frac{1}{8} \ln 4$ and isw after seen. $t = Ce^{-0.6\times5} =$ where C is a constant. Condone $60000e^{-0.6t} \rightarrow 60000e^{-0.6t}$ as long y think they have found $\frac{dN}{dt}$. Must be correct index (not kt). rt 1790 from a correct derivative. Condone awrt -1790 s $60000e^{-0.6t} =$ their 2500e ^{$(0.1733)^{*}t$} May use T or another variable instead. Allow a s	I for the start and ln work as it is clear lip on e.g. the or k in (a)
All of t mu Al $k =$ (b) Ml $\frac{dN}{dt}$ they Al Aw (c) Ml Sets 600 dM1 Pro	by this mark for attempts to find <i>k</i> first by solving simultaneously if they use $t = 1$ he study: $2500 = Ae^{k}$, $10000 = Ae^{8k} \Rightarrow e^{7k} = 4 \Rightarrow 7k = \ln 4 \Rightarrow k =$ but the index is st be correct. = awrt 0.1733. Accept the exact value $\frac{1}{8} \ln 4$ and isw after seen. $t = Ce^{-0.6\times5} =$ where <i>C</i> is a constant. Condone $60000e^{-0.6t} \rightarrow 60000e^{-0.6t}$ as long y think they have found $\frac{dN}{dt}$. Must be correct index (not <i>kt</i>). rt 1790 from a correct derivative. Condone awrt -1790 s $60000e^{-0.6t} =$ their 2500e ^{"0.1733"t} May use <i>T</i> or another variable instead. Allow a s b00 as 6000. Allow with <i>k</i> in place of their "0.1733" as long as they have a value for ceeds to rearrange to $e^{mt} = D$ (<i>D</i> > 0) and applies ln to find <i>t</i> . The ln work must b	 l for the start and ln work as it is clear lip on e.g. the or <i>k</i> in (a). e correct.
And of t mu: A1 $k =$ (b) M1 $\frac{dN}{dt}$ they A1 Aw (c) M1 Sets 600 dM1 Pro thou	by this mark for attempts to find k first by solving simultaneously if they use $t = 1$ he study: $2500 = Ae^{k}$, $10000 = Ae^{8k} \Rightarrow e^{7k} = 4 \Rightarrow 7k = \ln 4 \Rightarrow k =$ but the index is st be correct. awrt 0.1733. Accept the exact value $\frac{1}{8} \ln 4$ and isw after seen. $t = Ce^{-0.6\times5} =$ where C is a constant. Condone $60000e^{-0.6t} \rightarrow 60000e^{-0.6t}$ as long by think they have found $\frac{dN}{dt}$. Must be correct index (not kt). The tree tree tree tree tree tree tree tr	l for the start and ln work as it is clear lip on e.g. the or <i>k</i> in (a). e correct, . May be
All of t mu All $k =$ (b) Ml $\frac{dN}{dt}$ they All Aw (c) Ml Seta 600 dMl Pro thou imr	by this mark for attempts to find k first by solving simultaneously if they use $T = 1$ he study: $2500 = Ae^{k}$, $10000 = Ae^{8k} \Rightarrow e^{7k} = 4 \Rightarrow 7k = \ln 4 \Rightarrow k =$ but the index is st be correct. awrt 0.1733. Accept the exact value $\frac{1}{8} \ln 4$ and isw after seen. $T = Ce^{-0.6\times5} =$ where C is a constant. Condone $60000e^{-0.6t} \rightarrow 60000e^{-0.6t}$ as long by think they have found $\frac{dN}{dt}$. Must be correct index (not kt). The true form a correct derivative. Condone awrt -1790 s $60000e^{-0.6t} =$ their $2500e^{(0.1733)t}$ May use T or another variable instead. Allow a s 100 as 6000 . Allow with k in place of their "0.1733" as long as they have a value for the ceeds to rearrange to $e^{mt} = D$ ($D > 0$) and applies ln to find t. The ln work must b ugh there may be slips in the coefficients or index work reaching $e^{mt} = D$ ($D > 0$) blied by a correct answer for their $e^{mt} = D$	I for the start and ln work as it is clear lip on e.g. the or k in (a). e correct, . May be
All of t mu All k = (b) Ml $\frac{dN}{dt}$ they All Aw (c) Ml Sets 600 dMl Pro thou imp Alte	by this mark for attempts to find k first by solving simultaneously if they use $t = 1$ he study: $2500 = Ae^{k}$, $10000 = Ae^{8k} \Rightarrow e^{7k} = 4 \Rightarrow 7k = \ln 4 \Rightarrow k =$ but the index is st be correct. = awrt 0.1733. Accept the exact value $\frac{1}{8} \ln 4$ and isw after seen. $T = Ce^{-0.6\times5} =$ where C is a constant. Condone $60000e^{-0.6t} \rightarrow 60000e^{-0.6t}$ as long y think they have found $\frac{dN}{dt}$. Must be correct index (not kt). rt 1790 from a correct derivative. Condone awrt -1790 s $60000e^{-0.6t} =$ their $2500e^{(0.1733)t}$ May use T or another variable instead. Allow a s 000 as 6000 . Allow with k in place of their (0.1733) as long as they have a value for exceeds to rearrange to $e^{mt} = D$ ($D > 0$) and applies ln to find t. The ln work must b ugh there may be slips in the coefficients or index work reaching $e^{mt} = D$ ($D > 0$) oblied by a correct answer for their $e^{mt} = D$	I for the start and ln work as it is clear lip on e.g. the or k in (a). e correct, . May be as t the
All of t mu: A1 $k =$ (b) M1 $\frac{dN}{dt}$ they A1 Aw (c) M1 Sets 600 dM1 Pro thou imp Alte sub	by this mark for attempts to find k first so solving simultaneously if they use $t = 1$, he study: $2500 = Ae^{k}$, $10000 = Ae^{8k} \Rightarrow e^{7k} = 4 \Rightarrow 7k = \ln 4 \Rightarrow k =$ but the index is st be correct. $a avrt 0.1733$. Accept the exact value $\frac{1}{8} \ln 4$ and isw after seen. $t = Ce^{-0.6x5} =$ where C is a constant. Condone $60000e^{-0.6t} \rightarrow 60000e^{-0.6t}$ as long y think they have found $\frac{dN}{dt}$. Must be correct index (not kt). rt 1790 from a correct derivative. Condone $awrt -1790$ s $60000e^{-0.6t} =$ their $2500e^{(0.1733'')}$ May use T or another variable instead. Allow a s 100 as 6000 . Allow with k in place of their "0.1733" as long as they have a value for ceeds to rearrange to $e^{mt} = D$ ($D > 0$) and applies ln to find t. The ln work must b ugh there may be slips in the coefficients or index work reaching $e^{mt} = D$ ($D > 0$) oblied by a correct answer for their $e^{mt} = D$ ernatively, takes ln of both sides first and applies correct ln laws to proceed to making igect: $\ln\left(60000e^{-0.6t}\right) = \ln\left(2500e^{0.1733t}\right) \Rightarrow \ln 60000 - 0.6t = \ln 2500 + 0.1733t \Rightarrow t$	I for the start and ln work as it is clear lip on e.g. the or k in (a). e correct, . May be ke t the =
All of t mu: A1 $k =$ (b) M1 $\frac{dN}{dt}$ they A1 Aw (c) M1 Sets 600 dM1 Pro thou imp Alta sub	by this mark for attempts to find k first by solving simulateously if they use $t = 1$, the study: $2500 = Ae^k$, $10000 = Ae^{8k} \Rightarrow e^{7k} = 4 \Rightarrow 7k = \ln 4 \Rightarrow k =$ but the index is st be correct. awrt 0.1733. Accept the exact value $\frac{1}{8} \ln 4$ and isw after seen. $t = Ce^{-0.6x5} =$ where C is a constant. Condone $60000e^{-0.6t} \rightarrow 60000e^{-0.6t}$ as long y think they have found $\frac{dN}{dt}$. Must be correct index (not kt). rt 1790 from a correct derivative. Condone awrt -1790 s $60000e^{-0.6t} =$ their $2500e^{(0.1733)t}$ May use T or another variable instead. Allow a s 000 as 6000 . Allow with k in place of their "0.1733" as long as they have a value for ceeds to rearrange to $e^{mt} = D$ ($D > 0$) and applies ln to find t. The ln work must b ugh there may be slips in the coefficients or index work reaching $e^{mt} = D$ ($D > 0$) oblied by a correct answer for their $e^{mt} = D$ ernatively, takes ln of both sides first and applies correct ln laws to proceed to mak ject: $\ln\left(60000e^{-0.6t}\right) = \ln\left(2500e^{0.1733t}\right) \Rightarrow \ln 60000 - 0.6t = \ln 2500 + 0.1733t \Rightarrow t$ rt 4.11 Must be a value, not an expression in ln terms for this mark.	I for the start and ln work as it is clear lip on e.g. the or k in (a). e correct, . May be the t the =

Question NumberSchemeMar8. (a) $f'(x) = 6(2x+1)^2 e^{-4x} \{3-2(2x+1)\}^3 e^{-4x}$ M1 $= 2(2x+1)^2 (1-4x) e^{-4x}$ M1 $= 2(2x+1)^2 (1-4x) e^{-4x}$ A1(b)Sets $f'(x) = 0 \Rightarrow x = -\frac{1}{2}, \frac{1}{4}$ B1Either $f\left(\frac{n-1}{2}\right) = \dots$ or $f\left(\frac{+1}{4}\right) = \dots$ M1Both $\left(-\frac{1}{2}, 0\right)$ and $\left(\frac{1}{4}, \frac{27}{8e}\right)$ A1(c) $\left(\frac{9}{4}, \frac{27}{e}\right)$ B1ffMust also be attempted by the quotient rule - equivalent form after e terms cancel.A1 $f'(x) = 6(2x+1)^2 e^{-4x} - 4(2x+1)^3 e^{-4x}$ which may be unsimplifiedM1Attempts the product rule to achieve $P(2x+1)^3 e^{-4x}$ from their expression with an interme step before the final answer. Allow if there are minor slips in the $(2x+1)^3 e^{-4x}$ as a factor (s $(2x+1)^3 e^{-4x}) = (2x+1)^3 (1-4x) e^{-4x}$.A1Achieves $2(2x+1)^2 (1-4x) e^{-4x}$ with no incorrect algebra. Accept with the bracket {}. Allow go from an expanded cubic to a factorised form for this mark: $e^{-4x} \left(2-24x^2-32x^3\right) \rightarrow 2(2x+1)^2 (1-4x) e^{-4x}$.A1Achieves $2(2x+1)^2 (1-4x) e^{-4x}$ with no incorrect algebra. Accept with the brackets in eithe order.(b)B1 $x = -\frac{1}{2}, \frac{1}{4}$ o.e. Both required.M1Attempts to substitute one of $x = \pm \frac{1}{2}, \pm \frac{1}{4}$ into f(x). If substitution not seen may be implied either of $\left(-\frac{1}{2}, 0\right)$ or $\left(\frac{1}{4}, \frac{28}{8e}\right)$ o.e.(c)B1 $x = -\frac{1}{2}, \frac{1}{4}$ o.e. Both required.M1Attempts to substitute one of $x = \pm \frac{1}{2}, \pm \frac{1}{4}$ into f(x). If substitution not seen may be implied either of $\left(-\frac{1}{2}, 0\right)$ or $\left(\frac{1}{4}, \frac{28}{8e}\right)$ o.e. (accept awrt 1.24 for this ma	ş	https://	3	
8. (a) $\begin{cases} f'(x) = 6(2x+1)^{3} e^{-4x} - 4(2x+1)^{3} e^{-4x} \\ = 2(2x+1)^{2} e^{4x} \{3-2(2x+1)\} \\ = 2(2x+1)^{2} (1-4x) e^{-4x} \end{cases}$ (b) $\begin{cases} \text{Sets } f'(x) = 0 \Rightarrow x = -\frac{1}{2}, \frac{1}{4} \\ \text{Either } f\left(\frac{n}{2}, \frac{1}{2}\right) = \dots \text{ or } f\left(\frac{n}{4}, \frac{1}{2}\right) = \dots \end{cases}$ $\begin{cases} \text{Bit} \\ \text{Either } f\left(\frac{n}{2}, \frac{1}{2}\right) = \dots \text{ or } f\left(\frac{n}{4}, \frac{1}{2}\right) = \dots \end{cases}$ $\begin{cases} \text{Bit} \\ \text{Bit} \\ \text{Either } f\left(\frac{n}{2}, \frac{1}{2}\right) = \dots \text{ or } f\left(\frac{n}{4}, \frac{1}{2}\right) = \dots \end{cases}$ $\begin{cases} \text{Bit} \\ \text{Bit} \\ \text{Bit} \\ \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2}, \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2}, \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2}, \frac{1}{2} \\ \frac{1}$	rks _{stur}	Marks	Scheme	Question Number
$= 2(2x+1)^{2} e^{-4x} \{3-2(2x+1)\} $ $= 2(2x+1)^{2} (1-4x) e^{-4x}$ (b) Sets $f'(x) = 0 \Rightarrow x = -\frac{1}{2}, \frac{1}{4}$ Either $f\left(\frac{n}{2}, \frac{1}{2}\right) = \dots$ or $f\left(\frac{n}{4}, \frac{1}{2}\right) = \dots$ Both $\left(-\frac{1}{2}, 0\right)$ and $\left(\frac{1}{4}, \frac{27}{8e}\right)$ (c) $\left(\frac{9}{4}, \frac{27}{e}\right)$ (d) M1 Attempts the product rule to achieve $P(2x+1)^{2} e^{-4x} \pm Q(2x+1)^{3} e^{-4x}$ May also be attempted by the quotient rule - equivalent form after e terms cancel. A1 $f'(x) = 6(2x+1)^{2} e^{-4x} - 4(2x+1)^{3} e^{-4x}$ which may be unsimplified M1 Correctly takes out a common factor of $(2x+1)^{2} e^{-4x}$ from their expression with an interme step before the final answer. Allow if there are minor slips in the $(2x+1)^{2} e^{-4x}$ as a factor (s $(2x+1)^{2} e^{-4x})$ if recovered - look for the correct remaining terms in the bracket {}. Allow go from an expanded cubic to a factorised form for this mark: $e^{-4x} (2-24x^{2}-32x^{3}) \rightarrow 2(2x+1)^{2} (1-4x)e^{-4x}$. A1 Achieves $2(2x+1)^{2} (1-4x)e^{-4x}$ with no incorrect algebra. Accept with the brackets in eithe order. (b) B1 $x = -\frac{1}{2}, \frac{1}{4}$ o.e. Both required. M1 Attempts to substitute one of $x = \pm \frac{1}{2}, \pm \frac{1}{4}$ into f(x). If substitution not seen may be implied either of $\left(-\frac{1}{2}, 0\right)$ or $\left(\frac{1}{4}, \frac{27}{8e}\right)$ o.e. (accept awrt 1.24 for this mark) or by either of $\left(\frac{1}{2}, \frac{8}{e^{2}}\right)$ 1.08) or $\left(-\frac{1}{4}, \frac{6}{8}\right)$ (awrt 0.340) o.e.	A1 A1	M1 A1	$(x+1)^2 e^{-4x} - 4(2x+1)^3 e^{-4x}$	8. (a)
$= 2(2x+1)^{2}(1-4x)e^{-4x}$ (b) $= 2(2x+1)^{2}(1-4x)e^{-4x}$ $= 2(2x+1)$	i 1	dM1	$2(2x+1)^{2} e^{-4x} \{3-2(2x+1)\}$	
(b) Sets $f'(x) = 0 \Rightarrow x = -\frac{1}{2}, \frac{1}{4}$ Either $f\left(\frac{n}{2}, \frac{1}{2}\right) =$ or $f\left(\frac{n}{4}, \frac{1}{4}\right) =$ Both $\left(-\frac{1}{2}, 0\right)$ and $\left(\frac{1}{4}, \frac{27}{8e}\right)$ (c) $\left(\frac{9}{4}, \frac{27}{e}\right)$ M1 Attempts the product rule to achieve $P(2x+1)^{3}e^{-4x} \pm Q(2x+1)^{3}e^{-4x}$ May also be attempted by the quotient rule - equivalent form after e terms cancel. A1 $f'(x) = 6(2x+1)^{2}e^{-4x} - 4(2x+1)^{3}e^{-4x}$ which may be unsimplified dM1 Correctly takes out a common factor of $(2x+1)^{2}e^{-4x}$ from their expression with an interme step before the final answer. Allow if there are minor slips in the $(2x+1)^{3}e^{-4x}$ as a factor (s $(2x+1)^{2}e^{-4x})$ if recovered - look for the correct remaining terms in the bracket {}. Allow go from an expanded cubic to a factorised form for this mark: $e^{-4x}(2-24x^{2}-32x^{3}) \rightarrow 2(2x+1)^{2}(1-4x)e^{-4x}$. A1 Achieves $2(2x+1)^{2}(1-4x)e^{-4x}$ with no incorrect algebra. Accept with the brackets in eithe order. (b) B1 $x = -\frac{1}{2}, \frac{1}{4}$ o.e. Both required. M1 Attempts to substitute one of $x = \pm \frac{1}{2}, \pm \frac{1}{4}$ into f(x). If substitution not seen may be implied either of $\left(-\frac{1}{2}, 0\right)$ or $\left(\frac{1}{4}, \frac{27}{8e}\right)$ o.e. (accept awrt 1.24 for this mark) or by either of $\left(\frac{1}{2}, \frac{8}{e^{2}}\right)$ 1.08) or $\left(-\frac{1}{4}, \frac{e}{8}\right)$ (awrt 0.340) o.e.	L	A1	$2(2x+1)^{2}(1-4x)e^{-4x}$	
(b) Sets $f'(x) = 0 \Rightarrow x = -\frac{2}{2}, \frac{2}{4}$ Either $f\left(\frac{n}{2}, \frac{1}{2}\right) =$ or $f\left(\frac{n}{4}, \frac{1}{4}\right) =$ Both $\left(-\frac{1}{2}, 0\right)$ and $\left(\frac{1}{4}, \frac{27}{8e}\right)$ (c) $\left(\frac{9}{4}, \frac{27}{e}\right)$ M1 Attempts the product rule to achieve $P(2x+1)^2 e^{4x} \pm Q(2x+1)^3 e^{4x}$ May also be attempted by the quotient rule - equivalent form after e terms cancel. A1 $f'(x) = 6(2x+1)^2 e^{4x} - 4(2x+1)^3 e^{4x}$ which may be unsimplified M1 Correctly takes out a common factor of $(2x+1)^3 e^{4x}$ from their expression with an interme step before the final answer. Allow if there are minor slips in the $(2x+1)^2 e^{4x}$ as a factor ($(2x+1)^2 e^{4x}$) if recovered - look for the correct remaining terms in the bracket {}. Allow go from an expanded cubic to a factorised form for this mark: $e^{-4x} \left(2-24x^2-32x^3\right) \rightarrow 2(2x+1)^2 (1-4x)e^{-4x}$. A1 Achieves $2(2x+1)^2 (1-4x)e^{-4x}$ with no incorrect algebra. Accept with the brackets in eithe order. (b) B1 $x = -\frac{1}{2}, \frac{1}{4}$ o.e. Both required. M1 Attempts to substitute one of $x = \pm \frac{1}{2}, \pm \frac{1}{4}$ into $f(x)$. If substitution not seen may be implied either of $\left(-\frac{1}{2}, 0\right)$ or $\left(\frac{1}{4}, \frac{27}{8e}\right)$ o.e. (accept awrt 1.24 for this mark) or by either of $\left(\frac{1}{2}, \frac{8}{e^2}\right)$ 1.08) or $\left(-\frac{1}{4}, \frac{e}{8}\right)$ (awrt 0.340) o.e.	(4)		. 11	
Either $f\left(\frac{n}{2}, \frac{1}{2}\right) = \dots$ or $f\left(\frac{n}{4}, \frac{n}{8}\right) = \dots$ Both $\left(-\frac{1}{2}, 0\right)$ and $\left(\frac{1}{4}, \frac{27}{8e}\right)$ (e) $\left(\frac{9}{4}, \frac{27}{e}\right)$ M1 Attempts the product rule to achieve $P(2x+1)^2 e^{-4x} \pm Q(2x+1)^3 e^{-4x}$ May also be attempted by the quotient rule - equivalent form after e terms cancel. A1 $f'(x) = 6(2x+1)^2 e^{-4x} - 4(2x+1)^3 e^{-4x}$ which may be unsimplified M1 Correctly takes out a common factor of $(2x+1)^2 e^{-4x}$ from their expression with an interme step before the final answer. Allow if there are minor slips in the $(2x+1)^2 e^{-4x}$ as a factor (s $(2x+1)^2 e^{-4x}$) if recovered - look for the correct remaining terms in the bracket {}. Allow go from an expanded cubic to a factorised form for this mark: $e^{-4x}(2-24x^2-32x^3) \rightarrow 2(2x+1)^2(1-4x)e^{-4x}$ with no incorrect algebra. Accept with the brackets in eithe order. A1 Achieves $2(2x+1)^2(1-4x)e^{-4x}$ with no incorrect algebra. Accept with the brackets in eithe order. (b) B1 $x = -\frac{1}{2}, \frac{1}{4}$ o.e. Both required. M1 Attempts to substitute one of $x = \pm \frac{1}{2}, \pm \frac{1}{4}$ into f(x). If substitution not seen may be implied either of $\left(-\frac{1}{2}, 0\right)$ or $\left(\frac{1}{4}, \frac{27}{8e}\right)$ o.e. (accept awrt 1.24 for this mark) or by either of $\left(\frac{1}{2}, \frac{8}{e^2}\right)$ 1.08) or $\left(-\frac{1}{4}, \frac{8}{8}\right)$ (awrt 0.340) o.e.		B1	$0 \Longrightarrow x = -\frac{1}{2}, \frac{1}{4}$	(b)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		M1	$\left(\frac{1}{2}\right) = \dots$ or $f\left(\left(\frac{1}{4}\right)\right) = \dots$	
(c) $\left(\frac{9}{4}, \frac{27}{e}\right)$ BIff Notes (a) M1 Attempts the product rule to achieve $P(2x+1)^2 e^{-4x} \pm Q(2x+1)^3 e^{-4x}$ May also be attempted by the quotient rule - equivalent form after e terms cancel. A1 $f'(x) = 6(2x+1)^2 e^{-4x} - 4(2x+1)^3 e^{-4x}$ which may be unsimplified M1 Correctly takes out a common factor of $(2x+1)^2 e^{-4x}$ from their expression with an interme step before the final answer. Allow if there are minor slips in the $(2x+1)^2 e^{-4x}$ as a factor (s $(2x+1)^2 e^{-4x}$) if recovered - look for the correct remaining terms in the bracket {}. Allow go from an expanded cubic to a factorised form for this mark: $e^{-4x} (2-24x^2 - 32x^3) \rightarrow 2(2x+1)^2 (1-4x)e^{-4x}$. A1 Achieves $2(2x+1)^2 (1-4x)e^{-4x}$ with no incorrect algebra. Accept with the brackets in eithe order. (b) B1 $x = -\frac{1}{2}, \frac{1}{4}$ o.e. Both required. M1 Attempts to substitute one of $x = \pm \frac{1}{2}, \pm \frac{1}{4}$ into f(x). If substitution not seen may be implied either of $\left(-\frac{1}{2},0\right)$ or $\left(\frac{1}{4},\frac{27}{8e}\right)$ o.e. (accept awrt 1.24 for this mark) or by either of $\left(\frac{1}{2},\frac{8}{e^2}\right)$ 1.08) or $\left(-\frac{1}{4},\frac{e}{8}\right)$ (awrt 0.340) o.e.		A1	0) and $\left(\frac{1}{4}, \frac{27}{8e}\right)$	
(c) $\left(\frac{9}{4}, \frac{27}{e}\right)$ BIff Notes a) M1 Attempts the product rule to achieve $P(2x+1)^2 e^{-4x} \pm Q(2x+1)^3 e^{-4x}$ May also be attempted by the quotient rule - equivalent form after e terms cancel. A1 $f'(x) = 6(2x+1)^2 e^{-4x} - 4(2x+1)^3 e^{-4x}$ which may be unsimplified iM1 Correctly takes out a common factor of $(2x+1)^2 e^{-4x}$ from their expression with an interme step before the final answer. Allow if there are minor slips in the $(2x+1)^2 e^{-4x}$ as a factor (s $(2x+1)^2 e^{-4x}$) if recovered - look for the correct remaining terms in the bracket {}. Allow go from an expanded cubic to a factorised form for this mark: $e^{-4x} (2-24x^2 - 32x^3) \rightarrow 2(2x+1)^2 (1-4x)e^{-4x}$. A1 Achieves $2(2x+1)^2 (1-4x)e^{-4x}$ with no incorrect algebra. Accept with the brackets in either order. b) B1 $x = -\frac{1}{2}, \frac{1}{4}$ o.e. Both required. M1 Attempts to substitute one of $x = \pm \frac{1}{2}, \pm \frac{1}{4}$ into f(x). If substitution not seen may be implied either of $\left(-\frac{1}{2}, 0\right)$ or $\left(\frac{1}{4}, \frac{27}{8e}\right)$ o.e. (accept awrt 1.24 for this mark) or by either of $\left(\frac{1}{2}, \frac{8}{2}\right)$ 1.08) or $\left(-\frac{1}{4}, \frac{e}{8}\right)$ (awrt 0.340) o.e.	(3)			
Notes a) M1 Attempts the product rule to achieve $P(2x+1)^2 e^{-4x} \pm Q(2x+1)^3 e^{-4x}$ May also be attempted by the quotient rule - equivalent form after e terms cancel. A1 $f'(x) = 6(2x+1)^2 e^{-4x} - 4(2x+1)^3 e^{-4x}$ which may be unsimplified IM1 Correctly takes out a common factor of $(2x+1)^2 e^{-4x}$ from their expression with an interme step before the final answer. Allow if there are minor slips in the $(2x+1)^2 e^{-4x}$ as a factor (s $(2x+1)^2 e^{-4x}$) if recovered - look for the correct remaining terms in the bracket {}. Allow go from an expanded cubic to a factorised form for this mark: $e^{-4x}(2-24x^2-32x^3) \rightarrow 2(2x+1)^2(1-4x)e^{-4x}$. A1 Achieves $2(2x+1)^2(1-4x)e^{-4x}$ with no incorrect algebra. Accept with the brackets in either order. b) B1 $x = -\frac{1}{2}, \frac{1}{4}$ o.e. Both required. M1 Attempts to substitute one of $x = \pm \frac{1}{2}, \pm \frac{1}{4}$ into f(x). If substitution not seen may be implied either of $\left(-\frac{1}{2},0\right)$ or $\left(\frac{1}{4},\frac{27}{8e}\right)$ o.e. (accept awrt 1.24 for this mark) or by either of $\left(\frac{1}{2},\frac{8}{e^2}\right)$ 1.08) or $\left(-\frac{1}{4},\frac{e}{8}\right)$ (awrt 0.340) o.e.	ft B1ft	B1ft B1		(c)
Notes (a) M1 Attempts the product rule to achieve $P(2x+1)^2 e^{-4x} \pm Q(2x+1)^3 e^{-4x}$ May also be attempted by the quotient rule - equivalent form after e terms cancel. A1 $f'(x) = 6(2x+1)^2 e^{-4x} - 4(2x+1)^3 e^{-4x}$ which may be unsimplified M1 Correctly takes out a common factor of $(2x+1)^2 e^{-4x}$ from their expression with an interme step before the final answer. Allow if there are minor slips in the $(2x+1)^2 e^{-4x}$ as a factor (s $(2x+1)^2 e^{-4x}$) if recovered - look for the correct remaining terms in the bracket { }. Allow gc from an expanded cubic to a factorised form for this mark: $e^{-4x}(2-24x^2-32x^3) \rightarrow 2(2x+1)^2(1-4x)e^{-4x}$. A1 Achieves $2(2x+1)^2(1-4x)e^{-4x}$ with no incorrect algebra. Accept with the brackets in either order. (b) B1 $x = -\frac{1}{2}, \frac{1}{4}$ o.e. Both required. M1 Attempts to substitute one of $x = \pm \frac{1}{2}, \pm \frac{1}{4}$ into f(x). If substitution not seen may be implied either of $\left(-\frac{1}{2}, 0\right)$ or $\left(\frac{1}{4}, \frac{27}{8e}\right)$ o.e. (accept awrt 1.24 for this mark) or by either of $\left(\frac{1}{2}, \frac{8}{e^2}\right)$ 1.08) or $\left(-\frac{1}{4}, \frac{8}{8}\right)$ (awrt 0.340) o.e.	(2) 9 marks	0 m		
 (a) Attempts the product rule to achieve P(2x+1)² e^{-4x} ±Q(2x+1)³ e^{-4x} May also be attempted by the quotient rule - equivalent form after e terms cancel. A1 f'(x) = 6(2x+1)² e^{-4x} - 4(2x+1)³ e^{-4x} which may be unsimplified (2x+1)² e^{-4x} = -4(2x+1)³ e^{-4x} which may be unsimplified (2x+1)² e^{-4x} or = -4(2x+1)³ e^{-4x} which may be unsimplified (2x+1)² e^{-4x} if recovered - look for the correct remaining terms in the bracket { }. Allow get from an expanded cubic to a factorised form for this mark: e^{-4x} (2-24x² - 32x³) → 2(2x+1)² (1-4x)e^{-4x}. A1 Achieves 2(2x+1)² (1-4x)e^{-4x} with no incorrect algebra. Accept with the brackets in eithe order. (b) B1 x = -1/2, 1/4 o.e. Both required. M1 Attempts to substitute one of x = ±1/2, ±1/4 into f(x). If substitution not seen may be implied either of (-1/2,0) or (1/4, 27/8e) o.e. (accept awrt 1.24 for this mark) or by either of (1/2, 8/e²) 1.08) or (-1/4, 8/e) (awrt 0.340) o.e. 				Notes
(b) B1 $x = -\frac{1}{2}, \frac{1}{4}$ o.e. Both required. M1 Attempts to substitute one of $x = \pm \frac{1}{2}, \pm \frac{1}{4}$ into f(x). If substitution not seen may be implied either of $\left(-\frac{1}{2}, 0\right)$ or $\left(\frac{1}{4}, \frac{27}{8e}\right)$ o.e. (accept awrt 1.24 for this mark) or by either of $\left(\frac{1}{2}, \frac{8}{e^2}\right)$ 1.08) or $\left(-\frac{1}{4}, \frac{e}{8}\right)$ (awrt 0.340) o.e.	(such as oing	ictor (such low going	inal answer. Allow if there are minor slips in the $(2x+1)^2 e^{-4x}$ as a fac ecovered - look for the correct remaining terms in the bracket { }. Allo ed cubic to a factorised form for this mark: $32x^3 \rightarrow 2(2x+1)^2 (1-4x)e^{-4x}$.	step (2x from e^{-4x}
(b) B1 $x = -\frac{1}{2}, \frac{1}{4}$ o.e. Both required. M1 Attempts to substitute one of $x = \pm \frac{1}{2}, \pm \frac{1}{4}$ into f(x). If substitution not seen may be implied either of $\left(-\frac{1}{2}, 0\right)$ or $\left(\frac{1}{4}, \frac{27}{8e}\right)$ o.e (accept awrt 1.24 for this mark) or by either of $\left(\frac{1}{2}, \frac{8}{e^2}\right)$ 1.08) or $\left(-\frac{1}{4}, \frac{e}{8}\right)$ (awrt 0.340) o.e.		in cruter	(1-4x)e with no medirect algebra. Accept with the brackets in	orde
M1 Attempts to substitute one of $x = \pm \frac{1}{2}, \pm \frac{1}{4}$ into $f(x)$. If substitution not seen may be implied either of $\left(-\frac{1}{2},0\right)$ or $\left(\frac{1}{4},\frac{27}{8e}\right)$ o.e (accept awrt 1.24 for this mark) or by either of $\left(\frac{1}{2},\frac{8}{e^2}\right)$ 1.08) or $\left(-\frac{1}{4},\frac{e}{8}\right)$ (awrt 0.340) o.e.			Both required.	$\begin{array}{ll} \text{(b)} \\ \text{B1} & x = \end{array}$
either of $\left(-\frac{1}{2},0\right)$ or $\left(\frac{1}{4},\frac{27}{8e}\right)$ o.e (accept awrt 1.24 for this mark) or by either of $\left(\frac{1}{2},\frac{8}{e^2}\right)$ 1.08) or $\left(-\frac{1}{4},\frac{e}{8}\right)$ (awrt 0.340) o.e.	d by	nplied by	stitute one of $x = \pm \frac{1}{2}, \pm \frac{1}{4}$ into f(x). If substitution not seen may be implemented by the formula of the formul	M1 Atte
) (awrt	$\left(\frac{1}{2},\frac{8}{e^2}\right)$ (aw) or $\left(\frac{1}{4}, \frac{27}{8e}\right)$ o.e (accept awrt 1.24 for this mark) or by either of $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ (awrt 0.340) o.e.	eith 1.08
A1 For $\left(-\frac{1}{2},0\right)$ and $\left(\frac{1}{4},\frac{27}{8e}\right)$ o.e. must be exact but isw after exact coordinates given. Allow as $x =, y =$ as long as clearly paired.			$d\left(\frac{1}{4}, \frac{27}{8e}\right)$ o.e. must be exact but isw after exact coordinates given. $y = \dots$ as long as clearly paired.	A1 For Allo

	https://
(c)	- Gritis
B1ft	One correct aspect applied correctly to one of their points. So for either 2 added to one of their x
	coordinates, or a non-zero y coordinate multiplied by 8. E.g. either $\left(\frac{9}{4},\right)$ or $\left(,\frac{27}{e}\right)$ or follow
	through on $\left(\left\ \frac{1}{4} \right\ + 2, \ldots \right)$ or $\left(\ldots, 8 \times \left\ \frac{27}{8e} \right\ \right)$ etc.
B1ft	$\left(\frac{9}{4}, \frac{27}{e}\right)$ only or follow through on the <i>y</i> coordinate only so $\left(\frac{9}{4}, 8 \times \left(\frac{27}{8e}\right)\right)$ (oe) only . B0 if another
	point is given. Accept awrt 9.93 for second ordinate but note 9.92 is a correct follow through on
	1.24. Allow as $x = \frac{9}{4}$, $y = \dots$.
SC all	ow B1B0 if coordinates given wrong way round.

Questio	n Galance	Britis
Numbe	r Scheme	Marks
9 (a)	$\frac{\cos 2x}{\sin x} + \frac{\sin 2x}{\cos x} = \frac{\cos 2x}{\sin x} + \frac{2\sin x \cos x}{\cos x} $ (One Correct identity)	B1
	$=\frac{1-2\sin^2 x}{\sin x} + \frac{2\sin x\cos x}{\cos x}$	M1
	$= \frac{1}{\sin x} - \frac{2\sin^{2} x}{\sin x} + 2\sin x = \frac{1}{\sin x} = \csc x *$	A1*
(b)	E.g. Equation is $\csc^2 \theta = 6 \cot \theta - 4 \Longrightarrow 1 + \cot^2 \theta = 6 \cot \theta - 4$	(3) M1
	E.g. $\cot^2 \theta - 6 \cot \theta + 5 = 0$	A1
	E.g. $\tan \theta = \frac{1}{5}, 1$	dM1
	$\theta=0.197, \frac{\pi}{4}$	A1, A1
	4	(5)
(c)	$\int_{\underline{\pi}}^{\underline{\pi}} \operatorname{cosecx} \operatorname{cot} x \mathrm{d}x = \left[-\operatorname{cosecx}\right]_{\underline{\pi}}^{\underline{\pi}}$	M1
	$=2-\sqrt{2}$	A1
	•	(2) 10 marks
v11 1	For a correct overall strategy, e.g. applying double angle identities to reduce term irguments and cancelling down terms to eliminate $\cos x$ terms (score at the stage be eliminated), or attempting a single fraction and applying relevant identities to angle argument with common factor $\cos x$ in the numerator. Allow slips in signs, $\cos 2x = 1 \pm 2\sin^2 x$ for the M but otherwise identities used must be correct.	This to single angle $\cos x$ terms could achieve single $\sin x$ such as
41* I	¹ ully correct proof showing all necessary steps, though the left hand side may be	implied (and
1	nay follow initial lines of aside working). Must see the $$ sin x \rightarrow cosec x during the sin x	he proof . Do not
ן ה)	benalise minor notational slips such as missing an x in one term.	
M1 (Correctly applies the result of (a) and attempts to use relevant identities, allowing	g sign errors e.g.
;	$\pm 1 \pm \cot^2 \theta = \csc^2 \theta \text{ to produce an equation in } \cot \theta \text{ or other single trig term of liternative is}$ $\frac{1}{\sin^2 \theta} = 6 \frac{\cos \theta}{\sin \theta} - 4 \Rightarrow 1 = 6 \sin \theta \cos \theta - 4 \sin^2 \theta \Rightarrow \left(1 + 4 \sin^2 \theta\right)^2 = 36 \sin^2 \theta \left(1 - \sin^2 \theta\right)^2$	nly. An $\ln^2 heta \Big)$
41 (Correct quadratic $\cot^2 \theta - 6 \cot \theta + 5 = 0$ or $5 \tan^2 \theta - 6 \tan \theta + 1 = 0$. In the alternative	tive, a correct
A1 (Correct quadratic $\cot^2 \theta - 6 \cot \theta + 5 = 0$ or $5 \tan^2 \theta - 6 \tan \theta + 1 = 0$. In the alterna quadratic in $\sin^2 \theta$ or $\cos^2 \theta$ e.g. $52 \sin^4 \theta - 28 \sin^2 \theta + 1 = 0$. The "=0" may be implemented by the implementation of the second	tive, a correct plied by an
A1 (Correct quadratic $\cot^2 \theta - 6 \cot \theta + 5 = 0$ or $5 \tan^2 \theta - 6 \tan \theta + 1 = 0$. In the alterna quadratic in $\sin^2 \theta$ or $\cos^2 \theta$ e.g. $52 \sin^4 \theta - 28 \sin^2 \theta + 1 = 0$. The "=0" may be implittempt to solve. May be implied by correct solutions following an unsimplified by terms to solve quadratic to find at least one value for the intriviation of the solution.	tive, a correct plied by an quadratic.
A1 (4 iM1 2	Correct quadratic $\cot^2 \theta - 6 \cot \theta + 5 = 0$ or $5 \tan^2 \theta - 6 \tan \theta + 1 = 0$. In the alterna quadratic in $\sin^2 \theta$ or $\cos^2 \theta$ e.g. $52 \sin^4 \theta - 28 \sin^2 \theta + 1 = 0$. The "=0" may be implited by correct solutions following an unsimplified Attempts to solve quadratic to find at least one value for their trig term used. Usu alculator.	tive, a correct plied by an quadratic. al rules, may use

	A	tos
Question Number	Scheme	Marks
A1 Bo	oth values correct and no other values in the range. Accept awrt 0.197 and $\frac{\pi}{4}$ only	(must be
ex Note: Al the	act but isw after correct value seen). low if a different variable used (such as <i>x</i>). For mixed variables allow the M's but or e first A (and final A's) if recovered.	nly allow
Note And (c)	swers without working score no marks.	
M1 Fo M A1 2-	r using part (a) and achieving $\pm k \operatorname{cosec} x$ oe for the integral (limits not required for the ay arise from longer methods, but must achieve the correct form. $-\sqrt{2}$ Must have scored the M - answer only with no integration shown is M0A0.	his mark.
(a) ALT I	$\frac{\cos 2x}{\sin x} + \frac{\sin 2x}{\cos x} = \frac{\cos 2x \cos x + \sin 2x \sin x}{\sin x \cos x}$ Correct single fraction	B1
	$= \frac{\cos x \left(1 - 2\sin^2 x\right) + 2\sin x \cos x \sin x}{\sin x \cos x}$ Single fraction with single arguments and common factor cos x in numerator	M1
	$=\frac{\cos x}{\sin x \cos x} = \frac{1}{\sin x} = \csc x *$	A1* (3)
(a) ALT II	$\frac{\cos 2x}{\sin x} + \frac{\sin 2x}{\cos x} \equiv \frac{\cos 2x \cos x + \sin 2x \sin x}{\sin x \cos x}$ Correct single fraction	B1
	$\equiv \frac{\cos(2x-x)}{\sin x \cos x}$ Applies identity to reach single fraction with single arguments and common factor $\cos x$ in numerator	M1
	$\equiv \frac{\cos x}{\sin x \cos x} \equiv \frac{1}{\sin x} \equiv \csc x \ *$ Note $\cos(x - 2x)$ is equally correct for the M1.	A1* (3)
(a) ALT III	$\frac{\cos 2x}{\sin x} + \frac{\sin 2x}{\cos x} \equiv \frac{\cos^2 x - \sin^2 x}{\sin x} + \frac{2\sin x \cos x}{\cos x}$ Correct identity	B1
	$\equiv \frac{\cos^3 x - \sin^2 x \cos x + 2\sin^2 x \cos x}{\sin x \cos x}$ Single fraction with single arguments and common factor cos x in numerator	M1
	$\equiv \frac{(\cos^2 x + \sin^2 x)\cos x}{\sin x \cos x} \equiv \frac{1}{\sin x} \equiv \csc x \ *$	A1* (3)

QuestionSchemeMarks10 (a)
$$x = \frac{2y^2 + 6}{3y - 3} = \left(\frac{dx}{dy} = \right)^{\frac{4}{y}(3y - 3) - 3}(\frac{2y^2 + 6}{(3y - 3)^2}$$
M1 A1(b) $x = \frac{2y^2 - 4}{3y - 3} = \left(\frac{dx}{dy} = \right)^{\frac{4}{y}(3y - 3) - 3}(\frac{2y^2 - 4y - 6}{3(y - 1)^2} = \frac{2y^2 - 4y - 6 = 0}{3(y - 1)^2}$ B1(b) P and Q are where $\frac{dx}{dy} = 0$ or where $2y^2 - 4y - 6 = 0$ B1Solves $2y^2 - 4y - 6 = 0 \Rightarrow 2(y - 3)(y + 1) - 0 \Rightarrow y - 3, -1$ M1Subs $y = -1$ and 3 in $x = \frac{2y^2 + 6}{3y - 3} \Rightarrow x = ..$ M1Achieves $x = -\frac{4}{3}$ and $x = 4$ Alcso(a)**NotesNotes**(a)Attempts the quotient rule. Condone slips on the coefficients - look for $\frac{Ay(3y - 3) - B(2y^2 + 6)}{(3y - 3)^2}$ A.B > 0.Allow a product rule attempt: $x = (2y^2 + 6)(3y - 3)^2 \Rightarrow (\frac{dx}{dy} - Ay(3y - 3)^{-1} + (2y^2 + 6)x - B(3y - 3)^2$ A1Correct differentiation which may be unsimplified. Allow if the $\frac{dx}{dy}$ is missing or called $\frac{dy}{dx}$ forthis mark. By product rule $4y(3y - 3)^{-1} + (2y^2 + 6)x - 3(3y - 3)^{-2}$ Condone missing brackets ifrecovered.M1M1Requires an attempt to get a single fraction with some attempt to simplify.For the quotient rule look for a simplification of the numerator with like terms collected giving a $3tQ$.A1 $\left(\frac{dx}{dy} = \frac{2y^2 - 4y - 6}{3y^2 - 6y + 3}$ or exact simplified equivalent such as $\frac{2(y - 3)(y + 1)}{3(y - 1)^2}$ is wafter a correct simplified answer. Common factor 3 must have been cancelled. Must be seen in part (a). A0 if called $\frac{dy}{dx}$ but allow A1 if LHS is not stated.B1Indicates P and Q are where $\frac{dx}{dy} = 0$ or where their $2y^2 - 4y - 6 = 0$ (which may be the d

dM1 Substitutes both their solutions to $2y^2 - 4y - 6 = 0$ into $x = \frac{2y^2 + 6}{3y - 3}$. Condone slips if the attempt

is clear. At least one should be correct if no method is shown.

A1cso Achieves $x = -\frac{4}{3}$ and x = 4 only. Must be equations not just values but isw after correct equations seen as long as no contrary work is shown (such as giving horizontal lines). Accept equivalents. Must have come from a correct derivative - though allow from an isw form if a numerical factor was lost in the numerator. Must be exact.

Answers from no working score 0/4 as the question instructs use of part (a), so must see the attempt at setting $\frac{dx}{dt} = 0$

⁻ dy		
Alt (a)	$x = \frac{2y^2 + 6}{3y - 3} \Longrightarrow 3xy - 3x = 2y^2 + 6 \Longrightarrow 3x + 3y\frac{dx}{dy} - 3\frac{dx}{dy} = 4y$	M1 A1
	$\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{4y - 3x}{3(y - 1)}$	dM1, A1
		(4)
(b) First 2 marks.	States that <i>P</i> and <i>Q</i> are where $\frac{dx}{dy} = 0$ or where $4y - 3x = 0$	B1
	$\Rightarrow \frac{4}{3}y = \frac{2y^2 + 6}{3y - 3} \Rightarrow 4y^2 - 4y = 2y^2 + 6 \Rightarrow \text{ as main scheme}$	M1
Alt II (a)	$x = \frac{2y^2 + 6}{3y - 3} = \frac{2y}{3} + \frac{2}{3} + \frac{8}{3(y - 1)} \Longrightarrow \frac{dx}{dy} = \frac{2}{3} - \frac{8}{3(y - 1)^2}$	M1 A1
	$\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{2(y-1)^2 - 8}{3(y-1)^2} = \frac{2y^2 - 4y - 6}{3(y-1)^2} \text{ oe}$	dM1, A1
		(4)
Notes		· · · · ·
(a)		
M1 Attempts long division or other method to achieve $Ay + B + \frac{C}{3y-3}$ oe and differentiates.		
A1 Correct differentiation.		

dM1 Attempts to get a single fraction and simplifies numerator to 3TQ or uses difference of squares to factorise.

A1 Correct answer.

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom https://britishstudentroom.com/