

Mark Scheme (Results)

Summer 2023

Pearson Edexcel International Advanced Level In Further Pure Mathematics F1 (WFM01) Paper 01

Edexcel and BTEC Qualifications

https://britishstudentroom.com Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2023 Question Paper Log Number 73486 Publications Code WFM01_01_2306_MS All the material in this publication is copyright © Pearson Education Ltd 2023

General Marking Guidance

- https://britististudentroom.com • All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should • be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

General Instructions for Marking

https://britististudentroom.com

The total number of marks for the paper is 75.

Edexcel Mathematics mark schemes use the following types of marks:

'M' marks

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation, e.g. resolving in a particular direction; taking moments about a point; applying a suvat equation; applying the conservation of momentum principle; etc.

The following criteria are usually applied to the equation.

To earn the M mark, the equation

- (i) should have the correct number of terms
- (ii) each term needs to be dimensionally correct

For example, in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel 'g' s.

For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

'M' marks are sometimes dependent (DM) on previous M marks having been earned, e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity – this M mark is often dependent on the two previous M marks having been earned.

'A' marks

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. e.g. M0 A1 is impossible.

'B' marks

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph).

A and B marks may be f.t. – follow through – marks.

General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod means benefit of doubt
- ft means follow through
 - the symbol $\sqrt{}$ will be used for correct ft
- cao means correct answer only
- cso means correct solution only, i.e. there must be no errors in this part of the question to obtain this mark
- isw means ignore subsequent working

- awrt means answers which round to
- SC means special case
- oe means or equivalent (and appropriate)
- dep means dependent
- indep means independent
- dp means decimal places
- sf means significant figures
- * means the answer is printed on the question paper
- means the second mark is dependent on gaining the first mark

All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

https://britishstudentcoom.com

For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

https://britishstudentcoom.com (NB specific mark schemes may sometimes override these general principles)

Method mark for solving 3 term guadratic:

- Factorisation
 - $(x^2 + bx + c) = (x + p)(x + q)$, where |pq| = |c|, leading to x = ...

 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

- Formula
 - Attempt to use the correct formula (with values for *a*, *b*and *c*).
- Completing the square

• Solving $x^2 + bx + c = 0$: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to x = ...

Method marks for differentiation and integration:

- Differentiation
 - Power of at least one term decreased by 1. ($x^n \rightarrow x^{n-1}$)
- Integration
 - Power of at least one term increased by 1. ($x^n \rightarrow x^{n+1}$)

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be guoted first. Normal marking procedure is as follows:

- Method mark for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.
- Where the formula is not guoted, the method mark can be gained by implication from correct working with values but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these may not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does not cover this, please contact your team leader for advice.

		14	S. Britishstuden
Question Number	Scheme	Notes	Marks
1	$\sum_{r=1}^{n} r^{2} (r+2) = \sum_{r=1}^{n} r^{3} + 2 \sum_{r=1}^{n} r^{2} \text{ or } \sum_{r=1}^{n} r^{3} + \sum_{r=1}^{n} 2r^{2}$	Correct split with 2 summations. Could be implied by correct work. Condone missing or incorrect summation limits.	B1
	$=\frac{1}{4}n^{2}(n+1)^{2}+2\times\frac{1}{6}n(n+1)(2n+1)$	Attempts to use both standard results and obtains an expression of the form $pn^2(n+1)^2 + qn(n+1)(2n+1)$ $p, q \neq 0$ Could be implied by immediate expansion	M1
	$= \frac{1}{12}n(n+1)[3n(n+1)+4(2n+1)]$ $= \frac{1}{12}n(n+1)(3n^2+11n+4)$	dM1: Attempts factorisation to obtain $\frac{1}{12}n(n+1)(an^{2}+bn+c)$ $a,b,c \neq 0$. Condone poor algebra. Could follow cubic or quartic. Allow a consistent $a =, b =,$ c = if quadratic never seen simplified Requires previous M mark. A1: Correct expression or a = 3, b = 11, c = 4 Allow e.g., $\frac{1}{12}n(n+1)$ written as $\frac{n}{12}(n+1)$	d M1 A1
	Note: $n(n+1)(3n^2+11n+4) =$	$3n^4 + 14n^3 + 15n^2 + 4n$	Total 4

Question	Scheme	Notes	Marks
Number			IVIAI KS
2	$2x^4 - 8x^3 + 29x^2 - 12x + 3x^2 - 12x - $,	
	Condone work in e.g		D 1
(a)	2–3i	Correct conjugate	B1 (1)
(b)	$ (x-(2-3i))(x-(2+3i)) = \dots \{x^2-4x+13\} $ or sum = 4, product = 13 $ \Rightarrow x^2 \pm 4x \pm 13 \text{ or } x^2 \pm 13x \pm 4 $ or $ x^2 - (2+3i+2-3i)x + (2+3i)(2-3i) $ $ \Rightarrow \dots \{x^2-4x+13\} $	Attempts to multiply the two correct factors to obtain a 3 term quadratic with real coefficients. Could use $(x-2)^2 = (\pm 3i)^2$ or $x^2 - 2ax + a^2 + b^2$ with $a = 2, b = \pm 3$ Or uses the correct sum and product of the roots to obtain an expression of the form shown (must be some minimal working – but if just a quadratic is given the next 2 marks are available) or $x^2 - (\alpha + \beta)x + \alpha\beta$ to obtain a 3 term quadratic with real coefficients.	(1) M1
	$2x^{4} - 8x^{3} + 29x^{2} - 12x + 39 \Longrightarrow (x^{2} - 4x + 13)(2x^{2} + 3)$	Uses their 2 or 3 term quadratic factor with real coefficients to obtain a second	M1
	$2x^{2} + 3(=0) \Rightarrow$ $x = \pm \frac{\sqrt{6}}{2}i \text{ or } \pm i\sqrt{\frac{3}{2}} \text{ or } \pm \frac{\sqrt{3}}{\sqrt{2}}i \text{ or } \sqrt{1.5}i$ $\sqrt{1.5i} \text{ is M0}$ $1.2247i \text{ is M1 A0}$	 dM1: Solves their second quadratic factor = 0. If 2 term must get one correct non-zero root. (Usual rules if 3TQ and one correct root if no working) Could be inexact. Requires previous method mark. A1: Both correct exact roots with "i" Requires all previous marks. 	d M1 A1
	Solving by calculator, sometimes followed b		
	$f(x) = (x^2 - 4x + 13)(x^2 + \frac{3}{2})$ is first M1 only	and working for the 3TQ must be seen	(4)
(c)	$\begin{array}{c} \mathbf{x} \\ $	Allow ft on their answers to (b) if they are of the form $\pm ki$ or $\pm k\sqrt{-1}$, $k \neq 0$ regardless of how they were obtained 1st B1: One of the two pairs of roots in correct positions 2nd B1: Both pairs of roots in correct positions and correct relative to each other for their <i>k</i> Allow any suitable indication of the roots such as vectors. Ignore all labelling and scaling but each pair should be reasonably symmetric in <i>x</i> -axis for any marks (for each pair -distance of one to <i>x</i> -axis not less than	B1 B1 (ft on (b))
		$\frac{1}{2}$ of the other)	
			(2)
			Total 7

		https://	(british
Question Number	Scheme	Notes	Marks
3(a)	$y = 9x^{-1} \Rightarrow \frac{dy}{dx} = -9x^{-2} \left\{ = -\frac{9}{(3t)^2} \right\}$ or $xy = 9 \Rightarrow x\frac{dy}{dx} + y = 0 \Rightarrow \frac{dy}{dx} = -\frac{y}{x} \left\{ = -\frac{3}{t} \right\}$	Any correct expression for $\frac{dy}{dx}$ but allow e.g., $\frac{dx}{dy} = -9y^{-2}$	B1
	$dx \qquad dx \qquad x \qquad (3t)$ or $x = 3t, \ y = 3t^{-1} \Rightarrow \frac{dx}{dt} = 3, \ \frac{dy}{dt} = -3t^{-2} \Rightarrow \frac{dy}{dx} = \frac{-3t^{-2}}{3}$	Calculus must be seen so there is no credit for just a statement e.g., $m_T = -\frac{1}{t^2}$ Uses the perpendicular gradient rule to	
	e.g., $m_N = \frac{(3t)^2}{9}$ or $\frac{3t}{\frac{3}{t}}$ or $\frac{3}{3t^{-2}} = \{t^2\}$	obtain the gradient of the normal in terms of t correct for their m_T Implied by correct use of $-\frac{dx}{dy}$	M1
	$y - \frac{3}{t} = t^2 \left(x - 3t \right) \text{ or } \frac{3}{t} = t^2 \left(3t \right) + c \Longrightarrow c = \dots$ $\left\{ c = \frac{3}{t} - 3t^3 \right\}$	Applies straight line method correctly with their normal (changed) gradient in terms of t. If using $y = mx + c$ coordinates must be correctly placed and $c =$ reached	M1
	$ty - t^3x = 3 - 3t^4$ Intermediate step not required. Allow recovery from a slip.	Correct equation or $f(t)$. Must be seen in (a). Accept equivalents for $f(t)$ e.g., $3(1-t^4)$, $-3(t^4-1)$	A1
	Allow work with $xy = c^2$ but the fination No calculus scores a maximum of 0111 if	_	(4)
(b)	$xy = 9, \ 2y - 8x = 3 - 3 \times 16$ e.g., $\Rightarrow y = 4x - \frac{45}{2} \text{ or } x = \frac{45}{8} + \frac{y}{4}$ $\Rightarrow x \left(4x - \frac{45}{2} \right) = 9 \text{ or } y \left(\frac{45}{8} + \frac{y}{4} \right) = 9$	Uses $t = 2$ in their $ty - t^3x = f(t) \neq 0$ and the equation of H to obtain an unsimplified three term quadratic equation in x or y (no variables in denominators). Only allow $f(t) = \frac{9}{t}$ if stated first	M1
	$8x^{2} - 45x - 18 = 0 \text{ or } 2y^{2} + 45y - 72 = 0$ $\{\Rightarrow (8x+3)(x-6) = 0 \text{ or } (2y-3)(y+24) = 0\}$ $\Rightarrow x = \dots \{-\frac{3}{8}, 6\} \text{ or } y = \dots \{\frac{3}{2}, -24\}$	 Solves their 3TQ to find a value for x or y apply usual rules. One root correct if no working. Can award for P provided it has come from quadratic. Requires previous method mark. 	d M1
	$\left(-\frac{3}{8}, -24\right)$ or $\left(-0.375, -24\right)$	Correct exact coordinates in simplest form from correct work. Allow $x =, y =$ Ignore $\left(6, \frac{3}{2}\right)$ but A0 for any other point shown or incorrect <i>x</i> or <i>y</i> value.	A1
	Solving in terms of t: M1: \Rightarrow Unsimplified 3 M1: Solves e.g, $x = \frac{-\frac{3}{t} + 3t^3 \pm \sqrt{\left(\frac{3}{t} - 3t^3\right)^2 + 36t^2}}{2t^2}$	TQ e.g., $t^2 x^2 + \left(\frac{3}{t} - 3t^3\right) x - 9 = 0$ M1	(3)
	Correct final answer with no incorrect wo	ork is 111 provided $f(t)$ was correct	Total 7

Question NumberSchemeNotesMarks4 $A = \begin{pmatrix} -3 & 8 \\ -3 & k \end{pmatrix}$ $B = \begin{pmatrix} a & -4 \\ 2 & 3 \end{pmatrix}$ $BC = \begin{pmatrix} 2 & 5 & 1 \\ 1 & 4 & 2 \end{pmatrix}$ (i)det $A = -3k - 8(-3) \{ = -3k + 24 \}$ Could be impliedAttempts det A and obtains $+3k \pm 8(\pm 3)$ or $\pm 3k \pm 24$ M1(ii)det $A = -3k - 8(-3) \{ = -3k + 24 \}$ $-3k \pm 24 = 3$ or $-3k + 24 = -3$ $\Rightarrow k =$ May see $(-3k + 24)^3 = 9 \Rightarrow 9k^2 - 144k + 567 = 0 \Rightarrow$ Equates their det A of form $ak + b a b b 2 0$ to $3 \text{ or } -3 \text{ or}$ equivalent work and obves for k (usual roles if quadratic and must use $+9$)M1(iii)det $B = 1 \times 3a - (-4) \times 2 \{ = 3a + 8 \}$ Correct unsimplified expression for det $B = 1 = \frac{1}{^3a + 8^{(1)}} \begin{pmatrix} 3 & 4 \\ -2 & a \end{pmatrix}$ Correct unsimplified expression for det $B = 1$ (iii) $B^{-1} = \frac{1}{^3a + 8(-2 & a)} \begin{pmatrix} 3 & 4 \\ -2 & a \end{pmatrix}$ Correct unsimplified expression for det $B = 1$ M1 $C = B^{-1}BC = \frac{1}{3a + 8(-2 & a)} \begin{pmatrix} 2 & 5 & 1 \\ -2 & a \end{pmatrix}$ Multiplies BC by their B^{-1} (changed and not just by incorporation of their determinant of t B^{-1} = det B \times Adj(B) usedMultiplies BC by their B^{-1} (changed and not just by incorporation of their incorporated.M1 $C = B^{-1}BC = \frac{1}{3a + 8(-2 - a)} \begin{pmatrix} 2 & 5 & 1 \\ -2 & a \end{pmatrix}$ Correct Creat using by factor and their determinant of t B^{-1} = det B × Adj(B) used $C = -1 = \frac{1}{3a + 8(-2 - a)} \begin{pmatrix} 3 & 4 \\ -2 & -2 \end{pmatrix} \begin{pmatrix} 2 & 5 & 1 \\ -2 & -2 \end{pmatrix}$ Multiplies BC by their B^{-1} (changed and not just by incorporation of their determinant of the B × Adj(B) used $C = -1 = \frac{1}{3a + 8(-2 - a)} \begin{pmatrix} 3 & 4 \\ -2 & -2 \end{pmatrix} \begin{pmatrix} 2 & 5 & 1 \\ -3a + 8 & \frac{3}{3a + 8} & \frac{11}{3a + 8} \end{pmatrix}$ <th></th> <th></th> <th>https</th> <th>-britisher</th>			https	-britisher
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	Scheme		4 CM
$\frac{\operatorname{Could}\operatorname{be}\operatorname{implied}}{\operatorname{Could}\operatorname{be}\operatorname{implied}} = \frac{\pm 3k \pm 24}{\operatorname{Could}\operatorname{be}\operatorname{implied}} = \frac{\pm 3k \pm 24 = -3}{\pm k =} = \frac{\pm 3k \pm 24}{\operatorname{Equates their det A of form}} = \frac{\pm 3k \pm 24}{a + b = 0 \times 3 \text{ or } 3 \text{ or } = \frac{\pm 2}{a + 24} = \frac{-3}{a + b = -3} = \frac{-3}{a $	-	$\mathbf{A} = \begin{pmatrix} -3 & 8 \\ -3 & k \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} a & -4 \\ 2 & 3 \end{pmatrix}$	$\mathbf{BC} = \begin{pmatrix} 2 & 5 & 1 \\ 1 & 4 & 2 \end{pmatrix}$	n.com/
a +b +a +a +b +a	(i)		$\pm 3k \pm 8(\pm 3)$ or $\pm 3k \pm 24$	M1
Ist A1: Either correct value of k from correct work. Allow e.g., $\frac{-31}{2}$ or $\frac{-27}{3}$ A1 A1(ii)Ist A1: Either correct values of k from correct work. 7 and 9 only. No extraA1 A1(iii)det B = 1×3a - (-4)×2 {=3a+8}Correct unsimplified expression for det B. Could be impliedB1B = $1 = \sqrt{3a+8}^n \begin{pmatrix} 3 & 4 \\ -2 & a \end{pmatrix} \begin{pmatrix} 2 & 5 & 1 \\ 1 & 4 & 2 \end{pmatrix} = \dots$ Correct B ¹ with their de B. Adj(B) to be correct but allow elements to have their det B as denominators if incorporated.M1Correct B^1 with their de B. Adj(B) to be correct but allow elements to have their det B as denominators if incorporated.M1Adject to the correct of a point of their determinant or if B ¹ = det B × Adj(B) usedM1Correct Or correct elements for their matrices if the method is unclear. The incorrect order scores M0 even if the correct or correct endult is obtained.Correct Or correct order scores M0 even if the correct order scores M0 even if the incorrect order scores M0 even if the correct order scor		$\Rightarrow k = \dots$	$ak+b$ a, $b \neq 0$ to 3 or -3 or equivalent work and solves for k (usual	M1
(ii) $\frac{\det \mathbf{B} = 1 \times 3a - (-4) \times 2 \left\{=3a + 8\right\}}{\mathbf{B} : \operatorname{Correct unsimplified expression for det} \mathbf{B} : \operatorname{Coulde implied} \mathbf{B} : \operatorname{Correct B} : \operatorname{With their det B} : \operatorname{Adj(B)} : \operatorname{Correct B} : \operatorname{With their det B} : \operatorname{Adj(B)} : \operatorname{Correct B} : \operatorname{With their det B} : \operatorname{Adj(B)} : \operatorname{Correct B} : \operatorname{With their det B} : \operatorname{Adj(B)} : \operatorname{Correct B} : \operatorname{With their det B} : \operatorname{Adj(B)} : \operatorname{Correct B} : \operatorname{With their det B} : \operatorname{Adj(B)} : \operatorname{Correct B} : \operatorname{With their det B} : \operatorname{Adj(B)} : \operatorname{Correct B} : \operatorname{With their det B} : \operatorname{Adj(B)} : \operatorname{Correct B} : \operatorname{With their det B} : \operatorname{Adj(B)} : \operatorname{Correct B} : \operatorname{With their det B} : \operatorname{Adj(B)} : \operatorname{Correct B} : \operatorname{With their det B} : \operatorname{Adj(B)} : \operatorname{Correct Way round} : \operatorname{Expect four correct expansion of their incorrect order scores M0 even if the used : used : \operatorname{Correct C} : \operatorname{Correct C} : \operatorname{Vay round} : \operatorname{Expect four correct result is obtained.} : \operatorname{Correct C} : \operatorname{Vay round} : \operatorname{Expect four correct result is obtained.} : \operatorname{Correct C} : \operatorname{Vay round} : \operatorname{Expect four correct result is obtained.} : \operatorname{Correct C} : \operatorname{Vay round} : \operatorname{Expect four correct result is obtained.} : \operatorname{Correct C} : \operatorname{Vay round} : \operatorname{Expect four correct result is obtained.} : \operatorname{Correct C} : \operatorname{Vay round} : \operatorname{Expect four correct result is obtained.} : \operatorname{Correct C} : \operatorname{Vay round} : \operatorname{Expect four correct result is obtained.} : \operatorname{Correct C} : \operatorname{Vay round} : \operatorname{Expect four correct result is obtained.} : \operatorname{Correct C} : \operatorname{Vay round} : \operatorname{Expect four correct result is obtained.} : \operatorname{Correct C} : \operatorname{Vay round} : \operatorname{Expect four correct result is obtained.} : \operatorname{Correct C} : \operatorname{Vay round} : \operatorname{Expect four correct result is obtained.} : \operatorname{Correct} : \operatorname{Vay round} : Expect four correct order scores M0 even if the is correct and single fractions if necessary. e.g., : \\ (10 : 3a + 8 : $		1st A1: Either correct value of k from corr	ect work. Allow e.g., $\frac{-21}{-3}$ or $\frac{-27}{3}$	
$\frac{\operatorname{det} \mathbf{B} = 1 \times 3a^{-}(-4) \times 2 \left\{ = 3a + 6 \right\}}{\mathbf{B} = 3a + 6 \right\}} \qquad \qquad$				(4)
$ \mathbf{B}^{-1} = \frac{1}{"3a+8"} \begin{pmatrix} 3 & 4 \\ -2 & a \end{pmatrix} \qquad \qquad$	(ii)	det B = $1 \times 3a - (-4) \times 2 \{= 3a + 8\}$	B . Could be implied	B1
$\mathbf{C} = \mathbf{B}^{-1}\mathbf{B}\mathbf{C} = \frac{1}{3a+8} \begin{bmatrix} 3 & 1 \\ -2 & a \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 1 & 4 & 2 \end{bmatrix} = \dots$ Access to this mark is allowed if there is no determinant or if $\mathbf{B}^{-1} = \det \mathbf{B} \times \operatorname{Adj}(\mathbf{B})$ used $\mathbf{C} = \frac{1}{3a+8} \begin{bmatrix} 10 & 31 & 11 \\ a-4 & 4a-10 & 2a-2 \end{bmatrix}$ Ignore any reference to inapplicable values of a (a \neq -\frac{8}{3}) $(a \neq -\frac{8}{3}) = \begin{bmatrix} 2 & 5 & 1 \\ 1 & 4 & 2 \end{bmatrix} \Rightarrow \frac{ap-4s}{2a+8} = \frac{2(2a-5)}{3a+8} = \frac{2(a-1)}{3a+8}$ A1 $\frac{a-4}{2} = \frac{2(2a-5)}{3a+8} = \frac{2(a-1)}{3a+8} = \frac{4a-10}{3a+8}$ $s = \frac{1}{3} (1-\frac{20}{3a+8}) t = \frac{1}{3} (4-\frac{62}{3a+8}) u = \frac{1}{3} (2-\frac{22}{3a+8}) \Rightarrow \begin{bmatrix} \frac{10}{3a+8} & \frac{31}{3a+8} & \frac{11}{3a+8} \\ \frac{a-4}{3a+8} & \frac{4a-10}{3a+8} & \frac{2a-2}{3a+8} \end{bmatrix} \rightarrow \begin{bmatrix} 10 & 3a+8 & 1a-8 \\ \frac{a-4}{3a+8} & \frac{4a-10}{3a+8} & \frac{2a-2}{3a+8} \end{bmatrix} \rightarrow \begin{bmatrix} 10 & 3a+8 & 1a-8 \\ \frac{a-4}{3a+8} & \frac{4a-10}{3a+8} & \frac{2a-2}{3a+8} \end{bmatrix} \rightarrow \begin{bmatrix} 10 & 3a+8 & 1a-8 \\ \frac{a-4}{3a+8} & \frac{4a-10}{3a+8} & \frac{2a-2}{3a+8} \end{bmatrix} \rightarrow \begin{bmatrix} 10 & 3a+8 & 1a-8 \\ \frac{a-4}{3a+8} & \frac{4a-10}{3a+8} & \frac{2a-2}{3a+8} \end{bmatrix} \rightarrow \begin{bmatrix} 10 & 3a+8 & 1a-8 \\ \frac{a-4}{3a+8} & \frac{4a-10}{3a+8} & \frac{2a-2}{3a+8} \end{bmatrix} \rightarrow \begin{bmatrix} 10 & 3a+8 & 1a-8 \\ \frac{a-4}{3a+8} & \frac{4a-10}{3a+8} & \frac{2a-2}{3a+8} \end{bmatrix} \rightarrow \begin{bmatrix} 10 & 3a+8 & 1a-8 \\ \frac{a-4}{3a+8} & \frac{4a-10}{3a+8} & \frac{2a-2}{3a+8} \end{bmatrix} \rightarrow \begin{bmatrix} 10 & 3a+8 & 1a-8 \\ \frac{a-4}{3a+8} & \frac{4a-10}{3a+8} & \frac{2a-2}{3a+8} \end{bmatrix} \rightarrow \begin{bmatrix} 10 & 3a+8 & 1a-8 \\ \frac{a-4}{3a+8} & \frac{4a-10}{3a+8} & \frac{2a-2}{3a+8} \end{bmatrix} \rightarrow \begin{bmatrix} 10 & 3a+8 & 1a-8 \\ \frac{a-4}{3a+8} & \frac{4a-10}{3a+8} & \frac{2a-2}{3a+8} \end{bmatrix} \rightarrow \begin{bmatrix} 10 & 3a+8 & 1a-8 \\ \frac{a-4}{3a+8} & \frac{4a-10}{3a+8} & \frac{2a-2}{3a+8} \end{bmatrix} \rightarrow \begin{bmatrix} 10 & 3a+8 & 1a-8 \\ \frac{a-4}{3a+8} & \frac{4a-10}{3a+8} & \frac{2a-2}{3a+8} \end{bmatrix} \rightarrow \begin{bmatrix} 10 & 3a+8 & 1a-8 \\ \frac{a-4}{3a+8} & \frac{4a-10}{3a+8} & \frac{2a-2}{3a+8} \end{bmatrix} \rightarrow \begin{bmatrix} 10 & 3a+8 & 1a-8 \\ \frac{a-4}{3a+8} & \frac{4a-10}{3a+8} & \frac{2a-2}{3a+8} \end{bmatrix} \rightarrow \begin{bmatrix} 10 & 3a+8 & 1a-8 \\ \frac{a-4}{3a+8} & \frac{4a-10}{3a+8} & \frac{2a-2}{3a+8} \end{bmatrix} \rightarrow \begin{bmatrix} 10 & 3a+8 & 1a-8 \\ \frac{a-4}{3a+8} & 4a-10$		$\mathbf{B}^{-1} = \frac{1}{"3a+8"} \begin{pmatrix} 3 & 4 \\ -2 & a \end{pmatrix}$	be correct but allow elements to have their det B as denominators if	M1
$\mathbf{C} = \frac{1}{3a+8} \begin{pmatrix} 10 & 31 & 11 \\ a-4 & 4a-10 & 2a-2 \end{pmatrix}$ Ignore any reference to inapplicable values of a $\begin{pmatrix} a \neq -\frac{8}{3} \end{pmatrix}$ Correct C or equivalent with like terms collected and single fractions if necessary. e.g., $\begin{pmatrix} 10 & 31 & 11 \\ 3a+8 & \frac{31}{3a+8} & \frac{11}{3a+8} \\ \frac{a-4}{3a+8} & \frac{2(2a-5)}{3a+8} & \frac{2(a-1)}{3a+8} \end{pmatrix}$ A1 \mathbf{A} \mathbf{A} A1 \mathbf{A} A		Access to this mark is allowed if there is no determinant or if $\mathbf{B}^{-1} = \det \mathbf{B} \times \operatorname{Adj}(\mathbf{B})$	and not just by incorporation of their determinant) the correct way round. Expect four correct elements for their matrices if the method is unclear. The incorrect order scores M0 even if the	M1
Alt Sim. equations $ \begin{pmatrix} a & -4 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} p & q & r \\ s & t & u \end{pmatrix} = \begin{pmatrix} 2 & 5 & 1 \\ 1 & 4 & 2 \end{pmatrix} \Rightarrow \frac{ap-4s=2}{2p+3s=1} aq-4t=5 ar-4u=1 \\ p = 3p-4s=2 aq-4t=5 ar-4u=1 \\ p = 2p+3s=1 2q+3t=4 2r+3u=2 \\ (3a+8)p=10 (3a+8)q=31 (3a+8)r=11 \\ p = \frac{10}{3a+8} q = \frac{31}{3a+8} r = \frac{11}{3a+8} \\ s = \frac{1}{3}\left(1-\frac{20}{3a+8}\right) t = \frac{1}{3}\left(4-\frac{62}{3a+8}\right) u = \frac{1}{3}\left(2-\frac{22}{3a+8}\right) \Rightarrow \begin{pmatrix} 10 & 31 & 11 \\ 3a+8 & 3a+8 & 3a+8 \\ \frac{a-4}{3a+8} & \frac{4a-10}{3a+8} & \frac{2a-2}{3a+8} \end{pmatrix} \\ s = \frac{a-4}{3a+8} t = \frac{4a-10}{3a+8} u = \frac{2a-2}{3a+8} \\ s = \frac{a-4}{3a+8} t = \frac{4a-10}{3a+8} u = \frac{2a-2}{3a+8} \\ s = \frac{2a-2}{3a+8} z = \frac{2a-2}{3a+8} \\ s = \frac{a-4}{3a+8} z = \frac{4a-10}{3a+8} z = \frac{2a-2}{3a+8} \\ s = \frac{a-4}{3a+8} z = \frac{4a-10}{3a+8} z = \frac{2a-2}{3a+8} \\ s = \frac{2a-2}{3a+8} z = \frac{2a-2}{3a+8} \\ s$		$\mathbf{C} = \frac{1}{3a+8} \begin{pmatrix} 10 & 31 & 11 \\ a-4 & 4a-10 & 2a-2 \end{pmatrix}$ Ignore any reference to inapplicable values of a $(a \neq -\frac{8}{3})$	Correct C or equivalent with like terms	A1
Sint. Multiplies in the correct order to obtain at least three correct equations Multiplies in the correct order to obtain at least three correct equations $(3a+8) p = 10$ $(3a+8)q = 31$ $(3a+8)r = 11$ $p = \frac{10}{3a+8}$ $q = \frac{31}{3a+8}$ $r = \frac{11}{3a+8}$ $\Rightarrow \left(\frac{10}{3a+8} + \frac{31}{3a+8} + \frac{11}{3a+8}\right)$ $s = \frac{1}{3} \left(1 - \frac{20}{3a+8}\right)$ $t = \frac{1}{3} \left(4 - \frac{62}{3a+8}\right)$ $u = \frac{1}{3} \left(2 - \frac{22}{3a+8}\right)$ $\Rightarrow \left(\frac{10}{3a+8} + \frac{31}{3a+8} + \frac{11}{3a+8}\right)$ M1 $s = \frac{a-4}{3a+8}$ $t = \frac{4a-10}{3a+8}$ $u = \frac{2a-2}{3a+8}$ $\Rightarrow \left(\frac{2a-2}{3a+8} + \frac{2a-2}{3a+8}\right)$ M1	Alt	$(a -4)(p - q - r) (2 - 5 - 1) \rightarrow ap -$	-4s = 2 aq - 4t = 5 ar - 4u = 1	(4)
$p = \frac{10}{3a+8} \qquad q = \frac{31}{3a+8} \qquad r = \frac{11}{3a+8} \qquad \Rightarrow \begin{pmatrix} 10 & 31 & 11 \\ 3a+8 & 3a+8 & 3a+8 \\ \frac{a-4}{3a+8} & \frac{4a-10}{3a+8} \end{pmatrix} \qquad M1$ $s = \frac{a-4}{3a+8} \qquad t = \frac{4a-10}{3a+8} \qquad u = \frac{2a-2}{3a+8} \qquad \qquad = \frac{2a-2}{3a+8}$		Multiplies in the correct order to obtain	at least three correct equations	B1
M1: Solves their equations to find expressions in terms of <i>a</i> for three elements M1: Finds expressions in terms of <i>a</i> for all six elements A1: Correct matrix – like terms collected and single fractions		$p = \frac{10}{3a+8} \qquad q = \frac{31}{3a+8} \qquad r = \frac{1}{3a}$ $s = \frac{1}{3} \left(1 - \frac{20}{3a+8}\right) \qquad t = \frac{1}{3} \left(4 - \frac{62}{3a+8}\right) \qquad u = \frac{1}{3} \left(2 - \frac{1}{3a+8}\right)$ $s = \frac{a-4}{3a+8} \qquad t = \frac{4a-10}{3a+8} \qquad u = \frac{2a}{3a}$ $M1: \text{ Solves their equations to find expression}$ $M1: \text{ Finds expressions in terms of }$	$\frac{1}{8} \frac{1}{3a+8} \Rightarrow \begin{pmatrix} 10 & 31 & 11 \\ 3a+8 & 3a+8 & 3a+8 \\ \frac{22}{3a+8} \end{pmatrix} \Rightarrow \begin{pmatrix} 10 & 31 & 11 \\ 3a+8 & 3a+8 & 3a+8 \\ \frac{a-4}{3a+8} & \frac{4a-10}{3a+8} & \frac{2a-2}{3a+8} \end{pmatrix}$ $\frac{-2}{8} \frac{-2}{8} \frac{1}{3a+8} \frac{1}$	
Total 8				Total 8

Quartier			"/Britishstu
Question Number	Scheme	Notes	Marks
5	Solutions that rely entirely on solving the equation there may be attempts which include some of appropriate crosses.	the work below which can receive	
(a)	$\alpha + \beta = 6 \alpha\beta = 3$	Correct sum and product. Could be implied. Allow $\frac{6}{1}$ and $\frac{3}{1}$	B1
	$(\alpha^2+1)(\beta^2+1) = \alpha^2\beta^2+\alpha^2+\beta^2+1$	Multiplies $(\alpha^2 + 1)(\beta^2 + 1)$ to obtain 3 or 4 terms with 3 correct. Do not condone $\alpha\beta^2$ for $(\alpha\beta)^2$ unless implied later	M1
	$=\alpha^{2}\beta^{2}+(\alpha+\beta)^{2}-2\alpha\beta+1$	Uses $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$	M1
	$ \left\{ = 3^2 + 6^2 - 2 \times 3 + 1 \right\} $ = 40	Correct answer from correct work. Use of e.g., $\alpha + \beta = -6$ is A0	A1
			(4)
(b)	Allow use of their $(\alpha^2 + 1)(\beta^2 + 1)$ which could Numerator must be		
	$\frac{\alpha}{\left(\alpha^{2}+1\right)}+\frac{\beta}{\left(\beta^{2}+1\right)}=\frac{\alpha\left(\beta^{2}+1\right)+\beta\left(\alpha^{2}+1\right)}{"\left(\alpha^{2}+1\right)\left(\beta^{2}+1\right)"}$	Any correct expression with their $(\alpha^2 + 1)(\beta^2 + 1)$ for the new sum as a single fraction (or two fractions both with the common denominator)	B1
	$=\frac{\alpha\beta(\beta+\alpha)+(\alpha+\beta)}{"(\alpha^{2}+1)(\beta^{2}+1)"}=\frac{"3"\times"6"+"6"}{"40"}=$	Uses a correct expression with their $(\alpha^2 + 1)(\beta^2 + 1)$ for the new sum to obtain a correct numerical expression with their denominator, $\alpha + \beta \& \alpha\beta$ and achieves a value.	M1
	$\frac{\alpha\beta}{"(\alpha^2+1)(\beta^2+1)"} = \frac{"3"}{"40"}$	Uses a correct expression with their $(\alpha^2 + 1)(\beta^2 + 1)$ for the new product to obtain a correct value with their denominator and $\alpha\beta$	M1
	new sum = $\frac{24}{40} \left\{ = \frac{3}{5} \right\}$ or new product = $\frac{3}{40}$	One value for new sum or new product correct. Any equivalent fractions. Not ft. Requires appropriate previous M mark.	A1
	$x^2 - \frac{24}{40}x + \frac{3}{40} \{=0\}$	Correctly uses $x^2 - (\text{sum of roots})x + (\text{product of roots})$ or equivalent work with their new sum and product. Condone use of a different variable. Allow appropriate values for <i>p</i> , <i>q</i> and <i>r</i>	M1
	$40x^2 - 24x + 3 = 0$	Any correct equation with integer coefficients and "= 0". Condone use of a different variable. Allow e.g., $p = 40$, q = -24, $r = 3$. Requires all marks.	A1
	Note that although $(\alpha^2 + 1)(\beta^2 + 1)$ may be attected credit for work in (a) that is		(6) Total 10

		14 A	95-11britishst
Question Number	Scheme	Notes	Marks
6(a)	$ z_1 + z_2 \{ = 3 + 2i + 2 + 3i = 5 + 5i \} = \sqrt{5^2 + 5^2}$	Attempts the sum (allow one slip) and uses Pythagoras correctly	M1
	$\sqrt{50}$ or $5\sqrt{2}$	Either correct exact answer	A1
	Answer only is no marks but working can	be minimal e.g., $ 5+5i = 5\sqrt{2}$	(2)
(b)	$\frac{z_2 z_3}{z_1} = \frac{(2+3i)(a+bi)}{(3+2i)} = \frac{(2+3i)(a+bi)}{(3+2i)} \times \frac{(3-2i)}{(3-2i)}$ or $\frac{z_2}{z_1} = \frac{2+3i}{3+2i} \times \frac{3-2i}{3-2i}$ or $\frac{z_3}{z_1} = \frac{a+bi}{3+2i} \times \frac{3-2i}{3-2i}$	Substitutes complex numbers and correct multiplier to rationalise the denominator seen or implied. See note below Could use $\times \frac{-3+2i}{-3+2i}$	M1
	(3+2i)(3-2i)=13	13 <u>obtained from</u> $(3+2i)(3-2i)$ Could be implied.	B1
	$\frac{z_2 z_3}{z_1} = \frac{12a - 5b}{13} + \frac{5a + 12b}{13}i$ or $\frac{1}{13}(12a - 5b) + \frac{i}{13}(5a + 12b)$ or $\frac{12}{13}a - \frac{5}{13}b + i\left(\frac{5}{13}a + \frac{12}{13}b\right)$ etc. Condone $\frac{(12a - 5b) + (5a + 12b)i}{13}$	d M1: Attempts to simplify the numerator and collects terms to obtain $pa + qb + rai + sbi$ with at least three of p , q , r and s non-zero. Requires previous M mark . A1: Correct answer in any form with a single "i". Correct bracketing where needed. Allow $x =, y =$	d M1 A1
	Note: The following marks are accessible if complex n z_2 as denominator max 1010, z_3 as		(4)
(c)	$\frac{12a-5b}{13} = \frac{4}{13}, \frac{5a+12b}{13} = \frac{58}{13} \implies a =, b =$ No need to check values but must be some wor " $\frac{12a-5b}{13} = \frac{4}{13}, \frac{5a+12b}{13} = \frac{58}{13} \qquad 12a-5b = 4, 5$ Values can immediately follow if equations are p the same magning	Equates their x to $\frac{4}{13}$ and their y to $\frac{58}{13}$ to obtain 2 linear equations in both a and b and solves to obtain values for both a and b. rking between equations and values. 5a+12b=58 $a=2$, $b=4$ " is M0A0 produced with coefficients of a or b of itude	M1
	a=2 and $b=4$	Correct values for <i>a</i> and <i>b</i> from correct equations with working.	A1
	SC: Allow access to both marks for the exact $a = -\frac{242}{169}$ and $b =$ There are no marks in (c) if z_3 was used as the dem	$\frac{716}{169}$ from using $w = \frac{z_1 z_3}{z_2} = \frac{12a + 5b}{13} + \frac{12b - 5a}{13}$ i	(2)
(d)	$\arctan\left(\frac{\frac{58}{13}}{\frac{4}{13}}\right) \left\{=1.5019 \text{ or } 86.05^{\circ}\right\} \text{ or}$ $\arctan\left(\frac{\frac{43}{13}}{\frac{58}{13}}\right) \left\{=0.068856 \text{ or } 3.945^{\circ}\right\}$	Either correct arctan or tan ⁻¹ seen or implied by a correct 2sf value (awrt 1.5, 86, 0.069/0.068, 3.9) Could use equivalent trig. Note : tan $\frac{58}{4} = -2.634$ or 0.258	M1
	1.502	1.502 only (not awrt) Mark final answer if 1.502 is followed by e.g., $\frac{\pi}{2}$ -1.502 = 0.06880	A1
			(2)
			Total 10

		And And	S://britisher
Question Number	Scheme	Notes	Marks
7(a)	$f(x) = x^{\frac{3}{2}} + x - 3$ f(1)=1+1-3=-1 f(2)= $\sqrt{8}$ +2-3=1.828	Calculates values for both f(1) and f(2) with one correct. Allow e.g., f(2) = $2\sqrt{2}$ – 1 or awrt 2	M1
	f is continuous and changes sign , so root or α in [1, 2]. Correct interval [1, 2] if given. Sign change can be implied by "negative, positive", "f(1) < 0, f(2) > 0" or "f(1)f(2) < 0"	Correct values and sight of continuous , sign change and e.g., root/shown/QED/true/proven/ √	A1
			(2)
(b)	$f(1.5) = 1.5^{\frac{3}{2}} + 1.5 - 3 \{=0.3371\}$	Obtains a <u>numerical expression or</u> <u>value</u> for f (1.5)	M1
Work may be	$f(1.25) = 1.25^{\frac{3}{2}} + 1.25 - 3 = \dots \{-0.3524\}$	Obtains a <u>value</u> for f(1.25). Requires previous M mark.	d M1
seen in a table	$\Rightarrow \operatorname{root}/\alpha / x/\operatorname{it's in/on/} \in [1.25, 1.5]$ or "in [1.25, 1.5]" or $1.25 \leq \operatorname{root}/\alpha / x \leq 1.5$	Correct values (awrt 0.3 and -0.3 or -0.4) and suitable conclusion. Allow "between $\frac{5}{4}$ and $\frac{3}{2}$ inclusive "	A1
	Do not accept [1.5, 1.25]. Just " $f(1.25) = \dots$ followed by interval bisection. There are no marks if it is		(3)
(c)(i)	$f'(x) = \frac{3}{2}x^{\frac{1}{2}} + 1$	Correct differentiation. Any correct equivalent e.g., $1.5\sqrt{x} + 1$	B1
(ii)	$\alpha \approx 1.375 - \frac{1.375^{\frac{3}{2}} + 1.375 - 3}{\frac{3}{2} \times 1.375^{\frac{1}{2}} + 1"} = \dots$ $\begin{cases} = 1.375 - \frac{-0.01266958256\dots}{2.75890591\dots} = 1.375 + 0.004592248875\dots\\ = 1.379592249\dots\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	Correctly applies the Newton- Raphson formula with 1.375 & their f'(x) and obtains a value. Some working must be seen unless approx. root is seen correct to 6 d.p. accuracy (1.379592) or better. Allow "=1.375 - $\frac{f(1.375)}{f'(1.375)}$ "followed by value but formula must be fully substituted if just followed by value unless "x ₀ "defined	M1
	awrt 1.380 or "1.38" (Ignore further iterations)	No clearly incorrect work.	A1
	NB Actual root is 1.379589808. At	nswer only is no marks.	(3)
(d)	e.g., $\frac{\alpha - 1.25}{1.5 - \alpha} = \frac{0.3524575141}{0.3371173071}$ or e.g., $\frac{1.5 - \alpha}{0.337} = \frac{1.5 - 1.25}{0.337 + 0.352}$	Forms an equation in e.g., α with their f(1.25) and f(1.5) allowing for sign errors only but must be using differences. Allow use of "f(1.25)" and "f(1.5)"- could recover sign error	M1
	$\alpha = 1.377780737 = 1.378$	dM1: Solves ⇒value Requires previous M mark. A1: awrt 1.378	d M1 A1
	May use a formula. Allow work in, e.g., x for all r		(3)
Alt (Equation of line methods)	or $y - (-0.3524[\text{or } 0.3371]) = \frac{0.3371}{1}$ or $-0.3524[\text{or } 0.3371] = \frac{0.3371(-0)}{1.5-1.2}$ A full method to determine the equation of the	$\frac{(-0.3524)}{5-1.25}(x-1.25[\text{or }1.5])$ $\frac{.3524)}{.5}(1.25[\text{or }1.5])+c \Rightarrow c =$ e line using their f(1.25) and f(1.5)	M1
	allowing for sign errors only (but allow subseque		
	$\{\Rightarrow y = 2.758x - 3.800\}$	d M1: Puts $y = 0$ and solves \Rightarrow value Requires previous M mark.	d M1 A1
	$\alpha = 1.377780737 = 1.378$	A1: awrt 1.378	(3)

		Pitos	16
Question Number	Scheme	Notes	Marks
8	$y^2 = 8x P(2p^2, 4p)$	$Q\left(\frac{2}{p^2}, \frac{-4}{p}\right)$	niroon.co
	Each part is marked separately. For example there unless that work is reference		
(a)		Substitutes both coordinates of Q into the parabola equation, obtains	
Subs. both x and y into	LHS or $y^2 \left\{ = \left(\frac{-4}{p}\right)^2 \right\} = \frac{16}{p^2}$ RHS or $8x \left\{ = 8 \times \frac{2}{p^2} \right\} = \frac{16}{p^2}$	e.g., $\frac{16}{p^2}$ twice and makes minimal	
$y^2 = 8x$	So Q lies on the parabola* $(-4)^2$ (2) 16 16	conclusion - e.g., shown/QED/true/proven/√	B1*
	Allow e.g., $\left(\frac{-4}{p}\right)^2 = 8\left(\frac{2}{p^2}\right) \Rightarrow \frac{16}{p^2} = \frac{16}{p^2} \Rightarrow \text{true}$	but allow	
		$"y_Q^2 = 8x_Q"$	(1)
Alt Subs. x or y to find y	$x = \frac{2}{p^2} \Rightarrow y^2 = 8 \times \frac{2}{p^2} \text{ or } \frac{16}{p^2} \Rightarrow y = \frac{-4}{p} \text{ or } \pm \frac{4}{p}$	Substitutes one coordinate of Q into the parabola equation to correctly find the other coordinate and makes minimal conclusion - e.g., - e.g.,	(1)
or x	or $y = \frac{-4}{p} \Longrightarrow \frac{16}{p^2} = 8x \Longrightarrow x = \frac{2}{p^2}$ So <i>Q</i> lies on the parabola*	shown/QED/true/proven/ \checkmark Sight of just" $y^2 = 8x$ " is insufficient but allow " $y_0^2 = 8x_0$ "	B1*
			(1)
8(b)	Focus is $(2, 0)$ or $x = 2$, $y = 0$ Could be seen on a diagram	Correct focus seen or used. Condone (0, 2) if $x = 2$, $y = 0$ used but award final A0	B1
	gradient of $PQ = \frac{4p + \frac{4}{p}}{2p^2 - \frac{2}{p^2}}$ or $\frac{-\frac{4}{p} - 4p}{\frac{2}{p^2} - 2p^2}$ $\left\{ = \frac{4p^3 + 4p}{2p^4 - 2} = \frac{2p^3 + 2p}{p^4 - 1} = \frac{2p(p^2 + 1)}{p^4 - 1} = \frac{2p}{p^2 - 1} \right\}$	Attempts the gradient of <i>PQ</i> condoning one term of incorrect sign. Allow this mark is they subsequently attempt to convert it to a normal gradient. Note that <i>m</i> may be obtained from $4p = 2mp^2 + c$, $-\frac{4}{p} = \frac{2m}{p^2} + c \implies m =$	M1
	e.g., $y-4p = \frac{4p + \frac{4}{p}}{2p^2 - \frac{2}{p^2}} (x-2p^2)$ If $y = mx + c$ is used, one of the following express	Any correct equation for <i>PQ</i> . May use <i>Q</i> . Allow this mark to be implied if their equation would have been correct but errors were made simplifying a correct gradient. ions oe for <i>c</i> must be reached following	A1
	correct gradient seen: $c = 4p - 2p^2$ (gradien	t) or $c = \frac{-4}{p} - \frac{2}{p^2}$ (gradient)	
	Examples with fully simplified gradient (see over $x = 2 \Rightarrow y - 4p = \frac{2p}{p^2 - 1}(2 - 2p^2) \Rightarrow y = \frac{4p - 4p^3}{p}$ or $y - 4p = \frac{2p}{p^2 - 1}(2 - 2p^2) \Rightarrow y - 4p = -4p^3$ $y = 0 \Rightarrow -4p = \frac{2p}{p^2 - 1}(x - 2p^2) \Rightarrow x = \frac{-4p^3}{p^2}$ $(2,0) \Rightarrow -4p = \frac{2p}{p^2 - 1}(2 - 2p^2) \Rightarrow -4p^3$	$\frac{+4p^{3}-4p}{2^{2}-1} = 0$ $4p \Rightarrow y = 0$ $\frac{+4p+4p^{3}}{2p} = 2$ So PQ passes through the focus*	A1*

	Pertos	
	Substitutes $x = 2$ and shows $y = 0$ or vice versa or substitutes both values and shows that the equation is true. Must have minimal conclusion e.g., shown/QED/true/proven/ \checkmark and no incorrect work. Condone no conclusion if the mark in (a) was withheld for this reason only. The examples indicate the minimum level of algebra acceptable. With the exception of using (2, 0) with a fully simplified gradient, <u>look for substitution into the line followed by a further step which shows an expression that clearly leads to 0, 2 or e.g., $-4p$ or "1=1" followed by a minimal conclusion</u>	THIS ISLUE IT COOR CO
	Work in "a" can only access the accuracy marks when $a = 2$ is substituted	(4)
Alt 1 Grad <i>PF</i> =	Focus is $(2, 0)$ or $x = 2, y = 0$ Could be seen on a diagramCorrect focus seen or used. Condone $(0, 2)$ if $x = 2, y = 0$ used but award final A0	B1
Grad <i>QF</i>	gradient $PF = \frac{4p}{2p^2 - 2}$ or $\frac{-4p}{2 - 2p^2}$ and gradient $QF = \frac{\frac{4}{p}}{2 - \frac{2}{p^2}}$ or $\frac{-\frac{4}{p}}{\frac{2}{p^2} - 2}$ M1: Obtains expressions for both gradients condoning one term of incorrect sign in either or both expressions A1: Both correct expressions oe	M1 A1
	Grad $QF = \frac{4p}{2p^2 - 2}$ = Grad <i>PF</i> So <i>PQ</i> passes through the focus* So <i>PQ</i> passes through the focus difference of the focus difference of the same of the same plus minimal conclusion e.g., shown/QED/true/proven/ \checkmark with no incorrect work. Condone no conclusion if penalised in (a).	A1*
	Note: A variation is to show grad PF or grad QF = grad PQ – marked as Alt	(4)
	Alt 2 Follows (similar triangles)	
8(b) <u>H</u>	Examples of minimum amount of algebra required with different expressions for gradi	ent:
x = 2, y =	$y-4p = \frac{p}{2p^2 - \frac{2}{p^2}} \left(x-2p^2\right)$ $x = 2 \Rightarrow y-4p = \frac{4p + \frac{4}{p}}{2p^2 - \frac{2}{p^2}} \left(2-2p^2\right) \Rightarrow y = \frac{8p + \frac{8}{p} - 8p^3 - 8p + 8p^3 - \frac{8}{p}}{2p^2 - \frac{2}{p^2}} =$	0
y = 0, x =	$y = 0 \Rightarrow -4p = \frac{4p + \frac{4}{p}}{2p^2 - \frac{2}{p^2}} (x - 2p^2) \Rightarrow x = \frac{-8p^3 + \frac{8}{p} + 8p^3 + 8p}{4p + \frac{4}{p}} = 2$ $4p + \frac{4}{p} = \frac{8p + \frac{8}{p} - 8p^3 - 8p}{8p + \frac{8}{p} - 8p^3 - 8p}$	
$(2, 0) \Rightarrow$	$(2,0) \Rightarrow -4p = \frac{4p + \frac{4}{p}}{2p^2 - \frac{2}{p^2}} (2 - 2p^2) \Rightarrow -4p = \frac{8p + \frac{8}{p} - 8p^3 - 8p}{2p^2 - \frac{2}{p^2}} \Rightarrow -4p = -4p$	p
	$y - 4p = \frac{4p^3 + 4p}{2p^4 - 2} \left(x - 2p^2\right)$	
$x = 2, y = \dots$	$x = 2 \Rightarrow y - 4p = \frac{4p^3 + 4p}{2p^4 - 2} (2 - 2p^2) \Rightarrow y = \frac{8p^3 + 8p - 8p^5 - 8p^3 + 8p^5 - 8p}{2p^4 - 2}$ or $y - 4p = \frac{4p^3 + 4p}{2p^4 - 2} (2 - 2p^2) \Rightarrow y = \frac{-4p^3 - 4p + 4p^3 + 4p}{p^2 + 1} = 0$	$\frac{2}{2} = 0$
y = 0, x =	$y = 0 \Longrightarrow -4p = \frac{4p^3 + 4p}{2p^4 - 2} (x - 2p^2) \Longrightarrow x = \frac{-8p^5 + 8p + 8p^5 + 8p^3}{4p^3 + 4p} = 2$	

MI: Correct straight line method for either
point with their tangent gradient in terms of
p (but allow if "a" also present)
Coordinates correctly placed.
If
$$y = mx + c$$
 is used must reach
 $c = ...$ following correctly placed
A1: Any correct unsimplified equation for
cither tangent
 $\frac{1}{p}(x-2p^2)+4p=-p\left(x-\frac{2}{p^2}\right)^{-\frac{4}{p}} = x+2p$ At $Q, y = -px - \frac{2}{p}$ M1 A1Note: $y = mx + c$: At $P, y = \frac{1}{p}x+2p$
 $\frac{1}{p}(x-2p^2)+4p=-p\left(x-\frac{2}{p^2}\right)^{-\frac{4}{p}} = x=...$
 $\frac{1}{p}(x-2p^2)+4p=-p\left(x-\frac{2}{p^2}\right)^{-\frac{4}{p}} = x=...$
 $\frac{1}{p}(x-2p^2)+4p=-p\left(x-\frac{2}{p^2}\right)^{-\frac{4}{p}} = x=...$
 $\frac{1}{p}x+2p=-px-\frac{2}{p}$ M1Strates y from their tangent equations and solves for x (See note below if eliminate x).
Gradients must be different and no clear evidence of conversion of any line to a normal.
Condone poor algebra.M1 $x\left(\frac{1}{p}+p\right)=-\frac{2}{p}-2p \Rightarrow x=\frac{-(2p^2+2)}{(p^2+1)}=-2$
 $x=-2$ onlyA1 $y = \frac{1}{p}(-2-2p^2)+4p, -p\left(-2-\frac{2}{p^2}\right)-\frac{4}{p}, \frac{1}{p}(-2)+2p, -p(-2)-\frac{2}{p}$
dM1: Substitutes their x (a constant or function of p) into one of their two tangent equations
to obtain an expression for y. Requires previous M mark.A1 $x(g, y = 2p - \frac{2}{p}, 2\left(p-\frac{1}{p}\right), \frac{2}{p}(p^2-1), \frac{2p^2-2}{p}, \frac{2(p+1)(p-1)}{p}$
A1: Correct y in simplest form – two terms which could be factorised in any correct way
and/or written as a single fraction.
Note there is no requirement for coordinate x.
In this case, award the last A marks in this order:
M1: Eliminates x and solves for y A1: Any correct y in simplest form
dM1: Substitutes their y (a constant or function of p) into one of their two tangent equations
to obtain an expression for y. A1: Any correct y in simplest form
dM1: Substitutes their y (a constant or function of p) into one of their two tangent equations
to obtain an e

		http	<u>.</u>
Question Number	Scheme	Notes	Marks
9	$f(n) = 4^n + 6n - 10 \qquad n$	$x \in \mathbb{Z}$ $n \ge 2$	ntroop
	General guidan		
	Apply the way that best fits the Condone work in e.g., <i>n</i> i		
Using e.g., Alternative e	empts with no induction e.g., not using $f(k)$ in an eq f(k+2) - f(k+1) requires a clear indication of assume explanations are unlikely to access the last three mark	uation with $f(k+1)$ score a max of 1100 ming $f(k+1)$ is true to access the last th ks unless there is a fully convincing just	ree marks.
	e.g., $f(k+1) - f(k) = 3 \times 4^k + 6$ followed by "Since		
	 -6 is divisible by 18" is not a sound argument. Atten expressions must be complete methods of -18 but if any different multiples of 18 are involv of/divisible by (but not "factor of") B1: Any correct numerical expression that is not e.g., 16 + 12 -10, 28 - 10, 4² + 2. Starting with 	to access the last 3 marks. yed e.g., 36, the first A1 requires "36 is a) 18" oe for each case just "18" is sufficient for this mark	
Ι	gnore an extra evaluation of $f(1)$ but a comment on		
	here must be evidence that true for $n = k \implies$ true for		be scored in
	or a narrative or via both. So if e.g., "Assume true		
	for $n = k + 1$ " in a conclusion	this is sufficient.	-
	Condone "for all $n \in \mathbb{Z}$ ", "all $n \in \mathbb{Z}$ $n > 2$ ", "a	all $\mathbb{Z} > (\text{or} \ge)$ 2" but not $n \in \mathbb{R}$	
Way 1 $f(k+1)-f(k)$	$f(2) = 4^2 + 6 \times 2 - 10 = 18$	Obtains $f(2) = 18$ with substitution	B1
$\Gamma(K+1) = \Gamma(K)$	$f(k+1) = 4^{k+1} + 6(k+1) - 10$	Attempts $f(k+1)$	M1
	$f(k+1) - f(k) = 4^{k+1} + 6(k+1) - 10 - (4^{k} + 6k - 10)$	Attempts $f(k+1)-f(k)$, uses	
	$=4^{k+1}-4^k+6=3\times 4^k+6$	$4^{k+1} = 4 \times 4^k \text{ \& obtains } pf(k) + g(k)$	M1
	$= 3(4^k + 6k - 10) - 18k + 36$	with $g(k)$ linear (allow constant $\neq 0$)	
	f(k+1) = 4f(k) + 18(2-k) f(k) may be written in full	Correct factorised expression Allow 4f (k) +18×2–18×k If f(k + 1) is not made the subject then e.g., "true for f(k + 1) – f(k)" is also required	A1
	True for $n = 2$, if true for $n = k$ then true for $n = k + 1$ so true for all $n \in \mathbb{Z}$ $(n \ge 2)$ Minimum in bold.	Full conclusion/narrative and no errors. All marks needed but allow if B0 provided this mark was only withheld for insufficient working.	A1
			(5)
Way 2 $f(k+1) =$	$f(2) = 4^2 + 6 \times 2 - 10 = 18$	Obtains $f(2) = 18$ with substitution	B1
- (** + 1)	$f(k+1) = 4^{k+1} + 6(k+1) - 10$	Attempts $f(k+1)$	M1
	$= 4 \times 4^{k} + 6k - 4$ = 4(4 ^k + 6k - 10) - 18k + 36	Uses $4^{k+1} = 4 \times 4^k$ & obtains pf(k) + g(k) with $g(k)$ linear (allow constant $\neq 0$)	M1
	= 4f(k) + 18(2-k) f(k) may be written in full	Correct factorised expression Allow 4f (k) +18×2-18×k	A1
	True for $n = 2$, if true for $n = k$ then true for $n = k + 1$ so true for all $n \in \mathbb{Z}$ $(n \ge 2)$ Minimum in bold.	Full conclusion/narrative and no errors. All marks needed but allow if B0 provided this mark was only withheld for insufficient working.	A1
			(5)

		Pittos	Britishstuden
Question Number	Scheme	Notes	Marks
9 cont.	$f(n) = 4^n + 6n - 10 \qquad n$	$\in \mathbb{Z}$ $n \ge 2$	
Way 3	$f(2) = 4^2 + 6 \times 2 - 10 = 18$	Obtains $f(2) = 18$ with substitution	B1
f(k+1)-mf(k)	$f(k+1) = 4^{k+1} + 6(k+1) - 10$	Attempts $f(k+1)$	M1
	$f(k+1) - mf(k) = 4^{k+1} + 6(k+1) - 10 - m(4^{k} + 6k - 10)$ = $(4 - m)4^{k} + (6 - 6m)k - 4 + 10m$ e.g. $m = -14 \Rightarrow 18 \times 4^{k} + 90k - 144$ e.g. $m = 4 \Rightarrow -18k + 36$	Attempts $f(k+1) - mf(k)$ and uses a value of <i>m</i> to obtain $c \times 4^k + \dots$ where <i>c</i> is a multiple of their 18 or uses $m = 4$	M1
	e.g., $f(k+1) = -14f(k) + 18(4^{k} + 5k - 8)$ f(k+1) = 4f(k) + 18(2-k) f(k) may be written in full	A correct factorised expression Allow $-14f(k)+18\times 4^{k}+18\times 5k-18\times 8$ If $f(k + 1)$ is not made the subject then e.g., "true for $f(k + 1) - mf(k)$ " is also required	A1
	True for $n = 2$, if true for $n = k$ then true for $n = k + 1$ so true for all $n \in \mathbb{Z}$ $(n \ge 2)$ Minimum in bold.	Full conclusion/narrative and no errors. All marks needed but allow if B0 provided this mark was only withheld for insufficient working.	A1
		0	(5)
Way 4	$f(2) = 4^2 + 6 \times 2 - 10 = 18$	Obtains $f(2) = 18$ with substitution	B1
f(k) = 18M	$f(k+1) = 4^{k+1} + 6(k+1) - 10$	Attempts $f(k+1)$	M1
	$f(k) = 18M, f(k+1) = 4 \times 4^{k} + 6k - 4$ = 4×18M - 18k + 36	Sets $f(k) = 18M$, uses $4^{k+1} = 4 \times 4^k$ & obtains $pf(k) + g(k)$ with $g(k)$ linear (allow constant $\neq 0$)	M1
	f(k+1) = 18(4M+2-k)	A correct factorised expression Allow $18 \times 4M + 18 \times 2 - 18 \times k$	A1
	True for $n = 2$, if true for $n = k$ then true for $n = k + 1$ so true for all $n \in \mathbb{Z}$ $(n \ge 2)$ Minimum in bold.	Full conclusion/narrative and no errors. All marks needed but allow if B0 provided this mark was only withheld for insufficient working.	A1
	 		(5) OTAL: 75

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom

https://britishstudentroom.com/