

Mark Scheme (Results)

October 2020

Pearson Edexcel International Advanced Level In Core Mathematics C12 (WMA01) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

October 2020 Publications Code WMA01_01_2010_MS All the material in this publication is copyright © Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 125
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for `knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- o.e. or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- _ or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao), unless shown, for example, as A1ft to indicate that previous wrong working is to be followed through. After a misread, however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles.)

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^{2} + bx + c) = (x + p)(x + q)$, where |pq| = |c|, leading to x = ...

 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

2. Formula

Attempt to use the <u>correct</u> formula (with values for *a*, *b* and *c*).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = ...$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

<u>Use of a formula</u>

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an <u>exact</u> answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these <u>may</u> not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does <u>not</u> cover this, please contact your team leader for advice.

Question Number		Scheme		Notes	Marks		
1.	$6x^3 + 5x^2$	$x^{2}-6x=0$					
(a)	$x(6x^2+5)$	$5x^2 + 5x - 6) = 0$		For dividing or factorising out the 'x'. This may be awarded for an answer of $x = 0$ or for sight of $6x^2 + 5x - 6$ or $(3x - 2)(2x + 3)$ or attempting to apply the formula or complete the square on $6x^2 + 5x - 6 \{= 0\}$	M1		
	$\begin{cases} 6x^2 + 5x \\ e.g. (3x - 5x) \end{cases}$	$x-6=0$ or $x^2 + \frac{5}{6}x - 1 = 0 \Rightarrow$ $(-2)(2x+3) = 0 \Rightarrow x =$	}	dependent on the previous M mark A valid correct method of solving their $3TQ = 0$ to give $x =$	dM1		
	$x = 0, \frac{2}{3}, -\frac{3}{2}$			$x = 0, \frac{2}{3}, -\frac{3}{2}$ Note: Give A0 for any extra values	A1		
					(3)		
(b)	$6\sin^3\theta$ +	$-5\sin^2\theta - 6\sin\theta = 0; \ 0 \le \theta < \pi$	τ				
	$\sin \theta = 0$ or $\sin \theta = \frac{2}{3} \Rightarrow \theta = \dots$		Ν	Finds at least one value of θ for $\sin \theta = (\text{their } k \text{ from } (a)), \ 0 < k < 1$ (where $0 < \theta < \pi$) or for finds at least one of $\theta = 0$, awrt 0.73, awrt 2.41 Note: Allow equivalent answers in degrees. E.g.			
				$\theta = \text{awrt } 41.8, \text{ awrt } 138$			
		$\theta = 0, 0.730, 2.41$		For at least two of $\theta = 0$, awrt 0.73 or awrt 2.41 Note: Allow equivalent answers in degrees. E.g. $\theta = awrt$ 41.8, awrt 138			
		,		$\theta = 0$, awrt 0.730, awrt 2.41 and no extra values within the range $0 \le \theta \le \pi$	A1		
	Note: Ignore π or awrt 3.14 for the final A mark				(3)		
	Question 1 Notes						
1. (a)	Note	Note A valid correct attempt of solving their $6x^2 + 5x - 6 = 0$ or their $x^2 + \frac{5}{6}x - 1 = 0$ includes any of • $(3x-2)(2x+3) = 0 \implies x =$					
		• $\left(x+\frac{5}{12}\right)^2 - \frac{25}{144} - 1 = 0 \implies x = \dots$					
		• $x = \frac{-5 \pm \sqrt{5^2 - 4(6)(-6)}}{2(6)} \Rightarrow x =$					
	Nata	• using their calculator to write down at least one correct root for their $3TQ = 0$					
	Note	Note Completing the square: Give 2^{nd} M1 for either $6(x \pm \frac{5}{12})^2 \pm q \pm 6 = 0 \Rightarrow x =$ or for $(x \pm \frac{5}{12})^2 \pm q \pm 1 = 0 \Rightarrow x =; q \neq 0$					
	Note	Give M1 dM0 A0 for writing down $x = 0, \frac{2}{3}, -\frac{3}{2}$ from no working					
	Note	Give M0 dM0 A0 for writing down only $x = \frac{2}{3}, -\frac{3}{2}$ from no working					

		Question 1 Notes Continued					
1. (a)	1. (a) Give M1 dM1 A0 for $\{6x^3 + 5x^2 - 6x = 0 \Rightarrow\} 6x^2 + 5x - 6 = 0 \Rightarrow x = \frac{2}{3}$,						
	Note	Give M1 dM1 A1 for $\{6x^3 + 5x^2 - 6x = 0 \implies\} 6x^2 + 5x - 6 = 0 \implies x = 0, \frac{2}{3}, -\frac{3}{2}$					
	Note	Give M1 dM1 A1 for $\{6x^3 + 5x^2 - 6x = 0 \Rightarrow\} x(6x^2 + 5x - 6) = 0 \Rightarrow x = 0, \frac{2}{3}, -\frac{3}{2}$					
(b)	Note	Give M1 A1 A1 for $\theta = 0, 0.730, 2.41, 3.14$					
	Note	Give M1 A1 A1 for $\theta = 0, 0.730, 2.41, \pi$					
	Note	Give M1 A1 A0 for $\theta = 0, 0.73, 2.41, \pi$					
	Note	Condone $x =$ instead of $\theta =$ if it is clear that they are working with angle $x \equiv \theta$					
		and not $x = \sin \theta$					
	Note	Allow 0.00 written in place of 0					

Question Number		Scheme	Notes		Marks	
2.	$\int \left(15x^4 + \right)^2$	$+\frac{4}{3x^3}-4\bigg)\mathrm{d}x ; x>0$				
	$=15\left(\frac{x^{5}}{5}\right)+\frac{4}{3}\left(\frac{x^{-2}}{-2}\right)-4x+c$			At least one of either $15x^4 \rightarrow \pm Ax^5$,		
			$\frac{4}{3x^3}$	$\pm Bx^{-2}$ or $\pm \frac{B}{x^2}$, or $-4 \rightarrow -4x$; $A, B \neq 0$	M1	
			$5\left(\frac{5}{5}\right) + \frac{3}{3}\left(\frac{-2}{-2}\right) - 4x + c$ At least two correct integrated ter which can be simplified or un-simplified		A1	
				At least three correct integrated terms which can be simplified or un-simplified	Al	
	$=3x^{5}-\frac{2}{3}$	$x^{-2} - 4x + c$ or $3x^5 - \frac{2}{3x^2} - \frac{2}{3x^2}$	-4x + c	Correct simplified integration contained on the same line of working	A1	
		Note: $+c$ is	counted as an integrated term		(4	4)
						4
			Que	stion 2 Notes		
	Note You can ignore subsequent working after			fter a correct final answer.		
	Note Poor notation (i.e. incorrect use of $\frac{dy}{dx}$ or \int) can be condoned for any or all of the				marks.	
	Note	+c is counted as 'integrated term' for all the A marks.				

Question Number		Scheme		Notes	Marks		
3.	$u_1 = 5, u_2$	$u_{n+1} = ku_n + 2 \ \{ \Rightarrow u_2 = ku_1 + 2, \ u_3 = ku_2 + 2 \}$					
(a)	$u_2 = 5k + 2$			$u_2 = 5k + 2$ or $u_2 = 2 + 5k$	B1		
	$u_3 = k(5k+2) + 2$			Substitutes their u_2 is in terms of k into $u_3 = ku_2 + 2$	M1		
	$u_3 = 5k^2$	+ 2k + 2	willen	$u_3 = 5k^2 + 2k + 2$	A1		
	5			د	(3)		
			Sets	their $u_3 = 2$, where u_3 is a 3TQ			
(b) Way 1	${u_3 = 2 =}$	$\Rightarrow \} 5k^2 + 2k + 2 = 2 \Longrightarrow k = \dots \{k = -0.4\}$	a quad	In d uses a valid method of solving ratic equation in k to give $k =$ Allow M1 if a relevant value of k	M1		
				is subsequently rejected.			
		3	-	ndent on the previous M mark			
	$u_2 = 5("-$	$(-0.4") + 2 = 0 \implies \sum_{n=1}^{3} u_n = 5 + "0" + 2$		s their value for k to calculate u_2	dM1		
		<i>n</i> =1	and a	adds their value for u_2 to 5 and 2			
		= 7 cso		7	A1 cso		
		Note: Do not give dM1 for using $u_2 = 2$	which is	found by using $k = 0$)	(3)		
			Sets	their $u_3 = 2$, where u_3 is a 3TQ			
(b) Way 2	${u_3 = 2 =}$	$\Rightarrow \} 5k^2 + 2k + 2 = 2 \Rightarrow k = \dots \{k = -0.4\}$	in k, and uses a valid method of solving a quadratic equation in k to give $k =$ Note: Allow M1 if a relevant value of k is subsequently rejected.		M1		
	$u_{2} = ("-($	$u_2 = ("-0.4")(5) + 2 = 0, \{u_3 = 2\},$ dependent on the previous M mark					
	2 `	$u_4 = ("-0.4")(2) + 2 = 1.2$ Uses their value for k					
		$\sum_{n=1}^{3} \left(\frac{u_{n+1} - 2}{k} \right) = \frac{1}{"-0.4"} ("0"+2+"1.2"-6)$	to calculate u_2 and u_4 and applies $\frac{1}{\text{their } k}$ (their $u_2 + 2 + \text{their } u_4 - 6$)		dM1		
		$= 7 \mathbf{cso} \qquad \qquad$					
	Note: Do not give dM1 for using $u_2 = 2$ (which is found by using $k = 0$)						
	Question 3 Notes						
3. (a)	Note	Give M0 A0 for $u_3 = k(5k+2)$					
(b)	Note		titution	of $k = -0.4$ into $5k^2 + 7k + 9.06$	<u>`</u>		
(0)							
		Give dM1 for $5 + 5(-0.4) + 2 + 5(-0.4)^2 + 2(-0.4) + 2$					
		Give dM1 for $5(-0.4)^2 + 7(-0.4) + 9$)) (Th:				
		Give dM0 for $5(-0.4) + 7(-0.4) + 9 \{=4.2\}$. {This is a common error.}					
	Note						
	• $5k^2 + 2k + 2 = 2 \Rightarrow k(5k + 2) = 0 \Rightarrow k = \frac{2}{5}$; $u_2 = 5(0.4) + 2 = 4 \Rightarrow \sum_{n=1}^{3} u_n = 5 + "4$						
	Note Way 1: Give M1 dM0 A0 for						
	• $5k^2 + 2k + 2 = 2 \implies k(5k+2) = 0 \implies k = \frac{2}{5}$; $u_2 = 5(0.4) + 2 = 4$, $u_3 = 5(0.4)^2 + 2(0.4$						
		$\Rightarrow \sum_{n=1}^{3} u_n = 5 + 4 + 3.6 = 12.6$					
	1	There must be some evidence of using their k to find their value of u_2					

	Question 3 Notes Continued					
3. (b)	Note	Give dM0 for an incorrect follow through value of u_2 from their k with no supporting				
		working.				
	Note	Send to review applying $u_3 = 3$ consistently to give				
		$\sum_{n=1}^{3} u_n = \text{ any of } 9 - \sqrt{6}, 9 + \sqrt{6} \text{ or awrt } 6.55 \text{ or awrt } 11.4$				
		Otherwise give M0 dM0 A0 for applying $u_3 = 3$				

Question Number		Sche	eme		Notes	Marks
4.	(i) $\frac{8^y}{4^{2x}} = \frac{\sqrt{2}}{32}$; (ii) $x\sqrt{3} = 4\sqrt{2} + x$					
(i) Way 1	$\frac{2^{3y}}{2^{4x}} = \frac{2^{\frac{1}{2}}}{2^{5}} \implies 2^{3y-4x} = 2^{\frac{1}{2}-5}$ $3y-4x = -\frac{9}{2} \implies y = \frac{4}{3}x - \frac{3}{2} \text{ or } y = \frac{1}{6}(8x-9) \text{ cso}$					M1 A1
		$3y - 4x = -\frac{9}{2} \implies y = \frac{4}{3}x - \frac{1}{3}y = \frac{1}{3$	$\frac{3}{2}$ or $y = \frac{1}{6}(8x - x)$	-9) cso		dM1 A1 cso
(i) Way 2		$\log\left(\frac{8^{y}}{4^{2x}}\right) = \log\left(\frac{\sqrt{2}}{32}\right) \Rightarrow y$	$\log 8 - 2x \log 4 =$	$\log\left(\frac{\sqrt{2}}{32}\right)$		M1
		$y \log 8 - 2x \log 4 =$	$\log(\sqrt{2}) - \log(32)$)		A1
		$=\frac{2x\log 4 + \log(\sqrt{2}) - \log(32)}{\log 8} =$	$\sum_{x \in \mathbb{Z}} 2x(2\log 2)$	$+\frac{1}{2}\log 2 - 5\log 2$		dM1
	y -	log8	3	3log2		
		$\Rightarrow y = \frac{4}{3}x - \frac{3}{2}$ or z	$y = \frac{1}{6}(8x - 9) cs$	50		A1 cso
						(4)
(ii)	$x\sqrt{3}-x =$	$= 4\sqrt{2} \implies x(\sqrt{3} - 1) = 4\sqrt{2}$	For sight of a	an equation containing (M1
	$x = \frac{4\sqrt{2}}{\sqrt{3}}$	1	$x = \frac{4\sqrt{2}}{\sqrt{3}-1}$ or $x = \frac{-4\sqrt{2}}{1-\sqrt{3}}$ o.e.		A1	
	$x = \frac{4\sqrt{2}}{(\sqrt{3} - 1)^2}$	$\frac{\overline{2}}{-1} \cdot \frac{(\sqrt{3}+1)}{(\sqrt{3}+1)}$	dependent on the previous M mark Attempt to rationalise the denominator		dM1	
	$x = \frac{4\sqrt{6}}{}$	$\frac{+4\sqrt{2}}{2} \implies x = 2\sqrt{6} + 2\sqrt{2} \csc$	Uses a non-calculator process to obtain $x = 2\sqrt{6} + 2\sqrt{2}$ or equivalent		A1 cso	
						(4)
1 (i)	M1	Uses index laws to correctly c	Question 4 N		T 7•	
4. (i) Way 1	1911	• $\frac{8^{y}}{4^{2x}} \rightarrow 2^{3y-4x}$ or $\frac{\sqrt{2}}{32} \rightarrow 2^{\frac{1}{2}}$ • $(8^{y})(32) \rightarrow 2^{3y+5}$ or $(4^{2x})(\sqrt{2})$	- 5	$\bullet \frac{(8^y)(32)}{4^{2x}} \to 2^{3y+5+\dots}$	or 2^{3y-4x+}	
		• $(8^{y})(32) \to 2^{3y+5}$ or $(4^{2x})(\sqrt{2})$	$\sqrt{2}) \rightarrow 2^{4x + \frac{1}{2}}$	or 2^{5-4}	x^{+} or 2^{3y+5}	-4x
	A1	Correct equation in powers of		= 2		
	dM1	dependent on the previous M Writes their equation in the fo the subject.		ates their powers of 2 and	l rearranges	to make <i>y</i>
	A1	Obtains $y = \frac{4}{3}x - \frac{3}{2}$ or $y = \frac{4}{3}$	$x - 1.5$ or $y = \frac{1}{6}$	$(8x-9)$ or $y = \frac{8x-9}{6}$ by	y correct sol	ution only
4. (i) Way 2	M1	Starts from a correct equation and writes down a correct equation in logarithms with some evidence of applying either the addition or subtraction law of logarithms and the power law of logarithms.				
	A1	Progresses as far as a correct				
	dM1	Rearranges to make <i>y</i> the subj	ect and converts	all logs in terms of log 2		
	A1	Uses a non-calculator proces	ss to obtain $y = \frac{4}{3}$	$\frac{4}{3}x - \frac{3}{2}$ or $y = \frac{4}{3}x - 1.5$ c	or exact equi	valent
		by correct solution only.				

	Question 4 Notes Continued							
4. (i)	Note	The following solution in powers	s of 4 can	be marked using the same principles as W	/ay 1.			
		• $\frac{8^{y}}{4^{2x}} = \frac{\sqrt{2}}{32} \Rightarrow \frac{4^{\frac{3}{2}y}}{4^{2x}} = \frac{4^{\frac{1}{4}}}{4^{\frac{5}{2}}} \Rightarrow 4^{\frac{3}{2}}$	$\frac{3}{2}y^{-2x} = 4^{\frac{3}{2}}$	$x^{-\frac{5}{2}} \Rightarrow \frac{3}{2}y - 2x = -\frac{9}{4} \Rightarrow y = \frac{4}{3}x - \frac{3}{2}$ or $\frac{1}{2}$	$y = \frac{1}{6}(8x - 9)$			
	Note	Give M0 A0 dM0 A0 for $y = \log \frac{1}{y}$	$g_8\left(\frac{4^{2x}\sqrt{2}}{32}\right)$	$- \int \text{or } y = \frac{\log\left(\frac{\sqrt{2}}{32} 4^{2x}\right)}{\log 8}$				
4. (ii)	Note			include $x = 2\sqrt{2} + 2\sqrt{6}$, $x = \sqrt{24} + \sqrt{8}$,				
		$x = 2\sqrt{6} + \sqrt{8}$, $x = \sqrt{24} + 2\sqrt{2}$, etc. for the final A mark.						
	Note	Give	-					
		• M0 A0 dM0 A0 for $x\sqrt{3}$						
		• M1 A0 dM0 A0 for $x(\sqrt{3})$	_					
		• (M1 A1) dM0 A0 for <i>x</i> =	$=\frac{4\sqrt{2}}{\sqrt{3}-1}$	$\Rightarrow x = 2\sqrt{6} + 2\sqrt{2}$				
	• (M1 A1) dM1 A1 for $x = \frac{4\sqrt{2}}{\sqrt{3}-1} \to x = \frac{4\sqrt{6}+4\sqrt{2}}{2} \Rightarrow x = 2\sqrt{6}+2\sqrt{2}$							
		• (M1 A1 dM1) A1 for $x = \frac{4\sqrt{2}}{(\sqrt{3}-1)} \cdot \frac{(\sqrt{3}+1)}{(\sqrt{3}+1)} \rightarrow x = 2\sqrt{6} + 2\sqrt{2}$						
	with no intermediate working.							
Question Number		Scheme	Notes		Marks			
4.	(ii) $x\sqrt{3}$	$=4\sqrt{2} + x$						
(ii)	$(x\sqrt{3})^2$	$=(4\sqrt{2}+x)^{2}$						
Way 2	· · · /	$2 + 4\sqrt{2}x + 4\sqrt{2}x + x^2$		Squares both sides, followed by	M1			
				an attempt to form a 3-term quadratic.				
	or	$x^2 = 4\sqrt{2}x + 16$	A correct 3-term quadratic.					
	or	$2x^2 - 8\sqrt{2}x - 32 = 0$	Note: 2	Note: $2x^2 - 8\sqrt{2}x = 32$ or $x^2 - 4\sqrt{2}x - 16 \{=0\}$				
	or		1,000. 2	A1				
		·		dependent on the previous M mark				
	e.g. $x = -$	$\frac{1}{\sqrt{2} \pm \sqrt{32 - 4(1)(-16)}}{2}$		Correct method (applying the				
	or $(x - (x - x))$	$\sqrt{8} + \sqrt{24})(x - (\sqrt{8} + \sqrt{24})) = 0 \Rightarrow$	<i>x</i> =	quadratic formula, factorising or completing the square) for solving a	dM1			
	or $(x-2)$	$\sqrt{2}$) ² - 8 - 16 = 0 \Rightarrow x =		3TQ = 0 to find $x =$				
	$x = 2\sqrt{2}$	$+2\sqrt{6}$ or $x = \sqrt{24} + 2\sqrt{2}$ o.e. cs	0	$x = 2\sqrt{6} + 2\sqrt{2}$ or equivalent	A1 cso			
					(4)			
	_		Question					
4. (ii)	Note	The 3-term quadratic must involv						
Way 2	Note Note	The 3-term quadratic must involv						
	Note Note	Give 2 nd A0 for giving more than Give	one ansv	ver for x as their final answer.				
	11010	• M0 A0 dM0 A0 for $x\sqrt{3}$	$- r - 4_{2}/$	$\overline{2} \rightarrow r - 2\sqrt{6} + 2\sqrt{2}$				
		 M0 A0 dM0 A0 for 2x (M1 A1) dM0 A0 for 2x 						
		· · · · · ·						
l	• (M1 A1) dM0 A0 for $x^2 - 4\sqrt{2}x - 16 = 0 \rightarrow x = 2\sqrt{6} + 2\sqrt{2}$							

with no	intermediate working.
with no	micrimediate working.

Question Number	Sch	eme	Notes	Marks	3		
5.	Area(R) = 9 $\Rightarrow \int_{4}^{a} \frac{4}{\sqrt{x}} dx$	= 9					
	Note	: You can mark part (a) a	nd part (b) together.				
(a)(i) Way 1	$\left\{\int_{4}^{a} \frac{4}{\sqrt{3x}} \mathrm{d}x = \frac{1}{\sqrt{3}} \int_{4}^{a} \frac{4}{\sqrt{x}}\right\}$	$= dx = \begin{cases} \frac{1}{\sqrt{2}}(9) = 3\sqrt{3} \end{cases}$	For $\frac{1}{\sqrt{3}}(9)$ or awrt 5.2	M1			
Way 1	$\left(\mathbf{J}_{4} \sqrt{3} \mathbf{X} \right) \sqrt{3} \mathbf{J}_{4} \sqrt{3} \mathbf{X}$	$\int \sqrt{3}$	$3\sqrt{3}$. Condone $\sqrt{27}$	A1			
(a)(ii) Way 1	$\left\{ \int_{1}^{a} \frac{4}{\sqrt{x}} \mathrm{d}x = \int_{1}^{4} \frac{4}{\sqrt{x}} \mathrm{d}x + \int_{4}^{a} \frac{4}{\sqrt{x}} \mathrm{d}x \right\}$						
			Integrates so that $\frac{4}{\sqrt{x}} \to kx^{\frac{1}{2}}; k \neq 0$,				
	г , ¬4		is seen anywhere in Q5. Also allow M1 for integrating so that	M1			
	$=\left[\frac{4x^{\frac{1}{2}}}{\frac{1}{2}}\right]^{4}+9$		$\frac{4}{3x} \to kx^{\frac{1}{2}}; k \neq 0 \text{ is seen anywhere in Q5.}$				
			dependent on the previous M mark				
			$\left[kx^{\frac{1}{2}}\right]_{1}^{4}$ and adding 9; $k \neq 0$,	dM1			
		Ν	ote: Limits need to be correct, but do not need to be evaluated for this mark				
	$=\left[8x^{\frac{1}{2}}\right]_{1}^{4}+9=8\sqrt{4}-8\sqrt{2}$	$\bar{1} + 9 = 16 - 8 + 9$					
	=17		17	A1			
					(5)		
	$\left[4r^{\frac{1}{2}}\right]^a$	Integrates to give k	$x^{\frac{1}{2}} \int_{4}^{a} k \neq 0$, and sets this result equal to 9				
(b)	$\left\lfloor \frac{4x^{\frac{1}{2}}}{\frac{1}{2}} \right\rfloor_{4}^{\pi} = 9$	L	Note: Limits need to be correct, but do not need to be applied for this mark	M1			
	$8\sqrt{a} - 8\sqrt{4} = 9$	Applies limits to obtain a correct equation in \sqrt{a}		A1			
	<u> </u>		dependent on the previous M mark				
	$\sqrt{a} = \frac{25}{8}$ $a = \frac{625}{64}$ Proce		rom $p\sqrt{a} \pm b = 9$ to $\sqrt{a} = \lambda$; $p, b, \lambda \neq 0$	dM1			
			$a = \frac{625}{64}$ or $9\frac{49}{64}$ or 9.765625	A1			
	Note: The mark scheme	for part (b) can be applied	anywhere in a student's solution to Q5.		(4)		
					9		
	Question 5 Notes						
5.	Note Some students	Note Some students may use their answer to (b) to answer (a)(i) and/or (a)(ii). See next page.					

Question Number	Scheme		Notes	Marks	
5. (a)(i) Way 2	$\begin{cases} \int_{4}^{a} \frac{4}{\sqrt{3x}} dx = \frac{1}{\sqrt{3}} \int_{4}^{a} \frac{4}{\sqrt{x}} dx = \frac{1}{\sqrt{3}} \\ = \frac{8}{\sqrt{3}} \left(\sqrt{\frac{625}{64}} - \sqrt{4} \right) \end{cases}$	$\left[8x^{\frac{1}{2}}\right]_{4}^{\frac{625}{64}}\bigg\}$	dependent on gaining both M marks in (b) and their $a > 4$ or their $\sqrt{a} > 2$ For $\frac{8}{\sqrt{3}} (\sqrt{(\text{their } a)} - \sqrt{4})$	dM1	
	$=\frac{8}{\sqrt{3}}\left(\frac{25}{8}-2\right)=\frac{8}{\sqrt{3}}\left(\frac{9}{8}\right)=3\sqrt{3}$		$3\sqrt{3}$. Condone $\sqrt{27}$	A1	
				(2)	
(a)(i) Way 3	$\begin{cases} \int_{4}^{a} \frac{4}{\sqrt{3x}} dx = \int_{4}^{a} 4(3x)^{-\frac{1}{2}} dx = \left[\frac{8}{3}\right]^{\frac{1}{2}} \\ = \frac{8}{3} \left(\sqrt{(3)\left(\frac{625}{64}\right)} - \sqrt{(3)(4)}\right) \text{ or } \frac{8}{\sqrt{3}} \\ \end{cases}$	j	dependent on gaining both M marks in (b) and their $a > 4$ or their $\sqrt{a} > 2$ For $\frac{8}{3} \left(\sqrt{(3)(\text{their } a)} - \sqrt{(3)(4)} \right)$ or $\frac{8}{\sqrt{3}} \left(\sqrt{(\text{their } a)} - \sqrt{4} \right)$	dM1	
	$=\frac{8}{\sqrt{3}}\left(\frac{25}{8}\sqrt{3}-2\sqrt{3}\right)=\frac{8}{3}\left(\frac{9}{8}\sqrt{3}\right)=$	$3\sqrt{3}$	$3\sqrt{3}$. Condone $\sqrt{27}$	A1	
				(2)	
(a)(ii) Way 2	$\left\{ \int_{1}^{a} \frac{4}{\sqrt{x}} \mathrm{d}x = \int_{1}^{\frac{625}{64}} \frac{4}{\sqrt{x}} \mathrm{d}x \right\}$				
	$\begin{bmatrix} & & 1 \end{bmatrix} \frac{625}{64}$	-	Integrates so that $\frac{4}{\sqrt{x}} \rightarrow kx^{\frac{1}{2}}; k \neq 0$, is seen anywhere in Q5. Also allow M1 for integrating so that $\frac{4}{\sqrt{3x}} \rightarrow kx^{\frac{1}{2}}; k \neq 0$ is seen anywhere in Q5.	M1	
	$= \left[\frac{4x^{\frac{1}{2}}}{\frac{1}{2}}\right]_{1}^{\frac{625}{64}}$	dependent on the previous M mark, dependent on gaining both M marks in (b) and their $a > 4$ or their $\sqrt{a} > 2$ For $\left[kx^{\frac{1}{2}}\right]_{1}^{\text{their stated } a}$; $k \neq 0$		dM1	
	625		ts do not need to be applied for this mark .		
	$= \left[8x^{\frac{1}{2}} \right]_{1}^{\frac{625}{64}} = 8\sqrt{\frac{625}{64}} - 8\sqrt{1} = 25 - 8$				
	=17		17	A1 (3)	
		Question 5 N	lates Continued	(3)	
5. (b)	Question 5 Notes ContinuedNoteGive M0 A0 dM0 A0 for setting their part (a)(i) answer (which is in terms of a) equal to 9.• E.g. Give M0 A0 dM0 A0 for $\frac{8}{\sqrt{3}}(\sqrt{a} - \sqrt{4}) = 9$ seen in part (b).				

Question Number		Scheme		Notes	Marks	
6.	(a) $y = x$	x(x+3)(x-2); (b)	$\frac{\mathrm{d}y}{\mathrm{d}x} \ge 2$			
(a) Way 1	$y = x(x^{2} - 2x + 3x - 6)$ $\Rightarrow y = x^{3} - 2x^{2} + 3x^{2} - 6x$			$\{y =\} x^3 + Ax^2 + Bx; A, B \neq 0,$ where A, B can be simplified or un-simplified	M1 B1 on ePEN	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2$	-4x+6x-6		Obtains a cubic expression and differentiates to give either $x^3 \rightarrow \lambda x^2$, $Ax^2 \rightarrow \mu x$ or $Bx \rightarrow B$; $A, B, \lambda, \mu \neq 0$	M1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2$	+2x-6		Correct differentiation in simplest form	Al	
	1				(3)	
(b)	$3x^2 + 2x$	$+2x-6 \ge 2$ $-6 = 2 \Longrightarrow 3x^{2} + 2x - 3x^{2} + 2x^{2} + 2x^{2} + 2x^{2} + 2x^{2} + 2x^{2} + 2x^{2} + $	-8 = 0	Sets their $\frac{dy}{dx} = 2$, forms a 3TQ = 0 and uses a correct valid method of solving their 3TQ = 0 to give $x =$	M1	
	{Critical	values are $x = -2$,	$\frac{4}{3}$	Critical values of $x = -2$, $\frac{4}{3}$ or $x = -2$, awrt 1.33, These may be implied by their inequalities	A1	
				Sets their $\frac{dy}{dx} = 2$, forms a $3TQ = 0$ and uses their two istinct critical values to write down an <i>outside region</i>	M1	
	<i>x</i> ≤	$x \le -2$ or $x \ge \frac{4}{3}$		$x \le -2$ or $x \ge \frac{4}{3}$ o.e., e.g. $(-\infty, -2] \cup [\frac{4}{3}, \infty)$. Allow ",", "or" or a space between the answers but give final M1 A0 for $x \le -2$ and $x \ge \frac{4}{3}$ or for $-2 \ge x \ge \frac{4}{3}$ as their final answer. This answer can be a ft for their two distinct critical values.		
		No	ote: $x \le \frac{4}{3}$	or $x \ge -2$ is final M0 A0	(4)	
					7	
				Question 6 Notes		
6. (b)	Note	Give M0 A0 M0 A	A0 where th	the critical values are found from solving $\frac{dy}{dx} = 3x^2 + 2x$	-6 = 0	
	Note	Note A valid correct attempt of solving their $3x^2 + 2x - 8 = 0$ or their $x^2 + \frac{2}{3}x - \frac{8}{3} = 0$ includes any or • $(x+2)(3x-4) = 0 \Rightarrow x =$ • $\left(x + \frac{1}{3}\right)^2 - \frac{1}{9} - \frac{8}{3} = 0 \Rightarrow x =$ • $x = \frac{-2 \pm \sqrt{2^2 - 4(3)(-8)}}{2(3)} \Rightarrow x =$ • using their calculator to write down at least one correct root for their $3TQ = 0$				
	Note			we 1 st M1 for either $3(x \pm \frac{1}{3})^2 \pm q \pm 8 = 0 \Longrightarrow x =$		
		or for $(x \pm \frac{1}{3})^2 \pm q \pm \frac{8}{3} = 0 \Rightarrow x = \dots; q \neq 0$				
	Note:	te: E.g. $\{x : x \in \mathbb{R}, x \le -2\} \cup \{x : x \in \mathbb{R}, x \ge \frac{4}{3}\}$, o.e., is acceptable for the 2 nd A mark.				

Question Number		Scheme	Notes	Marks		
6.		$(x+3)(x-2);$ (b) $\frac{dy}{dx} \ge 2$				
		ay 3 and Way 4: Product Rule				
(a) Way 2	$y = (x^2 + 3)$	$x(x-2) \Rightarrow \frac{u = x^2 + 3x}{\frac{du}{dx} = 2x + 3} \frac{v = x - 2}{\frac{dv}{dx} = 1}$	Differentiates so that $x^2 + 3x \rightarrow Cx + 3; C \neq 0$	M1 B1 on ePEN		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = x^2 + 3$	3x + (x-2)(2x+3)	$\frac{dy}{dx} = x^2 + 3x + (x - 2)(Cx + 3); C \neq 0$	M1		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 + \frac{1}{2}x^2 + \frac{1}$	2 <i>x</i> -6	Correct simplified differentiation	A1		
				(3)		
(a) Way 3	$y = (x^2 - 2)$	$x(x+3) \Rightarrow \frac{u = x^2 - 2x}{\frac{du}{dx} = 2x - 2} \frac{v = x+3}{\frac{dv}{dx} = 1}$	Differentiates so that $x^2 - 2x \rightarrow Cx - 2; C \neq 0$	M1 B1 on ePEN		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = x^2 - 2$	2x + (x+3)(2x-2)	$\frac{dy}{dx} = x^2 - 2x + (x+3)(Cx-2); C \neq 0$	M1		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 + \frac{1}{2}x^2 + \frac{1}$	2 <i>x</i> -6	Correct simplified differentiation	A1		
				(3)		
(a) Way 4	u = x	$\frac{(x^2 + x - 6)}{v = x^2 + x - 6}$ $\frac{dv}{dx} = 2x + 1$	Differentiates so that $x^2 - 2x + 3x - 6 \rightarrow Cx + 1; C \neq 0$	M1 B1 on ePEN		
	$\frac{dy}{dx} = x^2 + x - 6 + x(2x + 1)$		$\frac{dy}{dx} = x^2 + Ax - 6 + x(2x + A) \text{ or}$ $\frac{dy}{dx} = (x+3)(x-2) + x(2x+A); A \neq 0$	M1		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 + 2x - 6$		Correct simplified differentiation	A1		
				(3)		
	Question 6 Notes Continued					
6. (b)	Note The critical values found from solving $\frac{dy}{dx} = 3x^2 + 2x - 6 = 0$ are $x = \frac{-2 \pm \sqrt{76}}{6}$					
		$x = \frac{-1 \pm \sqrt{19}}{3}$ or $x = -1.78629, 1.1196$	•••			

Question Number	Scheme	Notes	Marks	5
7.	(i) $3 \times \left(\frac{1}{2}\right)^{p-1} = 1.3$; (ii) $\log_4 2x + 2\log_4 x = 8$			
(i) Way 1	$\left(\frac{1}{2}\right)^{p^{-1}} = \frac{1.3}{3} \left\{ \text{or } 2^{p-1} = \frac{3}{1.3} \right\}$			
	$\log\left(\frac{1}{2}\right)^{p-1} = \log\left(\frac{1.3}{3}\right) \Longrightarrow (p-1)\log\left(\frac{1}{2}\right)$	$\left(\frac{1.3}{3}\right) \Rightarrow p-1 = \frac{\log\left(\frac{1.3}{3}\right)}{\log\left(\frac{1}{2}\right)}$	M1	
	$p = \frac{\log\left(\frac{1.3}{3}\right)}{\log\left(\frac{1}{2}\right)} + 1 \implies p = \text{awrt } 2.2$	206 $\{\Rightarrow p = 2.206 (3 \text{ dp})\}$	A1	
				(3)
(i) Way 2	$\log\left(3\times\left(\frac{1}{2}\right)^{p-1}\right)$	$= \log 1.3$	M1	
	$\log 3 + \log\left(\frac{1}{2}\right)^{p-1} = \log 1.3 \implies \log 3 + (p-1)\log\left(\frac{1}{2}\right) = \log 1.3 \implies p-1 = \frac{\log 1.3 - \log 3}{\log\left(\frac{1}{2}\right)}$			
	$p = \frac{\log 1.3 - \log 3}{\log\left(\frac{1}{2}\right)} + 1 \implies p = \text{awrt } 2.206 \ \{ \Rightarrow p = 2.206 \ (3 \text{ dp}) \}$			
				(3)
(i) Way 3	$3\left(\frac{1}{2}\right)^{p}\left(\frac{1}{2}\right)^{-1} = 1.3 \implies 3(2)\left(\frac{1}{2}\right)^{p} = 1.3$	$\Rightarrow \left(\frac{1}{2}\right)^p = \frac{1.3}{6} \qquad \left\{ \text{or } 2^p = \frac{6}{1.3} \right\}$	M1	
	$\log\left(\frac{1}{2}\right)^{p} = \log\left(\frac{1.3}{6}\right) \Rightarrow p \log\left(\frac{1}{2}\right) = \log\left(\frac{1.3}{6}\right) \Rightarrow p = \frac{\log\left(\frac{1.3}{6}\right)}{\log\left(\frac{1}{2}\right)}$			
	$p = \text{awrt } 2.206 \ \{ \Rightarrow p = 2.206 \ (3 \text{ dp}) \}$			
				(3)
(i)	Way 1, Way 2, Way 3 and V			
Notes	For correctly making $\left(\frac{1}{2}\right)^{p-1}$, 2^{p-1}		M1	
	or for writing a correct equatio			
	Complete process of writing a correct equation involving logarithms and using correct log laws (and correct index laws, where appropriate) to make $p-1$ or p the subject.			
	p = awrt 2		A1	
	Note: See next page for how to ma			(3)
<i>(</i>)		Correct method for combining the log terms. $\log_4 2x + 2\log_4 x \rightarrow \log_4(2x(x^2))$	N f 1	
(ii)	$\log_4 2x + \log_4 x^2 = 8 \implies \log_4 (2x(x^2)) = 8$	Condone $\log_4 2x + 2\log_4 x \rightarrow \log_4(2x(x^2))$	M1	
	$2x^3 = 4^8 \{ \Rightarrow 2x^3 = 65536 \}$	$\log_4(ax^n) = 8 \Longrightarrow ax^n = 4^8 \text{ or } 2^{16} \text{ or } 65536,$	M1	
		where $ax^n = 2x^3$, $4x^4$ or $2x^2$ only		
	$x^{3} = 32768 \Longrightarrow x = (32768)^{\frac{1}{3}} \Longrightarrow x = 32$	x = 32	A1	
				(3)
				6

Question Number		Scheme	Notes	Marks			
7. (i) Way 4		$\left\{ 3 \times \left(\frac{1}{2}\right)^{p-1} = 1.3 \implies \right\} \left(1.3 \implies 2 \le 1.3 \right)$	$\left(\frac{1}{2}\right)^{p-1} = \frac{1.3}{3}$	M1			
		$\log_{\frac{1}{2}}\left(\frac{1}{2}\right)^{p-1} = \log_{\frac{1}{2}}\left(\frac{1.3}{3}\right) \implies$	$p - 1 = \log_{\frac{1}{2}}\left(\frac{1.3}{3}\right)$	M1			
		$p = \log_{\frac{1}{2}}\left(\frac{1.3}{3}\right) + 1 \Rightarrow p = \text{awrt } 2.2$	$06 \ \{ \Rightarrow p = 2.206 \ (3 \ dp) \}$	A1			
				(3)			
7 (i)	Note	-	on 7 Notes				
7. (i)	Note		$\log\left(\frac{1}{2}\right) = \log 1.3$ (i.e. 'invisible' brackets))			
_		• $3 \times \left(\frac{1}{2}\right)^{p-1} = 1.3 \rightarrow \left(\frac{1}{2}\right)^{p-1} = \frac{13}{20}$ (i.e. for a division slip)					
	Note	Give M1 M1 A1 (recovered bracketing slip) for					
		• $3 \times \left(\frac{1}{2}\right)^{p-1} = 1.3 \Rightarrow \log 3 + p - 1\log\left(\frac{1}{2}\right) = \log 1.3 \Rightarrow p = \frac{\log\left(\frac{1.3}{3}\right)}{\log\left(\frac{1}{2}\right)} + 1 \Rightarrow p = 2.206$					
	Note	Give M0 M0 A0 for any of $3 \times \left(\frac{1}{2}\right)^{p-1} = 1.3 \implies \left(\frac{3}{2}\right)^{p-1} = 1.3$ or $\left(\frac{1}{2}\right)^{p-1} = -2.7$					
	Note	Give M0 M0 A0 for					
		• $3 \times \left(\frac{1}{2}\right)^{p-1} = 1.3 \implies \log 3 \times \log \left(\frac{1}{2}\right)^{p-1} = \log 1.3 \implies p = \frac{\log\left(\frac{1.3}{3}\right)}{\log\left(\frac{1}{2}\right)} + 1 \implies p = 2.206$					
	Note	Give M1 dM1 A1 {for using a calculator to write down} $p = awrt 2.206$ from no working.					
	Note	Give M1 dM1 A1 for correct work leading to $p = awrt 2.206$ E.g.					
		• give M1 dM1 A1 for $\left(\frac{1}{2}\right)^{p-1} = \frac{1.3}{3} \implies p = \text{awrt } 2.206$					
		• give (M1) M1 A1 for $\log 3 + (p - 1)$	$-1)\log\left(\frac{1}{2}\right) = \log 1.3 \implies p = \text{awrt } 2.206$				
		with no intermediate working.					
	Note	$(1)^{p-1}$					
		working.					
	Note		n decimals to at least 2 dp. (or 1 dp for log	· · · · · · · · · · · · · · · · · · ·			
		• e.g. Give M1 M1 A0 for $\left(\frac{1}{2}\right)^{p-1}$	$p = 0.43 \implies p = 1 + \frac{(-0.37)}{(-0.3)} \implies p = 2.233$	(3 dp)			

		Question 7 Notes			
7. (ii)	Note	Give M1 M1 A1 {for using a calculator to write down} $x = 32$ from no working			
	Note	Give M1 M1 A1 for correct work leading to $x = 32$. E.g.			
		• give M1 M1 A1 for $\log_4 2x + \log_4 x^2 = 8 \implies x = 32$			
		• give M1 M1 A1 for $\log_4 2x + \log_4 x^2 = 8 \implies \log_4 (2x^3) = 8 \implies x = 32$			
		with no intermediate working.			
	Note	Give M0 M1 A0 for $\log_4 2x + 2\log_4 x = 8 \Rightarrow \log_4 2x^2 = 8 \Rightarrow 2x^2 = 65536 \Rightarrow x = 128\sqrt{2}$			
	Note	Give M0 M1 (implied) A0 for $\log_4 2x + 2\log_4 x = 8 \Rightarrow \log_4 2x^2 = 8 \Rightarrow x = 128\sqrt{2}$			
	Note	Give M0 M0 A0 for $\log_4 2x + 2\log_4 x = 8 \Rightarrow \log_4 2x^2 = 4 \Rightarrow x = 8\sqrt{2}$			
	Note	Give A0 for $x = \pm 32$ unless recovered			
	Note	Allow final A1 for (incorrect notation recovered) $x^3 = 32768 \Rightarrow x = \sqrt{32768} \Rightarrow x = 32$			
	Note	Give M0 M1 A0 for $\log_4 2x + 2\log_4 x = 8 \Rightarrow (\log_4 2x)(\log_4 x^2) = 8 \Rightarrow \log_4 2x^3 = 8 \Rightarrow x = 32$			

Question Number	Scheme		Notes	Marks
8.	34.059°		$ \begin{array}{c} B \\ B \\ B \\ C \\ B \\ C \\ D \\ D$	
	Relevant <i>ABCD</i> for parts (b) and (c)		2.9455	
(a)	$\frac{\sin B\hat{C}A}{8.6} = \frac{\sin 23}{6}$		Attempts sine rule with one unknown, $B\hat{C}A$, and with the edges and relevant angles in the correct position	M1
	$\{B\hat{C}A = \}$ 34.05911 or 145.94088		awrt 34 or awrt 146. This may be implied by $A\hat{B}C$ = awrt 123 or awrt 11	A1
	$A\hat{B}C = 180 - 23 - 34.05911 = 122.94088$ $A\hat{B}C = 180 - 23 - 145.94088 = 11.05911$		dependent on the previous M mark Complete correct method to find <i>at least one</i> value of angle $A\hat{B}C$ Note: This mark can be implied by either $A\hat{B}C$ = awrt 123 or awrt 11	dM1
			Both awrt 122.9 and awrt 11.1	A1 (4)
(b)	E.g. • $AC^2 = 8.6^2 + 6^2 - 2(8.6)(6)\cos"122.9"$ • $\frac{AC}{\sin"122.9"} = \frac{6}{\sin 23}$ • $\frac{AC}{\sin"122.9"} = \frac{8.6}{\sin(180 - 23 - "122.9")}$	eithe or uses	ete correct method to find angle $A\hat{B}C$ and er uses the cosine rule to find AC^2 or AC with their obtuse angle $A\hat{B}C$ (and not $A\hat{B}C$ = their $B\hat{C}A$ = 145.9) is the sine rule with one unknown, AC , and ith edges and relevant angles in the correct position	M1
	$AC = awrt 12.88 \{cm\}$ or awrt 12.89 $\{cm\}$		AC = awrt 12.88 or awrt 12.89 Note: Ignore the units.	A1 (2)
(c)	Area $ABCD = (8.6)(6)\sin"122.9"$ or $= 2 \times [(0.5)(8.6)(6)\sin"122.9"]$ or $= (8.6)("12.89")\sin 23$ or $= (6)("12.89")\sin(180 - 23 - "120)\sin(180 - 30)\sin(180 - 30)\sin(180)\sin(180 - 30)\sin(180 - 30)\sin(180 - 30)\sin(180 - 30)\sin(180 - 30)\sin(180)\sin(180 - 30)\sin(180)\sin(180 - 30)\sin(180)\sin(180 - 30)\sin(180)\sin(180 - 30)\sin(180)\sin(180 - 30)\sin(180)\sin(180)\sin(180 - 30)\sin(180)\sin(180 - 30)\sin(180 - 30)\sin(180 - 30)\sin(180)$	22.9")	Complete correct method to find angle $A\hat{B}C$ and a correct complete method for finding area $ABCD$, where angle $A\hat{B}C$ is obtuse	(2) M1
	$= awrt 43.3 \{cm^2\} (3 sf)$		awrt 43.3 Note: Ignore the units.	A1 (2)
				8

		Que	stion 8 Notes				
8. (b)	Note	$A\hat{B}C = 122.9408861$ gives $AC = 12$	2.8871029				
	Note	$A\hat{B}C = 122.9$ gives $AC = 12.8847042$	2				
(c)	Note	Give M0 A0 for Area $ABCD = (8.6)($		= 9.897998172			
	Note	Condone M1 for (8.6)(6)[sin (awrt 57	7.1)] and A1 f	or awrt 43.3; ignoring ho	w (aw	rt 57.1) has	
		been derived in part (a) and/or part (b)).			ŕ	
	Note	$(8.6)(6)\sin 122.9 = 43.32438501$,				
	Note	$(8.6)(6)\sin 122.9408861 = 43.30437$	/342				
	Note	$(8.6)(12.89)\sin 23 = 43.31410852$					
	Note	Note (8.6)(12.88) sin 23 = 43.28050564					
	Note	$(8.6)(12.8871029)\sin 23 = 43.30437$	343				
ALT	Alternat	ive Method of initially using Cosine R	ule with 6, 8.	6 and $AC = x$			
(a), (b)		ark part (a) and part (b) together if t					
ALT		$+x^2 - 2(8.6)(x)\cos 23$		ine rule with edges in the			
		$6)(x)\cos 23 + 8.6^2 - 6^2 = 0$	* *	sition, forms a 3TQ and	1 st N	11 in (a)	
	`	$2\cos 23 x + 37.96 = 0$		ct method (e.g. quadratic	and		
		$\cos 23 \pm \sqrt{(17.2 \cos 23)^2 - 4(1)(37.96)}$		completing the square or $2TO = 0$ to	anu	^t M1 in (b)	
	$x = \frac{17.20}{2}$	$\frac{2(1)}{2(1)}$,	to solve their $3TQ = 0$ to give at least one of $x =$	1 st N		
	15.00		Ę	give at least one of $x = \dots$			
	$x = \frac{15.83}{2}$	$2268348\pm\sqrt{98.83386616}$					
		2	2.95 c	or awrt 2.9 or awrt 12.9	1 st A	1 in (a)	
		590577 12 9971020		identifies in part (b) that	1 73	(a)	
	x = 2.943	5580577, 12.8871029				A1 in (b)	
			Not				
	E.g.	$2(c^2 + c^2) = 20455 - c^2 = 2$		dependent on	the		
	• $\cos A\hat{B}$	$C = \frac{8.6^2 + 6^2 - "2.9455^2"}{2(8.6)(6)} \Longrightarrow A\hat{B}C = 1$	1.0591	1 st M mark in part (a)			
		2(0:0)(0)		Complete method to fin			
	• $\cos A\hat{B}$	$C = \frac{8.6^2 + 6^2 - "12.8871^2"}{2(8.6)(6)} \Longrightarrow A\hat{B}C =$	122.9408	Note: This mark can be implied by either		dM1 in (a)	
		2(8.0)(0)					
	• For "	$4C'' < 8.6$ $4\hat{B}C = \sin^{-1}(12.0455 \text{ m/s}^{-1})$	n 23				
	• 101 7	$AC'' < 8.6, \ A\hat{B}C = \sin^{-1} \left("2.9455" \times \frac{\sin^{-1}}{2} \right)$	6)				
		= 11.0591					
	• For "	$AC'' > 8.6, \ A\hat{B}C = 180 - \sin^{-1} \left("12.8871 \right)$	$\times \frac{\sin 23}{2}$	Both awrt 11.1 and eit		2 nd A1	
			6)	awrt 122.8 or awrt 12 or awrt 12		in (a)	
		= 122.9408		of awit 12	.3.0		
						(4)	
8. ALT	Note	Only apply the alternative mark scher	ne if it is also	that the candidate using the	he	(4)	
0, AL I	note	Cosine Rule with 6, 8.6 and $AC = x$		mai me canonale using li			
	Note	A calculator can be used to write dow		correct root for their 3TO	= 0		
(a)	Note	Allow A1 for awrt 43.4 or awrt 43.3		<u>`</u>			
(c)	THOLE	using the ALT method in part (b)		$-aw_{11} + 22.0$ IS 1001	uu		

Question Number	Schem	ne		Notes	Marks
9.	(a) $y = \frac{2}{x} + k$; $k > 0$ (b) $y = 5 - 3x$, <i>l</i> and <i>C</i> do not meet				
(a)	y		or	Either a hyperbolic branch drawn in quadrant 1 only for $x > 0$ a hyperbolic branch drawn in both uadrant 2 and quadratic 3 for $x < 0$	M1
				Correct graph – see notes	A1
				ve cuts or meets the axes once only	
			y = k	where $x < 0$ and $\left(-\frac{2}{k}, 0\right)$ is stated	
		x		$-\frac{2}{k}$ marked on the negative <i>x</i> -axis.	B1
	$\left(-\frac{2}{k},0\right)$		Allow	$v\left(0,-\frac{2}{k}\right)$ rather than $\left(-\frac{2}{k},0\right)$ if	
				marked in the correct place on the <i>x</i> -axis.	
				Only asymptotes $x = 0$	
	$^{\parallel}x = 0$			and $y = k$ stated	D1
	D			or seen stated in the correct	B1
				positions on their graph.	(4)
(b)	Note: If curve cuts/meets the n	: If curve cuts/meets the negative x-axis once then allow coordinates stated elsewhere. $\frac{2}{2}$			
(b) Way 1	$\frac{2}{x} + k = 5 - 3x$	x		ttempts to multiply both sides by x	M1
	$2 + kx = 5x - 3x^2$			nto one side . Allow e.g. ">0" or t 3 of the terms must be multiplied	1011
	$3x^2 - 5x + 2 + kx = 0$			ne slip. The $'=0'$ may be implied.	
	$3x^2 + (k-5)x + 2 = 0$			If terms are not collected this mark	
	or $-3x^2 + (5-k)x - 2 = 0$		may be implied by correct a, b and c stated		
	or $a=3, b=k-5, c=2$			or applied in $b^2 - 4ac$	
				their <i>a</i> , <i>b</i> and <i>c</i> from their equation 5 and $c = \pm 2$. This could be part	
	$\{b^2 - 4ac = \}$	of the qu	uadratic formula (only look for the $b^2 - 4ac$ part)		M1
	$(k-5)^2 - 4(3)(2)$	or as e.g.	$b^2 - 4ac = 0$.		
		Ŭ		e must be no x's in their $b^2 - 4ac$.	
				pendent on the previous M mark	
	$\{b^2 - 4ac < 0 \Longrightarrow (k-5)^2 - 24$	4 < 0 }	s a correct valid method of solving tic = 0 to give two distinct critical		
	$(k-5)^2-24=0$			and applies $b^2 - 4ac < 0$ } to write	
	$(k-5)^{2} - 24 = 0$ $k = 5 \pm \sqrt{24}$ or $k = $ awrt 0.1, awrt 9.9 $5 - 2\sqrt{6} < k < 5 + 2\sqrt{6}$		for <i>k</i> . Note:	ide region with both critical values Allow this mark for $0.1 < k < 9.9$;	dM1
			$5-2\sqrt{6} \leq$	$k \le 5 + 2\sqrt{6}; [5 - \sqrt{24}, 5 + \sqrt{24}];$	
				Note: Give final dM0 A0 for	
	(Note: $5 + \sqrt{24} > k > 5 - \sqrt{24}$	/24		$5 + \sqrt{24} < k < 5 - \sqrt{24}$, o.e.	
				$< k < 5 + 2\sqrt{6}$ or exact equivalent.	
	is a correct answer)		А	ccept e.g. $5 - \sqrt{24} < k < 5 + \sqrt{24}$;	A1
			$(5 - \sqrt{24})$	$5 + \sqrt{24}$); $k \in (5 - \sqrt{24}, 5 + \sqrt{24})$	
			,		(5)
					9

	Question 9 Notes							
9. (a)	M1For $x > 0$, condone the hyperbolic branch being asymptotic to both the x-axis and y-axis.Condone the hyperbolic branch significantly 'bending back up' when $x \to \infty$ Condone the hyperbolic branch significantly 'bending back down' for $x \to -\infty$							
		Condone the hyperbolic branch 'bending back' when approaching the <i>y</i> -axis asymptote						
	A1	* *	g the <i>y</i> -axis or touching the horizontal asymptote. d must not touch the horizontal asymptote (where the					
	AI		the y-axis). Note: The horizontal and/or vertical					
		asymptotes do not need to be marked or						
		The hyperbolic branch must not signifi						
		The hyperbolic branch must not signifi	cantly 'bend back down' for $x \rightarrow -\infty$ cantly 'bend back' when approaching the y-axis					
		asymptote.	cantry bend back when approaching the y-axis					
	Note		x-axis in addition to $x = 0$ and $y = k$ marked					
		in the correct positions.						
Egs.	Note	Do not allow 2^{nd} B1 for <i>y</i> -axis stated as	their asymptote without reference to $x = 0$					
	y=K	(⁻² / _{ič} / ₀) g. 1: Scores M1 A1 (just), B1 B0	2/4 + K = 0 2/4 = -K E.g. 2: Scores M1 A0					
	Ţ	-3 K -3 K 	(b) has at large of positive names for g_{2} (c) $\chi = \frac{1}{2}$ (c) $\chi = \frac{1}{2}$ (c) $\chi = \frac{1}{2}$					
	E.g	3: Scores M1, A1 (just), B1, B1	E.g. 4: Scores M1 A1 (just) B1 B1					

Question Number		Scheme		Notes	Marks
9.	(a) $y = \frac{2}{x}$	+k; k > 0 (b) $y = 5 - 3x, l$ and	C do not meet		
(b) Way 2	$\left\{\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{2}{x}\right)\right\}$	$k = -3 \Rightarrow \begin{cases} -\frac{2}{x^2} = -3 \end{cases}$		$y = \frac{2}{x} + k$ to give $\frac{dy}{dx} = \pm Ax^{-2}$;), and sets the result equal to -3	M1
	$\begin{cases} x^2 = \frac{2}{3} \end{cases}$	$\Rightarrow \left\} x = \pm \sqrt{\frac{2}{3}}$	$x = \pm \sqrt{\frac{2}{3}} \text{or}$	$x = \pm \text{ awrt } 0.82 \text{ or } x = \pm \frac{1}{3}\sqrt{6}$	A1
	$\begin{cases} \frac{2}{x} + k = 1 \end{cases}$	$5-3x , x = \sqrt{\frac{2}{3}}, -\sqrt{\frac{2}{3}} \Rightarrow \bigg\}$	Substitutes a	at least one of their <i>x</i> , (which has	
		$\frac{2}{\sqrt{2}} + k = 5 - 3 \left(\sqrt{\frac{2}{3}} \right)$ been found from solving $\pm Ax^{-2}$		m solving $\pm Ax^{-2} = -3$), into the equation $\frac{2}{x} + k = 5 - 3x$	M1
	or $\frac{2}{-\sqrt{2}}$	$\frac{2}{\sqrt{\frac{2}{3}}} + k = 5 - 3\left(-\sqrt{\frac{2}{3}}\right)$	х 		
		$k = 5 - 2\sqrt{6}$, $5 + 2\sqrt{6}$ • $k = $ awrt 0.1, awrt 9.9	Uses a comp	ndent on the previous M mark blete method to find both critical nd writes down an inside region with both critical values for k.	dM1
		$5 - 2\sqrt{6} < k < 5 + 2\sqrt{6}$	$5-2\sqrt{6} < k < 5+2\sqrt{6}$ or exact equivalent.		A1
					(5)
			tion 9 Notes Con		
9. (b)	Note	For the final A mark accept exact	t equivalents such	as $\frac{10 - \sqrt{96}}{2} < k < \frac{10 + \sqrt{96}}{2};$	
		$k > 5 - 2\sqrt{6}$ and $k < 5 + 2\sqrt{6}$.			
	Note	Give final dM0 A0 (unless recov	ered) for $k > 5-2$	$2\sqrt{6}$ or $k < 5 + 2\sqrt{6}$;	
		$k > 5 - 2\sqrt{6}$, $k < 5 + 2\sqrt{6}$			
	Note	Give final dM1 A0 (unless recov	ered) for $5 - 2\sqrt{6}$	$< x < 5 + 2\sqrt{6}$, o.e.	
	Note	$3x^2 + kx - 5x + 2 = 0$ by itself is 2	$1^{\text{st}} \text{ A0, but } 3x^2 + k$	4x - 5x + 2 = 0 followed by $(k - 5)$	$(5)^2 - 4(3)(2)$
		is final 1 st A1 (implied), 2 nd M1			

Question Number	Scheme			Notes	Marks	s
10.	(a) $\left(2-\frac{1}{3}x\right)^9$ (b) $f(x) = \left(3+\frac{a}{x}\right)\left(2-\frac{1}{3}x\right)^9$; coefficier	nt of x in $f(x)$ is 0			
(a)	$=2^{9}+{}^{9}C_{1}(2)^{8}\left(-\frac{1}{3}x\right)+{}^{9}C_{2}(2)^{7}\left(-\frac{1}{3}x\right)^{2}+\frac{1}{3}$	${}^{9}C(2)^{6}\left(-\frac{1}{2}\right)^{6}$	$\left(\frac{1}{r}\right)^{3}$ +	Constant term of 2^9 or 512	B1	
Way 1	$= 2 + \frac{C_1(2)}{3} + \frac{C_2(2)}{3} $		3 2) +	See notes	<u>M1</u>	
				See notes	<u>A1</u>	
	$\left\{ = 512 + (9)(256)\left(-\frac{1}{3}x\right) + (36)(128)\left(\frac{1}{9}x^2\right) \right\}$	+ (84)(64)	$\left\{-\frac{1}{27}x^3\right\}+\ldots$			
	$=512-768x+512x^2-\frac{1792}{9}x^3+$			rrectly simplified term or x^3 term	<u>A1</u>	
	$\frac{-312 - 700x + 312x}{9} - \frac{-x + \dots}{9}$		512 – 768 <i>x</i> +	$-512x^2 - \frac{1792}{9}x^3$	A1	
	Note: Any of the final two A marks m Note: Work for the final A mark must	•		•		(5)
(-)	$\left[\left(\begin{array}{c} 1 \end{array}\right)^{9} \right] \left(\begin{array}{c} 1 \end{array}\right)$	$(1)^{2}$	$(1)^3$	See notes	B1	
(a) Way 2	$\left \left\{ 2^{9} \left(1 - \frac{1}{6} x \right)^{9} \right\} = 2^{9} \left(1 + {}^{9}C_{1} \left(-\frac{1}{6} x \right) + {}^{9}C_{2} \left(-\frac{1}{6} x \right) \right) + {}^{9}C_{2} \left(-\frac{1}{6} x \right) + {}^$	See notes	<u>M1</u>			
				See notes	<u>A1</u>	
	$\left \left\{ = 512 \left(1 + (9) \left(-\frac{1}{6}x \right) + (36) \left(\frac{1}{36}x^2 \right) + (84) \left(-\frac{1}{6}x \right) \right\} \right $	$\left(-\frac{1}{216}x^3\right)$ +	+)}			
				rrectly simplified	<u>A1</u>	
	$=512-768x+512x^2-\frac{1792}{9}x^3+\dots$			term or x^3 term	<u></u>	
	9		512 – 768 <i>x</i> +	$-512x^2 - \frac{1792}{9}x^3$	A1	
						(5)
(b)	$f(x) = \left(3 + \frac{a}{x}\right) \left(512 - 768x + 512x^2 - \frac{1792}{9}x\right)$	(z^3)				
	Either $f(x) = 1536 - 2304x + 1536x^2 - \frac{1792}{3}$	$\frac{2}{x^{3}}$	Ei ±3('768')x ±'512'a	ther writes down as part of their		
	$+\frac{512a}{x}-768+512ax-\frac{177}{2}$	$\frac{92}{ax^2}$		xpansion of $f(x)$	24	
)		es their x terms as 768') $x \pm 512'ax$	M1	
	or x terms: $3(-768)x + 512ax$		or identifies their of	coefficient of x as		
	or coefficient of x: $3(-768)+512a$			$3('768') \pm '512'a$		
	$3(-768)x + 512ax = 0 \implies a = \dots$		dependent on the p Sets their x t	erm equal to 0 or	dM1	
	$3(-768) + 512a = 0 \Longrightarrow a = \dots$		sets their coefficier	-	uiviii	
	$\left\{a = \frac{3(768)}{512} \Longrightarrow\right\} a = \frac{9}{2}$	Correct s	simplified a . E.g. $a =$	$\frac{9}{2} \text{ or } 4\frac{1}{2} \text{ or } 4.5$	Al	
				<u> </u>		(3)
						8

		Question 10 Notes
10. (a)	B1	Constant term of 2^9 or 512. Do not allow B1 for $512x^0$ unless simplified to 2^9 or 512.
Way 1	1 st M1	$({}^{9}C_{1})()(x)$ or $({}^{9}C_{2})()(x^{2})$ or $({}^{9}C_{3})()(x^{3})$.
		Requires correct binomial coefficient in any form with the correct power of <i>x</i> , but the other
		part of the coefficient may be wrong or missing.
	1 st A1	At least two correct terms from ${}^{9}C_{1}(2)^{8}\left(-\frac{1}{3}x\right) + {}^{9}C_{2}(2)^{7}\left(-\frac{1}{3}x\right)^{2} + {}^{9}C_{2}(2)^{6}\left(-\frac{1}{3}x\right)^{3}$,
		or equivalent, which can be un-simplified or simplified.
	Note	${}^{9}C_{1}(2)^{8} - \frac{1}{3}x + {}^{9}C_{2}(2)^{7} - \frac{1}{3}x^{2} + {}^{9}C_{2}(2)^{6} - \frac{1}{3}x^{3} + \dots \text{ {bad bracketing} scores M0 unless later work}$
		implies a correct method.
	Note	The common error $2^9 + {}^9C_1(2)^8 \left(-\frac{1}{3}x\right) + {}^9C_2(2)^7 \left(-\frac{1}{3}x^2\right) + {}^9C_3(2)^6 \left(-\frac{1}{3}x^3\right)$
		$512 - 768x + 1536x^2 - 1792x^3$ is B1 M1 A0 A1 A0
	Note	The common error ${}^{9}C_{1}(2)^{8}\left(\frac{1}{3}x\right) + {}^{9}C_{2}(2)^{7}\left(\frac{1}{3}x\right)^{2} + {}^{9}C_{3}(2)^{6}\left(\frac{1}{3}x\right)^{3}$
		$512 + 768x + 562x^2 + \frac{1792}{9}x^3$ is B1 M1 A0 A1 A0
	Note	$2^{9} + {}^{9}C_{8}(2)^{8}\left(-\frac{1}{3}x\right) + {}^{9}C_{7}(2)^{7}\left(-\frac{1}{3}x\right)^{2} + {}^{9}C_{6}(2)^{6}\left(-\frac{1}{3}x\right)^{3} + \dots \text{ is also a correct expansion.}$
(a)	B1	$2^{9}(1 \pm)$ or $512(1 \pm)$. Award when first seen.
Way 2	1 st M1	Expands $(1 \pm kx)^9$; $k \neq \pm \frac{1}{3}$ to give either $({}^9C_1)()(x)$ or $({}^9C_2)()(x^2)$ or $({}^9C_3)()(x^3)$.
		Requires correct binomial coefficient in any form with the correct power of <i>x</i> , but the other
		part of the coefficient may be wrong or missing.
	1 st A1	At least two correct terms from ${}^{9}C_{1}\left(-\frac{1}{6}x\right) + {}^{9}C_{2}\left(-\frac{1}{6}x\right)^{2} + {}^{9}C_{3}\left(-\frac{1}{6}x\right)^{3}$ or $-\frac{3}{2}x + x^{2} - \frac{7}{18}x^{3}$,
		or equivalent, which can be un-simplified or simplified.
	SC	Allow Special Case B1 M1 A1 for Way 2: $K\left(1+{}^{9}C_{1}\left(-\frac{1}{6}x\right)+{}^{9}C_{2}\left(-\frac{1}{6}x\right)^{2}+{}^{9}C_{3}\left(-\frac{1}{6}x\right)^{3}\right)$
		or $K\left(1 - \frac{3}{2}x + x^2 - \frac{7}{18}x^3\right)$ where $K \neq 2^9$ or $K \neq 512$
	Note	$2\left(1+{}^{9}C_{1}\left(-\frac{1}{6}x\right)+{}^{9}C_{2}\left(-\frac{1}{6}x\right)^{2}+{}^{9}C_{3}\left(-\frac{1}{6}x\right)^{3}+\right) \text{ would get SC B1 M1 A1 A0 A0}$
(a)	Note	E.g. $\begin{pmatrix} 9\\ 3 \end{pmatrix}$ or $\frac{9(8)(7)}{3!}$ or $\frac{9!}{3!6!}$ or 84 or even $\begin{pmatrix} 9\\ 3 \end{pmatrix}$ can be written in place of 9C_3
	Note	Condone giving the final A mark for a 'simplified' $512 + -768x + 512x^2 + -\frac{1792}{9}x^3$.
	Note	$-\frac{1792}{9}x^3$ may be written as either $-199\frac{1}{9}x^3$ or $-199.1x^3$ but do not allow $-199.1x^3$
		or $-199x^3$
	Note	Condone terms in reverse order $-\frac{1792}{9}x^3 + 512x^2 - 768x + 512$ for B1 M1 A1 A1 A1.

		Question 10 Notes Continued				
10. (a)	Note	The terms may be "listed" rather than added for any of the first 4 marks.				
	Note	Any higher order terms can be ignored in part (a).				
	SC	Special Case: If a candidate expands in descending powers of <i>x</i> ,				
		i.e. $\left\{ \left(2 - \frac{1}{3}x\right)^9 \right\} = \left(-\frac{1}{3}x\right)^9 + {}^9C_1(2)^1 \left(-\frac{1}{3}x\right)^8 + {}^9C_2(2)^2 \left(-\frac{1}{3}x\right)^7 + {}^9C_3(2)^3 \left(-\frac{1}{3}x\right)^6$				
		$= -\frac{1}{19683}x^9 + (9)(2)\left(\frac{1}{6561}x^8\right) + (36)(4)\left(-\frac{1}{2187}x^7\right) + (84)(8)\left(\frac{1}{729}x^6\right)$				
	$= -\frac{1}{19683}x^9 + \frac{2}{729}x^8 - \frac{16}{243}x^7 + \frac{224}{243}x^6$					
		then they can gain SC: B1 M1 A1 A0 A0				
		B1 For a simplified $-\frac{1}{19683}x^9$				
		M1: $({}^{9}C_{1})()(x^{8})$ or $({}^{9}C_{2})()(x^{7})$ or $({}^{9}C_{3})()(x^{6})$				
		or $({}^{9}C_{8})()(x^{8})$ or $({}^{9}C_{7})()(x^{7})$ or $({}^{9}C_{6})()(x^{6})$				
		1: At least two correct terms from ${}^{9}C_{1}(2)^{1}\left(-\frac{1}{3}x\right)^{8} + {}^{9}C_{2}(2)^{2}\left(-\frac{1}{3}x\right)^{7} + {}^{9}C_{3}(2)^{3}\left(-\frac{1}{3}x\right)^{6}$				
		which can be un-simplified or simplified.				
10. (b)	Note	Give 1 st M0 (unless recovered) for any extra x terms in their expansion of $f(x)$ or for any additional x terms in $\pm 3('768')x \pm '512'ax$ or for any additional terms in $\pm 3('768') \pm '512'a$.				
	Note	Give M1 dM1 for $\pm 3('768')x \pm '512'ax \Rightarrow a =$ or for $\pm 3('768') \pm '512'a = 0 \Rightarrow a =$				
	Note	Valid solutions include $2^9 a - 9(2^8) = 0$ or $\frac{36(2^7)}{9}a - \frac{(3)(9)(2^8)}{3} = 0 \implies a = \frac{9}{2}$				
	Note	Allow 1 st M1 for $3(-768x) + \frac{a}{x}(512x^2) = 0$ or $0x$				
	Note	Note M1 dM1 A1 can be given for $K\left(1+{}^9C_1\left(-\frac{1}{6}x\right)+{}^9C_2\left(-\frac{1}{6}x\right)^2+\right)$				
		where $K \neq 2^9$ or $K \neq 512$ leading to $a = \frac{9}{2}$ in Q10(b).				
		E.g. $K = \frac{1}{512}$ gives $\frac{a}{512} - \frac{3(3)}{1024} = 0 \implies a = \frac{9}{2}$				

Question Number	Scheme			Notes	Marks	
11.	$f(x) = 13 + 3x + (x + 2)(x + k)^2$; given $(x + 3)$ is a factor of $f(x)$					
(a)(i),(ii)	f(-3) = 13 + 3(-3) + (-3 + 2)(-3) + (-3) + (-3)(-3) + (-3) + (-3) + (-3) + (-3) + (-3) + (-3) + (-3) + (-3) +	$-3+k)^2=0$		± 3) to obtain an expression in sets their expression equal to 0	M1	
	$(-3+k)^2 = 4$ -3+k=+2	(See note) - $(k^2 - 6k + 9) =$ $k^2 - 6k + 5 = 0$		lent on the previous M mark prrect valid method for solving their quadratic in k to give at least one value of $k =$	dM1	
	<i>k</i> = 5, 1	(k-5)(k-1) = 0 k = 5, 1		prrect method for finding $k = 5$ swer is given) and finds $k = 1$	A1	
					(3)	
(a)	$\{x = -3, k = 5 \Longrightarrow\}$		Use thi	is Alt method for 1 st M1 only		
(i) Alt	$f(-3) = 13 + 3(-3) + (-3 + 2)$ $\{= 13 - 9 - 4\} = 0 = 13$	· · · ·		3, $k = 5$ to correctly show that = 0 and concludes that $k = 5$	M1	
					(1)	
(b) (i)	$f(x) = 13 + 3x + (x + 2)(x + 5)^2$ Attempts to multiply out $f(x)$ with			multiply out $f(x)$ with $k = 5$		
()()	$= 13 + 3x + (x + 2)(x^{2} + 10)$,		give a 4-term cubic of the form $\pm Ax^3 \pm Bx^2 \pm Cx \pm D;$	M1	
	$= 13 + 3x + x^3 + 10x^2 + 25$	$x + 2x^2 + 20x + 1$	50	$A, B, C, D \neq 0$		
	$= x^3 + 12x^2 + 48x + 63$			$x^3 + 12x^2 + 48x + 63$	A1	
	Hence $f(x) = (x+3)(x^2+9x)$	+ 21)	attem e.g. Attempts t division to g e.g. factorising/ $(x+3)(x^2 \pm kx)$	Uses their simplified cubic and $(x+3)$ in an attempt to find the quadratic factor. e.g. Attempts to divide by $(x+3)$ using long division to give $x^2 \pm kx +, k =$ value $\neq 0$ e.g. factorising/equating coefficients to obtain $(x+3)(x^2 \pm kx \pm c), k =$ value $\neq 0, c$ can be 0 $(x+3)(x^2 + 9x + 21)$ seen on one line		
	Note: Give final M0 for attempting to divide by $(x-3)$					
	Note: Give final M0 for factorising/equating coefficients to give $(x - 3)(x^2 \pm kx \pm c)$ Note: You can recover work for (b)(i) in (b)(ii)				(4)	
(b)(ii) Way 1	$\{b^2 - 4ac = \} 9^2 - 4(1)(21)$	Applies b^2	$x^2 - 4ac$ on their " x^2 This could be	$a^{2} + 9x + 21$ " where $a, b, c \neq 0$. e part of the quadratic formula part) or embedded in $b^{2} < 4ac$.	M1	
	e.g. $b^2 - 4ac = -3 < 0 \Rightarrow$ no solution and so $x = -3$ Finds $b^2 - 4ac = -3$, states $-3 < 0 \Rightarrow$ no solution					
	e.g. $b^2 - 4ac = -3 < 0 \Rightarrow \text{no s}$ comes from $x + 3 = 0$	olution and the		and either $x = -3$ or only solution comes from $x + 3 = 0$	Al cso	
		ve A0 for stating	f(x+3) is the only		(2)	
	Note: If they refer to the solution of $x = -3$ it must be correct (not e.g. $x = 3$) for A1 cso Note: Give A0 for $b^2 - 4ac = -3 < 0 \Rightarrow$ no solution and $x^2 + 9x + 21 < 0 \Rightarrow x = -3$ Note: $x = -3$ must clearly be a part of their solution for A1					
	Note: Th	e solution $x = -x$	3 must be referred	to 1n (b)(11)	9	

Question Number		Scheme	Notes	Marl	KS .		
11. (ii)(b) Way 2	$\left(x+\frac{9}{2}\right)^2$	+21) = 0 ⇒ } $-\frac{81}{4} + 21 = 0$ = $-\frac{3}{4}$ or $x + \frac{9}{2} = \pm \sqrt{-\frac{3}{4}}$	Completes the square on their " $x^2 + bx + c$ " where $b, c \neq 0$ to make $\left(x + \frac{b}{2}\right)^2$ or $\left(x + \frac{b}{2}\right)$ the subject.	M1			
	e.g. {Qua	adratic} has no solutions and so $x = -3$	$\left(x + \frac{9}{2}\right)^2 = -\frac{3}{4}$ or $x + \frac{9}{2} = \pm \sqrt{-\frac{3}{4}}$. 1			
	e.g. {Quadratic} has no solutions and so the only solution comes from $x + 3 = 0$		or $x + \frac{9}{2} = \sqrt{-\frac{3}{4}}$, \Rightarrow no solution (or maths error) and either $x = -3$ or only solution comes from $x + 3 = 0$		CSO		
					(2)		
11. (ii)(b) Way 3	${(x^2 + 9x)}$	$(+21) = 0 \implies x = \frac{-9 \pm \sqrt{81 - 4(1)(21)}}{2}$	Applies $b^2 - 4ac$ on their " $x^2 + 9x + 21$ " where $a, b, c \neq 0$. Note: This must be seen as part of the quadratic formula.	M1			
	e.g. $x = -3$	$\frac{-9\pm\sqrt{-3}}{2} \Rightarrow \{\text{Quadratic}\} \text{ has no solutions and}$	$x = \frac{-9 \pm \sqrt{-3}}{2}$				
		$\frac{-9 \pm \sqrt{-3}}{2} \Rightarrow \{\text{Quadratic}\} \text{ has no solutions and} \\ \text{y solution comes from } x + 3 = 0$	⇒ no solution (or maths error) and either $x = -3$ or only solution comes from $x + 3 = 0$	A1	CS0		
					(2)		
		Question 11	Notes				
11. (a)	Note	= 0 can be implied in their working for A1					
	Note	1^{st} M can be given for applying $f(\pm 3)$ to their					
	Note	ALT: $f(-3) = 13 + 3(-3) + (-3+2)(-3+5)^2 = 0 \Rightarrow k = 5$ is sufficient for 1 st M1 Give dM0 for simplifying $13 + 3(-3) + (-3+2)(-3+k)^2 = 0$ to give $13 - 9 + (-1)(-3+k)^2 = 0 \Rightarrow 3(-3+k)^2 = 0$					
	Note						
	NT .						
	Note	Give dM0 for simplifying $13 + 3(-3) + (-3 + 2)$ • $4 - (-3 + k)^2 = 0 \implies 4 - 9 - k^2 = 0$ or $4 - (-3 + k)^2 = 0$	$(9-6+k^2)=0 \implies k=\dots$				
	Note	Condone writing $-k^2 + 6k + 5 = 0 \Rightarrow (k - 5)(k$					
	Note	Give final A1 for $-k^2 + 6k - 5 = 0$ or $k^2 - 6k$	$+5 = 0 \implies k = 5, 1$ with no intermediat	te wor	king.		

	Question 11 Notes Continued							
11. (b)(i)	Note	Condone $(x+5)^2 \rightarrow x^2 + 25$ as part of their working for the 1 st M mark.						
-	Note	Condone 2 nd M1 e.g. for $x^3 + 12x^2 + 48x + 63 \rightarrow (x+3)(x^2 + 12x + 48)$						
(b)(ii)	Note	When a student refers to 'solution' it is assumed that they mean a 'real solution'.						
-	Note	' < 0' or 'it is negative' must also be stated in a discriminant method for A1						
-	Note	A correct discriminant calculation, e.g. $9^2 - 4(1)(21)$, $81 - 84$ or -3 is sufficient as part of their						
		working for A1. E.g. Give M1 A1 for $b^2 - 4ac = 81 - 84 < 0$, so no solution $\Rightarrow x = -3$						
-	Note	Give A0 for incorrect working, e.g. $9^2 - 4(1)(21) = -5 < 0$						
	Note	Give M1 A1 cso for $x = -\frac{9}{2} \pm \frac{\sqrt{3}}{2}i, -3$						
-	Note	Allow the statement						
		'as $y = f(x)$ is a cubic {function}, and cubic functions have at least one solution, $f(x) \{=0\}$						
		has one solution'						
		written in place of either 'either $x = -3$ or only solution comes from $x + 3 = 0$ ' for the A1 mark						

Question Number	Scheme		Notes	Marks	3
12.	$y = \tan x, \ y = 5\cos x \ ; \ 0 < x \le 2\pi$				
(a)	$5\cos x = \tan x$		Sets $5\cos x = \tan x$	B1	
	$5\cos x = \frac{\sin x}{\cos x} \{\Rightarrow 5\cos^2 x = \sin x\}$	or	Applies $\tan x = \frac{\sin x}{\cos x}$ to their equation correctly multiplies both sides by $\cos x$	M1	
	$5(1-\sin^2 x) = \sin x$	01	Uses $\cos^2 x = 1 - \sin^2 x$ to form an equation in just $\sin x$	M1	
	$5\sin^2 x + \sin x - 5 = 0 *$		Correct proof with no notational errors	A1 *	cso
					(4)
(b)	• $\sin x = \frac{-1 \pm \sqrt{1 - 4(5)(-5)}}{10}$ $\left\{ = \frac{-1 \pm \sqrt{101}}{10} = 0.9049, -1.1049 \right\}$ • $5\left(\sin x + \frac{1}{10}\right)^2 - \frac{1}{20} - 5 = 0 \implies \sin x =$ $\left(\sin x + \frac{1}{10}\right)^2 - \frac{1}{100} - 1 = 0 \implies \sin x =$	Attempts to solve the quadratic = 0 by correct quadratic formula or by completing the square to give $\sin x =$, (but condone just $x =$ instead of $\sin x =$).Note: Factorisation attempts score M0. Note: The negative square root can be omitted in their working.dependent on the previous M mark Uses 'arcsin' to obtain at least one value of x (in radians or in degrees) written down to at least one decimal place. Accept dM1 for any of $x = awrt 1.1$, $awrt 2.0$, $awrt 204.6$ or $awrt 335.4$ At least one of either $x = awrt 1.13$, $awrt 2.01$, $awrt 64.82$ or $awrt 115.18$			
	<i>x</i> = 1.13135, 2.01024				
	$\{\Rightarrow x_A = 1.13, x_B = 2.01 (2 \text{ dp})\}$				
		Both $x = awrt 1.13$ and $x = awrt 2.01$ and no extra solutions in the range $(0, 2\pi]$ or for $x_A = awrt 1.13$ and $x_B = awrt 2.01$		A1	
	Note: Work for part (b) ca				(4)
(c) (i)	22		22	B1	
	 2 solutions every 2π (or 360°) plus 2 solutions the final π (or 180°) or states 2(10) + 2 20 solutions in 20π (or 1800°) plus two solutions the final π (or 180°) or states 20 + 2 20 solutions for 0 < x < 20π so 22 solutions 0 < x ≤ 21π each solution is repeated another 10 more times the solution is repeated another 10 more times times the solution is repeated another 10 more times times the solution is repeated another 10 more times times times times the solution is repeated another 10 more times times times times times times times times times t	dependent on the previous B mark Acceptable reason or acceptable calculation.	dB1		
(ii)	40		40	B1	
~ /	 2 solutions every π (or 180°) or states 2(20 4 solutions every 2π (or 360°) or states 4(1 	dependent on the previous B mark Acceptable reason or acceptable calculation.	dB1		
					(4)
					12

		Question 12 Notes							
12. (b)	Note	Completing the square: Give M1 for either $5(\sin x \pm \frac{1}{10})^2 \pm q \pm 5 = 0 \Rightarrow \sin x =$							
	or for $\left(\sin x \pm \frac{1}{10}\right)^2 \pm q \pm 1 = 0 \Longrightarrow \sin x = \dots; q \neq 0$								
	Note Give M0 dM0 A0 A0 for writing down $x = 1.13$, 2.01 from no working.								
	Note Give M0 dM0 A0 A0 for writing down $x = awrt 1.13$, awrt 2.01, awrt 64.82 or from no working.								
	Note	Condone 1 st M1 for writing down (from their graphical calculator) $\sin x = awrt 0.9$							
	Note	Give M1 dM1 A1 A0 for 'sin $x = 0.9 \Rightarrow x = 1.13$ '							
	Note Give M1 dM1 A1 A1 for $\sin x = 0.9 \Rightarrow x = 1.13, 2.01$								
	Note	Give 2^{nd} A0 for incorrectly deducing $x_A = awrt 2.01$ and $x_B = awrt 1.13$							

Question Number	Scheme		Notes	Marks	3
13. (a)	$\frac{1}{2}r^2\theta = 200 \left(\text{or } \frac{\theta}{2\pi} = \frac{200}{\pi r^2}\right)$	States or uses $\frac{1}{2}r^2\theta = 200$, o.e.	B1		
	$P = r + r + r\theta$	States or uses $\{P =\} = 2r + r\theta$ o.e. Allow B1 for $\{P =\} 2r + l, l = r\theta$	B1		
	$\frac{1}{2}r^{2}\theta = 200 \implies$ • $r\theta = \frac{400}{r} \implies P = 2r + \frac{400}{r} *$	Applies a complete process of substituting $r\theta =$ or $\theta =$, where ',.,'= f(r) into an expression for the perimeter which is of the form $P = \lambda r + \mu \theta$; $\lambda, \mu \neq 0$	M1		
	• $\theta = \frac{400}{r^2} \Rightarrow P = 2r + r\left(\frac{400}{r^2}\right) \Rightarrow P = 2r$	$+\frac{400}{r}$ *	* Correct proof with some reference to $P =, P \rightarrow$ or P: as part of their proof. Note: 'Perimeter' can be written in place of P.	A1 *	(4)
(b)					(4)
	$\frac{\mathrm{d}P}{\mathrm{d}r} = 2 - 400r^{-2}$		Differentiates $Cr + \frac{D}{r}$ to give $P + Qr^{-2}; C, D, P, Q \neq 0$	M1	
	d <i>r</i>		$\left\{\frac{dP}{dr} = \right\} 2 - 400r^{-2}, \text{ o.e.}$	A1	
	$\left\{\frac{\mathrm{d}P}{\mathrm{d}r} = 0 \Longrightarrow\right\} 2 - \frac{400}{r^2} = 0$ $\Rightarrow 2r^2 - 400 = 0 \Longrightarrow r^2 = \dots \{=$	Sets their $\frac{dP}{dr} = 0$ and rearranges to give $r^{\pm n} = k, k > 0, n=2 \text{ or } 3$	M1		
		Subst	dependent on the previous mark itutes their r (where $r > 0$), which has been found by solving $\frac{dP}{dr} = 0$, into $P = 2r + \frac{400}{r}$		
	${r = 10\sqrt{2} \Rightarrow}$ $P = 2(10\sqrt{2}) + \frac{400}{10\sqrt{2}} = 40\sqrt{2}$	or a	$P = 40\sqrt{2}$ or $\sqrt{1600}$ or $20\sqrt{8}$ or $\frac{80}{\sqrt{2}}$ or any exact equivalent in the form $a\sqrt{b}$ or $\frac{a}{\sqrt{b}}$		
(c)			Differentiates to give		(5)
Way 1	$d^2 P$		$\left\{\frac{\mathrm{d}^2 P}{\mathrm{d}r^2}\right\} \pm K r^{-3}, K \neq 0$	M1	
	$\frac{d^2 P}{dr^2} = 800r^{-3} > 0 \implies \text{Minimum {value}}$	of <i>P</i> }	$800r^{-3}$, > 0 and minimum Note: ft is only allowed on their ' $r = \sqrt{200}$ ' value from (b), where $r > 0$	A1 ft	cso
	NB: A1 is cso , so calculations for P'' us	sing thei	r ' $r = \sqrt{200}$ ' must be correct to at least 2 sf		(2)
(c) Way 2	$\{r = 10\sqrt{2} = 14.142 \Rightarrow \}$ $r = 14.1 \Rightarrow \frac{\mathrm{d}P}{\mathrm{d}r} = -0.01197 < 0$	Applies a value on each side of their $r = 10\sqrt{2}$ (where $r > 0$) to an expression of the form $P + Qr^{-2}$; $P, Q \neq 0$	M1		
	$r = 14.2 \Rightarrow \frac{dP}{dr} = 0.01626 > 0$ $\Rightarrow Minimum \{value of P\}$	Correct evaluations to at least 1 sf, $<0,>0$ and minimum	A1 ft		
					(2) 11
				1	11

		Question 13 Notes						
13. (b)	Note	The 2 nd M mark can be implied.						
		Give 2 nd M for $2 - \frac{400}{r^2} = 0 \rightarrow r = \sqrt{200}$ or $r = 10\sqrt{2}$ or $r = a \text{ wrt } 14.1$						
	Note	Give final dM1 A0 for $r = 14.14 \Rightarrow P = awrt 56.6$ without reference to a correct						
		exact value for <i>P</i> .						
	Note	Give 2^{nd} M0 for $2 - \frac{400}{r^2} < 0 \implies r < 10\sqrt{2}$						
		but give 2 nd M1 dM1 2 nd A1 for $2 - \frac{400}{r^2} < 0 \implies r < 10\sqrt{2} \implies P = 2(10\sqrt{2}) + \frac{400}{10\sqrt{2}} = 40\sqrt{2}$						
	Note	Give 2^{nd} M0 for $2 - \frac{400}{r^2} > 0 \implies r > 10\sqrt{2}$						
		but give 2 nd M1 dM1 2 nd A1 for $2 - \frac{400}{r^2} > 0 \implies r > 10\sqrt{2} \implies P = 2(10\sqrt{2}) + \frac{400}{10\sqrt{2}} = 40\sqrt{2}$						
(c)	Note	Ignore poor differentiation notation or the lack of differentiation notation in part (c).						
	Note	Condone ' $\frac{d^2 P}{dr^2} = 800r^{-3} > 0 \implies$ Minimum value of r' for final A1						
	Note	Using their $r = 10\sqrt{2}$ from (b), give M1 A1 for any of						
		• $\frac{\mathrm{d}^2 P}{\mathrm{d}r^2} = 800r^{-3} \implies \frac{\mathrm{d}^2 P}{\mathrm{d}r^2} = \frac{800}{(10\sqrt{2})^3} > 0 \implies \mathrm{Minimum}$						
		• $\frac{d^2 P}{dr^2} = 800r^{-3} \implies \frac{d^2 P}{dr^2} = 0.2828 > 0 \implies Minimum$						
		• $\frac{\mathrm{d}^2 P}{\mathrm{d}r^2} = 800r^{-3} \implies \frac{\mathrm{d}^2 P}{\mathrm{d}r^2} = 0.2828 > 0 \Longrightarrow P_{\mathrm{min}}$						
		• $\frac{d^2 P}{dr^2} = 800r^{-3} \implies \frac{d^2 P}{dr^2} = \frac{\sqrt{2}}{5} \dots > 0 \Longrightarrow Minimum$						
	Note	Using their $r = 10\sqrt{2}$ from (b), give M1 A0 for any of						
		• $\frac{d^2 P}{dr^2} = 800r^{-3} \implies \frac{d^2 P}{dr^2} = \frac{800}{10\sqrt{2}^3} > 0 \implies \text{Minimum} \{\text{poor bracketing}\}$						
		• $\frac{d^2 P}{dr^2} = 800r^{-3} \implies \frac{d^2 P}{dr^2} = \frac{800}{(40\sqrt{2})^3} = 0.0044 > 0 \implies \text{Minimum}$						
		• $\frac{d^2 P}{dr^2} = 800r^{-3} \implies \frac{d^2 P}{dr^2} = 0.282 \Rightarrow$ Minimum {No reference to > 0}						
		• $\frac{\mathrm{d}^2 P}{\mathrm{d}r^2} = 800r^{-3} \implies \frac{\mathrm{d}^2 P}{\mathrm{d}r^2} = \frac{800}{(10\sqrt{2})^3} = 8 > 0 \Longrightarrow \text{Minimum} \text{ {incorrect evaluation}}$						

Question Number	Scheme	Notes	Marks			
14.	(i) $G_1 = 22, G_5 = 130; G_1, G_2, G_3,$ is a geometric sequence (ii) $T_1 = 208, T_2 = 207.2; T_1, T_2, T_3,$ is a arithmetic sequence					
(i)	$a = 22, ar^4 = 130$ or $22r^4 = 130$	down $a = 22$ and $ar^4 = 130$ in a correct equation in <i>r</i> only.	M1			
	$r = \sqrt[4]{\frac{130}{22}} \ \{= 1.559122245\}$					
	$\{G_2 = ar \Longrightarrow\} \ G_2 = 22('1.5591')$	_	e previous M mark Obtains o.e. and applies 22 (their r)	dM1		
	$= 34.3 \text{ (km h}^{-1}) \text{ cao}$		34.3	cao Note: Ignore the units	A1 cao	
	Note: Condone a copying error (or slip)) on one of	either '22'	or '130' for the M marks.	(4)	
(ii)	$\{T_n = 0 \implies a + (n-1)d = 0 \implies\}$					
(a) Way 1	e.g. • 208 + $(n-1)(-0.8) = 0 \implies n = 26$	1		applies $a + (n-1)d = 0$ with 208, $d = -0.8$ to find $n =$	N41	
vvay 1	• $n = \frac{208}{0.8} \implies n = 260$			or deduces $n = \frac{208}{0.8}$	M1	
	• $h = \frac{1}{0.8} \implies h = 200$			Finds $n = 261$ or $n = 260$	A1	
	• $S_{261} = \frac{261}{2}(2(208) + (260)(-0.8)) = \frac{26}{2}$	$51_{(208)}$	depende	ent on the previous M mark		
		, j	Either a	pplies $S_n = \frac{n}{2}(2a + (n-1)d)$		
	• $S_{260} = \frac{260}{2}(2(208) + (259)(-0.8)) \ \{= 130\}$	$0(208.8)\}$	with a	$a = 208, \ d = -0.8, \ n = "261"$		
	-	or with a	$a = 208, \ d = -0.8, \ n = "260"$	dM1		
	• $S_{261} = \frac{261}{2}(208+0) \left\{ = \frac{261}{2}(208) \right\}$			or applies $S_n = \frac{n}{2}(a+l)$		
	260		W	ith $a = 208$, $n = "261"$, $l = 0$		
	• $S_{260} = \frac{260}{2}(208 + 0.8)) \{= 130(208.8)\}$		or wit	h $a = 208, n = "260", l = 0.8$		
	{Maximum value of S_n } = 27144	cao		27144	A1 cao	
					(4)	
(a) Way 2	$S_n = \frac{n}{2}(2(208) + (n-1)(-0.8)) = \frac{n}{2}(416 - 0)$.8n + 0.8)	А	pplies $S_n = \frac{n}{2}(2a + (n-1)d)$		
	$-\frac{n}{(416.8-0.8n)}$ - 208 4n - 0.4n ²		(with a	= 208, d = -0.8) and either		
	$=\frac{n}{2}(416.8 - 0.8n) = 208.4n - 0.4n^2$			valid attempt (i.e. $n^k \rightarrow n^{k-1}$)	2.44	
	• $\frac{dS_n}{dn} = 208.4 - 0.8n = 0 \implies n = \frac{208.4}{0.8}$		to d	lifferentiate with respect to <i>n</i> ,	M1	
	$\frac{1}{dn} = 208.4 - 0.8n = 0 \implies n = \frac{1}{0.8}$		(aan dan	sets the result equal to 0 as $0 = 0$ or $0 = 0$ to find $n =$		
	$S_n = -0.4(n^2 - 521n) = -0.4((n - 260.5)^2 - 60.5)^2 - 60.5(n - 260.5)^2 - 60.5(n -$	$-(260.5)^2)$		valid attempt to complete the square		
	<i>n</i> = 260.5	Uses a cor	rect algebra	a to find or deduce $n = 260.5$		
	or $S_n = -0.4((n - 260.5)^2 - (260.5)^2)$		•	$= -0.4(n - 260.5)^2 + 27144.1$	A1	
	• $S = -208.4(260) - 0.4(260)^2$		depende	ent on the previous M mark		
	~260 2001 (200) 01 (200)	~ ~	in integer value for n which either side of		dM1	
	• $S_{261} = 208.4(261) - 0.4(261)^2$	eir $n = "260.5"$ to their $S_n = 208.4n - 0.4n^2$		41111		
	201	С		formula for S_n . (See notes)		
	{Maximum value of S_n } = 27144 cao		Concl	udes maximum sum is 27144	A1 cao	
(ii) (b)	522			500	(4) B1 cao	
(ii) (b)				522	B1 cao (1)	
					9	

		Question 14 Notes							
14. (ii)	Note	Condone 1 st M1 1 st A1 for $208 + (n)(-0.8) = 0 \implies n = 260$							
	Note	Give 1 st M0 1 st A0 for $208 + (n-1)(0.8) = 0 \implies n = -261$							
		but allow 1 st M1 1 st A1 for 208 + $(n-1)(0.8) = 0 \implies n = -261 \implies n = 261$ (recovered)							
	Note	Way 1: If a valid method gives a decimal value for <i>n</i> , then dM1 will then be given for							
		a correct method using $S_n = \frac{n}{2}(2a + (n-1)d)$ or $S_n = \frac{n}{2}(a+l)$ with $\lfloor n \rfloor$							
		(i.e. where $\lfloor n \rfloor$ the integer part of <i>n</i>)							
	Note	Way 2: If a valid method gives a decimal value for n , then dM1 mark will then be given for a correct method of applying S_n with integer n which is either side of their decimal value of n .							
		E.g. If $n = 260.5$ then either $n = 260$ or $n = 261$ must be applied to an S_n expression for dM1.							
	Note	Way 2: If a valid method gives an integer value for <i>n</i> , then dM1 mark will then be given for							
	a correct method of applying S_n with either <i>n</i> or $n-1$								
		E.g. If $n = 250$ then either $n = 250$ or $n = 249$ must be applied to an S_n expression for dM1.							
	Note	Give final dM0 A0 for finding $S_{260.5} = \frac{260.5}{2}(2(208) + (260.5)(-0.8)) = 27144.1$ or 27144							
		without reference to either $S_{261} = \frac{261}{2}(2(208) + (260)(-0.8)) = 27144$							
		or $S_{260} = \frac{260}{2}(2(208) + (259)(-0.8)) = 27144$							
	Note	Allow 1 st M1 1 st A1 for finding $S_n = 208.4n - 0.4n^2$ and using their calculator							
		to deduce $n = 260.5$							

Question Number		Scheme Notes					
15.	$C_1: x^2 +$	$(y-3)^2 = 26$, centre <i>S</i> ;	$C_2:(x - C_2) = C_2$	$(-6)^2 +$	$y^2 = 17$, centre Q		
	States or implies that <i>S</i> and <i>Q</i> are distances 3 and 6 from <i>O</i>						
(a)	${SQ =} \sqrt{3^2 + 6^2} = 3\sqrt{5}$				Applies $SQ = \sqrt{1}$	$\sqrt{3^2 + 6^2}$ or $SQ^2 = 3^2 + 6^2$	dM1
						3√5	A1 cao
(b)(i)		$C_1: x^2 + y^2 - 6y + 9 =$ $C_2: x^2 - 12x + 36 + y^2 =$			followed by a corr	nultiply out both brackets ect method of eliminating ² from their simultaneous	M1
	Subtraction	ng gives: $-6y+9-(-1)$	2x + 36)	=9	, ,	equations.	
	-	-6y + 9 + 12x - 36 = 9 12x - 36 = 6y y = 2x - 6 *		Cor		Fors seen in their working. ondone omission of $'=0'$ where appropriate.	A1 *
(b)(ii) Way 1	x^2-12x	$+(2x-6)^{2} = 17$ + 36 + 4x ² - 24x + 36 = 3	17	S	•	5 into either of their circle ions and proceeds to form	M1
		x + 72 = 17		_	2 24 4 22	a 3TQ in either x or y	
	$5x^2 - 36x$	x + 55 = 0		5:	8 <i>8</i>	{or $5y^2 - 12y - 32 = 0$ }	A1
	$(x-5)(5x-11) = 0 \implies x = \dots$				Ċ	on the previous M mark correct method for solving eir $3TQ = 0$ to find $x =$	dM1
	• $x = 5 \Rightarrow y = (2)(5) - 6 = 4$ • $x = 2.2 \Rightarrow y = (2)(2.2) - 6 = -1.6$					st one $x =$ back into an to find at least one $y =$	dM1
	$P(5, 4)$ and $R(2.2, -1.6)$ $P(5, 4)$ and $R(2.2, -1.6)$ or $R(\frac{11}{5}, -\frac{8}{5})$						A1
	Note: <i>P</i> : $x = 5$, $y = 4$ and <i>R</i> : $x = 2.2$, $y = -1.6$ is fine for A1						
(b)(ii)	$y = \sqrt{26}$	$\overline{-x^2} + 3, y = \sqrt{17 - (x - x)^2}$	$(-6)^2$				
Way 2	$\sqrt{26 - x^2} + 3 = \sqrt{17 - (x - 6)^2}$				Substitutes one	circle into the other circle	
	$26 - x^{2} + 6\sqrt{26 - x^{2}} + 9 = 17 - x^{2} + 12x - 34$ $6\sqrt{26 - x^{2}} = 12x - 54 \implies \sqrt{26 - x^{2}} = 2x - 9$			36	6 and uses valid algebra to form a 3TQ in	M1	
				9			
	$26 - x^2 =$	$26 - x^{2} = 4x^{2} - 36x + 81$ $5x^{2} - 36x + 55 = 0$					
	$5x^2 - 36x$					$5x^2 - 36x + 55 \{=0\}$	A1
			itinue to	apply	the scheme for Way	1	
(c)	$PR = \sqrt{5}$	$(5-2.2)^2 + (41.6)^2$		τ	Uses the distance form	nula to find the length <i>PR</i>	M1
Way 1	$\left\{ = \sqrt{\frac{196}{5}} \text{ or } \sqrt{39.2} \text{ or } \frac{14}{5} \sqrt{5} \right\}$						
	Area(SPQR) = $\frac{1}{2} \left(3\sqrt{5} \right) \left(\frac{14}{5} \sqrt{5} \right)$					on the previous M mark thod to find Area(<i>SPQR</i>)	dM1
		$= 21 (units)^2$				21	A1 cao
							(3)
	Question 15 Notes						13
15. (b)(i)	Note	An alternative method	lofcom	-		$y = 2x - 6$ into C_1 and 2	v = 2r - 6
13. (0)(1)	11010						
	into C_2 and verify that both equations can be manipulated to give the same $5x^2 - 3$ NoteMethods of proof involving a gradient of 2 and a point lying on the line <i>PR</i> will rare						
	Note	Methods of proof invo marks in this part.	olving a	gradie	nt of 2 and a point ly	ing on the line <i>PR</i> will rare	ly score

Question Number		Scheme	Notes	Marks					
15.	S(0,3)	Area = 6.3 $\sqrt{26}$ $\sqrt{26}$ $\sqrt{17}$ $\frac{9\sqrt{5}}{5}$ M(3.6,1.2) $\frac{6\sqrt{5}}{5}$ Q(6,0) R(2.2,-1.6) $SQ = 3\sqrt{5} = \sqrt{45}$							
(c)		the midpoint of <i>PR</i>							
Way 2	$SM = \sqrt{(0)}$ $MQ = \sqrt{(2)}$	$\frac{1}{5-3.6)^{2} + (4-1.2)^{2}} \left\{ = \frac{7\sqrt{5}}{5} \right\}$ $\frac{1}{5-3.6)^{2} + (3-1.2)^{2}} \left\{ = \frac{9\sqrt{5}}{5} \right\}$ $\frac{1}{3.6-6)^{2} + (1.2-0)^{2}} \left\{ = \frac{6\sqrt{5}}{5} \right\}$	Finds the midpoint of <i>PR</i> and finds lengths <i>PM</i> , <i>SM</i> , <i>MQ</i> . Note: <i>S</i> and <i>Q</i> must be of the form $S(0, \alpha)$ and $Q(\beta, 0)$; $\alpha, \beta \neq 0$	M1					
	Area(SP) = $2\left(\frac{1}{2}\right)^2$	$\frac{QR}{5}\left(\frac{7\sqrt{5}}{5}\right) + \frac{1}{2}\left(\frac{9\sqrt{5}}{5}\right)\left(\frac{7\sqrt{5}}{5}\right)$	dependent on the previous wi mark						
	= 2(6.3 +	$4.2) = 21 \text{ (units)}^2$ 21 A							
				(3)					
(c) Way 3	$\cos(S\hat{P}Q)$ $\Rightarrow S\hat{P}Q =$	$= \frac{(\sqrt{26})^2 + (\sqrt{17})^2 - (\sqrt{45})^2}{2(\sqrt{26})(\sqrt{17})}$ = 92.7263 or 1.6183	Uses <i>SP</i> , <i>PQ</i> and <i>SQ</i> in a correct method of using the cosine rule to find angle $S\hat{P}Q =$ Note: <i>S</i> and <i>Q</i> must be of the form $S(0, \alpha)$ and $Q(\beta, 0)$; $\alpha, \beta \neq 0$	M1					
	Area(SP)	$QR) = 2\left(\frac{1}{2}\sqrt{26}\sqrt{17}\sin 92.7263\right)$	dependent on the previous M mark Complete correct method to find Area(SPQR)	dM1					
		$= 21 \text{ (units)}^2$	21	A1 cao					
				(3)					
	_		stion 15 Notes						
15. (b)(ii)	Note	-	obtains a 3TQ in y, but this has come from an i						
	method of undoing the square root to incorrectly obtain the line $(26 - (y - 3)^2 + 36) + x = \sqrt{26 - (y - 3)^2}, (x - 6)^2 + y^2 = 17 \implies (\sqrt{26 - (y - 3)^2} - 6)^2 + y^2 = 17$								
		$\Rightarrow (26 - (y - 3)^2 + 36) + y^2 = 17 \Rightarrow -$ Therefore this solution gets M0 A0 d							

http://britishstudentroom.wordpress.com/