

Mark Scheme (Final)

October 2019

Pearson Edexcel International A Level in Statistics S2 (WST02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2019 Publications Code WST02_01_1910_MS All the material in this publication is copyright © Pearson Education Ltd 2019

General Marking Guidance

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for `knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- _ or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. Ignore wrong working or incorrect statements following a correct answer.

Special notes for marking Statistics exams (for AAs only)

- If a method leads to "probabilities" which are greater than 1 or less than 0 then M0 should be awarded unless the mark scheme specifies otherwise.
- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.
- If a candidate gives multiple solutions we mark the last complete solution. If in doubt send to review.

October 2019 WST02 STATISTICS 2 Mark Scheme

Question	Scheme	Marks
1(a)	$X \sim B(4, p)$ or $Y \sim B(4, 1-p)$	B1
	$P(X > 2) = P(X = 3) + P(X = 4) = 4p^{3}(1-p) + p^{4}$ oe	M1
	$=p^{3}(4(1-p)+p)$	
	$=p^{3}(4-3p)^{*}$	Alcso
		(3)
(b)	$\sqrt{4p(1-p)} = 0.96$	MI
	$4p(1-p) = 0.9216 \rightarrow 4p^2 - 4p + 0.9216 = 0$	M1
	$p = \frac{16}{25}$ or 0.64	Al
	P(X > 2) = 0.54525952 awrt <u>0.545</u>	A1
		(4)
(c)	$P(X=3 X>2) = \frac{4' p'^{3}(1-'p')}{(b)'} = \frac{4 \times 0.64^{3}(0.36)}{0.545}, = \frac{9}{13}$ awrt <u>0.692</u>	M1, A1
		(2)
		Total [9]
	$\frac{\text{Notes}}{P_1 \text{ writing on using } P(4, r) \text{ or } P(4, 1, r)}$	
(a)	B1 writing or using B(4, p) or B(4, 1 – p). For using, a correct term for P($X = a$) where $1 \le a \le 3$ is needed.	
	M1 correct expression for $P(X > 2)$ in terms of p. Allow ${}^{4}C_{0}$ etc oe A1 cso correct working leading to given answer (must see at least one line of inter working eg $p^{4} + 4p^{3} - 4p^{4}$). NB Do not allow same line but with ${}^{4}C_{0}$ etc calcula intermediate line. If they use $P(X > 2) = 1 - P(X = 0) - P(X = 1) - P(X = 2)$ then we see a completely correct solution as per the alternatives given below.	rmediate ted as an re need to
(b)	1 st M1 for a correct equation for standard deviation or variance. Allow with " their p " eg $\frac{p}{4}$	
	from part(a) 2 nd M1 rearranging their equation correctly to form a 3TQ with attempt to solve. If equation or answer is incorrect then the method to solve it must be shown. Allow one sign error	
	$1^{\text{st}} \text{A1} p = \frac{10}{25} \text{ or } 0.64 \text{ seen}$	
	2^{nd} A1 awrt 0.545 needs to have rejected any other solutions. Must be seen as answ part(b) NB $4 p(1-p) = 0.96$ leading to 0.6 is M0M1A0A0	wer to
(c)	$4' \text{their } n^{3}(1-' \text{their } n')$	
	M1 ft their value of p (0 < p <1). For a ratio in the form $\frac{4 \operatorname{den} p}{a}$ (1 $\operatorname{den} p$) v	vhere
	q = 0 < q < 1 Need to see working if incorrect answer. Can be awarded even if leads to answer > 1 .	
	Allow in terms of p eg $\frac{4p^3(1-p)}{p^3(4-3p)}$ or $\frac{4(1-p)}{(4-3p)}$ Allow with "their p" substituted.	
	A1 awrt 0.692 allow awrt 0.693	

For A1 cso: Use as guidance to check for cso and required equivalent working eg may use $1-2p+p^2$ instead of $(1-p)^2$

$$X \sim B(4,p)$$

Need to see the ticked lines and at least one of the * lines (oe) as the intermediate working

Need to see the ticked lines and at least two of the * lines (oe) as the intermediate working

$$P(X > 2) = 1 - P(X = 0) - P(X = 1) - P(X = 2)$$

= 1 - (1 - p)⁴ - 4p(1 - p)³ - 6p²(1 - p)²
= 1 - (1 - p)² [(1 - p)² + 4p(1 - p) + 6p²] *
= 1 - (1 - 2p + p²)[1 - 2p + p² + 4p - 4p² + 6p²] *
= 1 - (1 - 2p + p²)[1 + 2p + 3p²] *
= 1 - (1 + 2p + 3p² - 2p - 4p² - 6p³ + p² + 2p³ + 3p⁴)
= 4p³ - 3p⁴
= p³(4 - 3p)

need to see the ticked lines and 1 line of intermediate working before answer as per original

$$P(X > 2) = P(Y = 0) + P(Y = 1)$$

= $(p)^4 + 4(1-p)(p)^3$
= $p^3(p+4(1-p))$
= $4p^3 - 3p^4$
= $p^3(4-3p)$

Question	Scheme	Marks
2(a)	$\frac{x - (-3)}{12 - (-3)} = 0.75$	M1
	x = 8.25 8.25 oe	A1 (2)
(b)	$P(5 \le X < 14) = P(5 \le X < 12) = \frac{12 - (5)}{12 - (-3)} = \frac{7}{15}$	(2) M1 A1
(c)	$E(X) = 4.5 \rightarrow E(Y) = 7.5$	(2) B1
	$\operatorname{Var}(X) = \frac{(12 - (-3))^2}{12} \left[= \frac{75}{4} \text{ or } 18.75 \right] \text{ or } \operatorname{Var}(Y) = \frac{(12 - (-3))^2}{48} \left[= \frac{75}{16} \text{ or } 4.6875 \right]$	B1
	$\frac{a+b}{2} = 7.5'$ and $\frac{(b-a)^2}{12} = 4.6875'$ or $(b-a)^2 = \frac{225}{4}$	M1
	$(b - (15 - b))^2 = 56.25 \text{ op}$	dM1
	$\underline{a = 3.75}$ <u>$b = 11.25$</u>	A1
		(5) Total [9]
	Notes	
(a)	M1 for correct expression or correct area on sketch. If using integration they nee to this equivalent expression. Implied by correct answer A1 $\frac{33}{4}$ or 8.25 oe	d to get
(b)	M1 for a correct probability statement or correct ratio.	
	e.g. $1 - P(-3 \le X \le 5)$ or $1 - P(X \le 5)$ or $P(5 \le X \le 12)$. Allow \le instead of $\le a$	and vice
	versa. Implied by a correct answer. NB Do not allow $P(5 \le X \le a)$ where <i>a</i> is >12 oe unless correct answer is given	
	A1 $\frac{7}{15}$ or awrt 0.467	
(c)	1 st B1 [E(Y)] = 7.5 May be implied by a correct equation for a and b eg $\frac{a+b}{2}$ - 3	3 = 4.5 oe
	2^{nd} B1 correct expression for Var(<i>X</i>) or Var(<i>Y</i>). May be implied by a correct equation. 1 st M1 Setting up simultaneous equations	
	$\frac{a+b}{2}$ = "their E(Y)" or their E(X) + 3 and $\frac{(b-a)^2}{12} = \frac{1}{4}$ "their Var(X)" oe	
	2 nd dM1 dependent on first M1 being awarded. Solving simultaneously leading to a in just <i>a</i> or just <i>b</i> . Full method must be shown and correct if equations are incorrect A1 both $a = \frac{15}{4}$ or 3.75 and $b = \frac{45}{4}$ or 11.25 oe	an equation ct.
	SC. If the first 2 B marks are awarded and then 0.25 Var(<i>Y</i>) is used leading to $a = -7.5$ and $b = 22.5$ award B1 – mark as M0M0 A1 on epen.	
	Alternative:	
	$2^{nd}B1$ Range of $X = 15$	
	$1^{\text{st}} \text{M1 Var}(X) = 4 \text{Var}(Y)$ Range of $X = 2$ Range of Y $2^{\text{nd}} \text{M1 } 7.5 \pm 7.5/2$	

Question	Scheme	Marks
Question	Scheme	Marks
3(a)	[Let $X =$ number of hacking attempts per hour]	
	$P(X \ge 1) = 1 - P(X = 0) =$	M1
	$1 - e^{-0.3} = 0.2591$ awrt <u>0.259</u> *	Alcso
		(2)
(b)	$Y \sim \text{Po}(7.2)$	B1
	$P(Y=6) = \frac{e^{-7.2} \times 7.2^{\circ}}{0.144458} = 0.144458$ awrt 0.144	M(1 A 1
	6!	(3)
(c)	H : $\lambda - 0.3$ or $\mu = 50.4$	B1 (3)
	$H_0: \lambda = 0.3$ or $\mu = 50.1$	<i>D</i> 1
	$H_1: \mathcal{X} < 0.5$ of $\mu < 50.4$	D1
	$W \sim Po(50.4)$ can be approximated by N(50.4, 50.4)	BI
	$P(W < 38) \approx P\left(Z < \frac{38.5 - 50.4}{2}\right)$	M1 M1
	$\sqrt{50.4}$	
	$\approx P(Z < -1.676) = 0.0468 \text{ (calc)} \approx P(Z < -1.68) = 0.0465 \text{ (tables)}$	A1
	Reject H ₀ /significant	dM1
	There is evidence of a decrease in the rate of hacking attempts or Saira's belief	
	is supported.	Alcso
		(7)
		Total [12]
	Notes	
(a)	M1 writing or using $1 - P(X = 0)$	
	A 1 cso correct expression $1 - e^{-0.3}$ (allow $1 - \frac{e^{-0.3} 0.3^{\circ}}{1 - e^{-0.3}}$) and awrt 0.259	
(b)	B1 writing or using $Po(7.2)$	
	MI correct expression	
	A1 $awrt 0.144$ (allow 0.1443) 1 st P1 both hypotheses correct must be $\frac{1}{2}$ or $\frac{1}{2}$	
(()	2^{pd} P1 writing or using N(50.4, 50.4)	
	2 B1 writing of using $N(30.4, 30.4)$ (37.5/38/38.5 - their mean)	
	1^{st}M1 for $\pm \left(\frac{37.5738738.5 - \text{ineu mean}}{\text{their sd}}\right)$ If they do not have not given a mean a	and
	variance they must be correct in here. (allow $1 \pm$ standardisation) If no mean or v	ar given
	they must be correct here.	0
	2 nd M1 use of continuity correction 38±0.5	
	1^{st} A1 for answer in the range 0.0465 - 0.04685 Allow awrt 0.9532 > 0.95 or 0.95	535 >
	0.95	
	3 rd dM1 Dependent on the 1 st M1.	-
	For a context statement i.e. significant/reject Π_0 may be a contextual one Follow through their probability and their Π_1	.
	Do not allow non-contextual conflicting statements	
	NB Do not award if no hypotheses given but can award if letter missin	g or
	incorrect letter used.	<i>C</i>
	2 nd A1cso all previous marks must be awarded and correct contextual statement.	Words in
	bold or their equivalent must be seen.	
	Allow equivalent words for decrease eg lessened, for rate eg number, for belief e	g claim,
	for supported eg true, right, correct, for Saira's eg her	

Que	estion	Scheme	Marks
		Ignore any incorrect comparison eg 0.0465 < 0.025 if all previous marks have been	n awarded.
Que	estion	Scheme	Marks
	4(a)	$E(X^{2}) = \int_{1}^{3} \frac{1}{15} (3x^{4} - x^{5}) dx + \int_{3}^{5} \frac{3}{10} (x^{3} - 3x^{2}) dx$	M1
		$= \left[\frac{1}{15}\left(\frac{3x^5}{5} - \frac{x^6}{6}\right)\right]_1^3 + \left[\frac{3}{10}\left(\frac{x^4}{4} - x^3\right)\right]_3^5$	M1 A1
		$=\frac{2923}{225}=12.99$ awrt <u>13.0</u>	A1 (4)
	(b)	$\int_{1}^{x} \frac{1}{15} (3t^2 - t^3) dt \qquad \text{or} \qquad \int \frac{1}{15} (3x^2 - x^3) dx \text{ with } + c \text{ and } F(1) = 0$	M1
		$\int_{1}^{3} \frac{1}{15} (3t^2 - t^3) dt + \int_{3}^{x} \frac{3}{10} (t - 3) dt \text{ or } \int \frac{3}{10} (x - 3) dx \text{ with} + d \text{ and } F(5) = 1$	M1
		$\begin{bmatrix} 0 & x < 1 \end{bmatrix}$	B1 A1
		$\left[F(x)=\right] \begin{cases} \frac{1}{15}x^3 - \frac{1}{60}x^4 - \frac{1}{20} & 1 \le x < 3\\ \frac{3}{2}x^2 - \frac{9}{20}x^2 - \frac{7}{20} & 3 < (x-2)^2 + 0 & 4 < 2 \le x < 5 \end{cases}$	A1
		$\frac{\frac{1}{20}x - \frac{1}{10}x + \frac{1}{4}}{1} \text{ or } \frac{\frac{1}{20}(x-3)}{\frac{1}{20}(x-3)} + 0.4 \qquad 3 \le x \le 5$	(5)
	(c)	$P(2 < V < 4) = F(4) = F(2)$ or $\int_{-1}^{3} (3r^2 - r^3) dr + \int_{-1}^{4} (3(r-3)) dr$	(3) M1
		$\int \frac{1}{15} (3x^2 - x^2) dx + \int \frac{1}{10} (x - 5) dx$	
		$\frac{3}{20}(4^2) - \frac{9}{10}(4) + \frac{7}{4} - \left(\frac{1}{15}(2^3) - \frac{1}{60}(2^4) - \frac{1}{20}\right) = \frac{1}{3}$	AI (2)
	(d)	$1 - F(k) = 0.2$ or $\int_{k}^{5} \frac{3}{10}(x-3) dx = 0.2$	M1
		$\frac{3}{20}k^2 - \frac{9}{10}k + \frac{7}{4} = 0.8$ or $\frac{3}{20}(k-3)^2 = 0.4 \rightarrow k = 4.63299$ awrt 4.63	dM1 A1 (3)
		Notes	Total [14]
(a)	1 st M 1	for sum of two integrals $\int x^2 f(x) dx$ (ignore limits)	
	1 1011	for sum of two integrals $\int x T(x) dx$ (ignore limits)	
	2 nd M1	for attempting to integrate one part of $\int x^2 f(x) dx$ (one term correct) Implied by 11.4 or	awrt 1.59
	1 st A1	correct integration with limits – both integrals but do not need to add the two integrals.	
(b)	$\frac{\text{AI: ac}}{1^{\text{st}} \text{M1}}$	cept exact fraction or awrt 13.0 Attempting to integrate 1 st line of pdf (1 term correct) with correct limits or $+c$ and $F(1)=0$	or $F(3) = 0.4$
(0)	1 10117	Attempting to integrate 1 mile of put (1 term concer) with concer mints $\underline{\mathbf{M}}$ + c and 1 (1)=0 (01 1 (<i>3)</i> = 0. 4
	2 nd M1	for attempting to integrate (1 term correct) 2^{nd} line of pdf with correct limits + $\int_{3}^{3} \frac{3}{10}(t-3)^{3}$	6) d <i>t</i> <u>or</u>
	+ F(3)	<u>or</u> correct ft expression for their $F(3)$ <u>or</u> + d and $F(5) = 1$	
	1 st A1 (correct 2 nd line with limits. Allow \leq for \leq and \geq for $>$ and vice versa	
	$2^{nd} A1$	correct 3^{rd} line with limits. Allow \leq for $<$ and \geq for $>$ and vice versa	
(c)	M1 wr	ting or using $F(4) - F(2)$ or addition of correct integrals. Implied by $11/20 - 13/600e$. All	ow for ft
	expres	sion if cdf incorrect.	
(d)	AT 0.3. 1 st M1 v	by or better. writing or using $1 - F(k) = 0.2$ (or $F(k) = 0.8$) or correct integral. Allow either line of their of	cdf for F(k)
()	2 nd dM	1 dep on previous method mark being awarded. Setting up $3TQ$ using 2^{nd} line of cdf = 0.8	

Question	Scheme	Marks	
A1 A	llow $k = 3 + \frac{2\sqrt{6}}{3}$ or awrt 4.63 only (must reject other root if found)		
Question	Scheme	Marks	
5(a)	$(1,1,2) \rightarrow \frac{2}{5} \times \frac{2}{5} \times \frac{1}{5}$	B1	
	$(1,1,5) \rightarrow \frac{2}{5} \times \frac{2}{5} \times \frac{4}{5}$	B1	
	$(1.2.2)(2.1.2) \rightarrow 2 \times \frac{2}{2} \times \frac{3}{2} \times \frac{1}{2}$		
	$(125)(215) \rightarrow 2 \times 2 \times 3 \times 4$	MI	
	$(1,2,3)(2,1,3) \rightarrow 2 \wedge 5 \wedge 5 \wedge 5$	MI	
	$(2,2,2) \xrightarrow{\longrightarrow} \overline{5} \times \overline{5} \times \overline{5}$		
	$(2,2,5) \rightarrow \frac{2}{5} \times \frac{2}{5} \times \frac{2}{5}$		
	[t] 4 5 6 7 8 9	B1	
	$\begin{bmatrix} P(T = t) \end{bmatrix} 4 \\ 12 \\ 9 \\ 16 \\ 48 \\ 36 \end{bmatrix}$		
	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 \end{bmatrix} = \frac{125}{125} = \frac{125}{125} = \frac{125}{125} = \frac{125}{125} = \frac{125}{125}$	A1	
	(0.032) (0.096) (0.072) (0.128) (0.384) (0.288)	(A)	
		(7)	
(b)	m = 1 $m = 2$	B1	
	$P(M=1) = \frac{4}{4} + \frac{16}{16}$		
	125 125	N 1 1 1 1 1	
	$P(M=2) = \frac{12}{4} + \frac{9}{4} + \frac{48}{4} + \frac{36}{3} $ or $1 - \left(\frac{4}{4} + \frac{16}{16}\right)$	MI dMI	
	125 + 125		
	$\begin{bmatrix} I & I & I \\ P(M = m) \end{bmatrix} = 4 \qquad \qquad 21$	A1	
	$\left[\frac{1}{25} \left(\frac{m}{25} - \frac{m}{25} \right) - \frac{\pi}{25} \right] \frac{\pi}{25} = \frac{\pi}{25} + \frac$		
		(4) Tatal [11]	
(9)	Notes NB allow incorrect prob for first 2 B marks and M marks if clear what the	he probs represent	
(4)	B1 for the 6 samples $(1,1,2)(1,1,5)(2,2,2)(2,2,5)(1,2,2)(1,2,5)$ Allow	more than one	
	arrangement for each sample. May be implied by correct answers or	product of	
	probabilities ignoring any integer multiplier. Do not award if there a	re incorrect extras	
	eg $(5,5,1)$ unless they have a probability of zero or are ignored		
	B1 for having just the 8 samples. Must recognise that only one combina $(1,1,5)$ $(2,2,2)$ $(2,2,5)$ $(1,1,5)$ $(1,$	(1,1,2) and $(1,1,2)$ and $(1,2,2)$	
	(1,1,5) and $(2,2,2)$ and $(2,2,5)$ are possible and two combinations of are possible. May be implied by correct answers or product of proba	(1,2,2) and $(1,2,3)$	
	multipliers. Do not award if there are incorrect extras eg (5.5.1) unle	ess they have a	
	probability of zero or ignored	is they have a	
	1^{st} M1 for correct product of probabilities for (1,1,2) or (1,1,5) or (2,2,2)) or (2,2,5)	
	2^{nd} M1 for correct product of probabilities for (1,2,2) or (1,2,5) Must have	ve x2 oe	
	B1 all totals correct. (Allow duplicates) Incorrect totals must have proba	bility of 0	
	A1 dep on 1 st M1 only. At least 3 correct probabilities with associated to	otals.	
	Al all probabilities correct with associated totals. Lotals must only appendict totals must have probability of 0	ar once. Extra	
(h)	B1 both values of m Any extras must have probability of 0		
(0)	1^{st} M1 Follow through part(a) Correct method for $P(M = 1)$ or $P(M = 2)$ Prob in (a) <1		
	2^{nd} dM1 dependent on previous M being awarded. ft part(a). For correct method		
	for $P(M=1)$ and $P(M=2)$ Allow 1 – their $P(M=1)$ or 1 – their $P(M=1)$	2)] Prob in (a) <1	
	A1 fully correct Useful alternative fractions 20/125 and 105/125		

Question	Scheme	Marks
6(a)	0.95	B1
		(1)
(b)	$X \sim B(10, 0.95)$	B1
(~)	$P(X > 9) = P(X = 9) + P(X = 10) = 10(0.95)^9(0.05) + 0.95^{10}$	M1
	0.91386 awrt <u>0.914</u>	A1
		(3)
(c)	Y = Number of bolts that cannot be used	
	$Y \sim B(120, 0.05)$ can be approximated by Po(6)	MIAI
	$P(\text{more than } 11 / \text{ bolts can be used}) = P(Y \le 2)$	
	$P(I \le 2) = 0.06196$ awrt <u>0.062</u>	AI (4)
		(4) Total [8]
	Notes	
(b)	B1 writing or using B(10, '0.95') Allow for a probability of the form ${}^{n}C_{r}(0.95)^{n}$	$(0.05)^{10-n}$
. ,	where $1 \le n \le 9$ must be seen or a correct answer given	
	M1 for writing or using $P(X=9) + P(X=10)$. For using we must see a calculation	for each
	probability using B(10, '0.95') (Condone missing/incorrect ${}^{n}C_{r}$), ie allow	
	$(0.95)^9(0.05) + 0.95^{10}$ May be implied by a correct answer.	
	or	
	for writing or using $1 - P(X = 0) - P(X = 1) - P(X = 2) - P(X = 3) - P(X = 4) - P(X = 5) - 1$	P(X=6) -
	P(X = 7) - P(X = 8). For writing allow but need a minimum of 3 terms. For using we associate for each probability using $P(10, 10, 05')$ (Condona missing/incorrect ⁿ C	must see a
	be implied by a correct answer	r). Way
	Do not allow for writing $P(X > 9)$ or $P(X > 8)$ or $1 - P(X < 8)$ or $1 - P(X < 9)$	
	A1 awrt 0.914	
	NB SC Using Po(9.5) gets B1M0A0	
	Alternative	
	B1 writing or using B(10, 0.05)	
	M1 using $P(Y \le 1) [= P(Y = 1) + P(Y = 0) = 10(0.05)(0.95)^3 + 0.95^{10}]$ oe but must	use
	B(10, 0.05)	
	AT 0.9139 from tables	
	NB Using Po(0.5) gets B1M0A0	
(c)	1 st M1 using a Poisson distribution.	
	1 st A1 Po(6) is written or used.	
	2^{nd} dM1 dep on first M1 being awarded writing or using P(Y \le 2) oe eg P(Y < 3)	
	2^{nd} A1 awrt 0.062 (0.0620 from tables) Do not ISW	
	Note exact hinomial gives 0.0575	
	Note normal approximation gives awrt 0.0713 (calc) or 0.0708 (tables) with cc an	d awrt
	0.0469 (calc) or 0.0465 (tables) without cc	

Question	Scheme	Marks
	SC Normal approximation may achieve 2 out of 4	
	B1 for the mean 114 1 st A1 on epen	
0	B1 for either probability 0.0713 or 0.0708 2 nd A1 on epen	
Question	Scheme	Marks
7(a)	$f(x) = \frac{1}{2125}(100x^3 - 20x^4)$ or $\frac{4}{3}x^3 - \frac{4}{3}x^4$	M1
	125 625	
	$f'(x) = \frac{1}{2105}(300x^2 - 80x^3) = 0$ or $\frac{12}{x^2} - \frac{16}{x^3}x^3$	M1A1
	125 625	A1
	x = 3.75	
(L)	F(2,05) = 0.71/(2) $F(4,05) = 0.757/(2)$	(4)
(D)	F(3.95) = 0.7100 $F(4.05) = 0.7570F(3.95) < 0.75 < F(4.05)$ therefore the upper quartile (eq) is 4.0 to 1	MIAI
	decimal place.	A1
		(3)
(c)	$H_0: p = 0.25$ $H_1: p < 0.25$	B1
	$Y \sim B(25, 0.25)$ and $P(Y < 3) =$ or $P(Y < 2) = awrt 0.0321$	M1
	0.0962 CR Y < 2	A1
	Do not reject H. / not significant	dM1
	There is not enough evidence to suggest that the model overestimates the	divii
	proportion of queuing more than 4 minutes/ <u>Olivia's belief</u> is <u>not supported</u> .	Alcso
	SC If H ₁ written using > 0.25 and they then go on to use $P(Y \ge 3) = 0.9679$ allow B0M1A0dM0A0. If they go on to use $P(Y \le 3)$ or $P(Y \ge 4)$ mark as	
	original scheme	
	Notes	Total [12]
(a)	1 st M1 for attempting to finding $f(x)$ (at least one $x^n \to x^{n-1}$). May be implied	. Condone
	missing 1/3125	
	2^{nd} M1 for attempting to find f'(x) and equating it to 0 Condone missing 1/3	125
	1 st A1 correct differentiation ie $\frac{1}{3125}(300x^2 - 80x^3)$ Condone missing 1/3125	
	2 nd A1 3.750e only	
(b)	M1 for attempting $F(3.95)$ and $F(4.05)$ or a suitable M1 for setting up	
	tighter interval (need to check they give values either $\frac{1}{2125}(25x^4-4)$	x^5) = 0.75
	$1^{\text{st}} \text{ A1 for both awrt 0.72 and awrt 0.76}$	
	NB check answers and accuracy if other numbers used. $1^{st} A 1$ for $r = 4.03$	118 (4 03 or
	2 nd A1 for comparison with "their 0.75" and correct better)	110 (1.05 01
	conclusion. Must have bold in conclusion $Q_3 = 4.0$ is 2^{nd} A1 for conclusion	ion. Must
	enough. have bold in concl	usion and a
	NB other methods possible – will need to check value for x of 4.03	or better
(c)	B1 both hypotheses correct p or π 1st M1 for matrix $P(Y \leq 2)$ or $P(Y \geq 4)$ or formiting approximate $P(25, m)$	
	1 st M1 for writing or using P($Y \le 3$) or P($Y \ge 4$) and writing or using B(25, p) may be	
	Infined Only award for $r(1 \le 2) = a wrt 0.0521 \text{ ff}$ CK has been given. 1 st A1 for awrt 0.0962 or correct CR: $Y \le 2$ or 0.9038 > 0.95	
	2^{nd} dM1 Dependent on the 1^{st} M1.	
	For a correct statement i.e. not significant/do not reject H_0	
	Follow through their probability and their H ₁	

	Question	Scheme	Marks
		Do not allow non-contextual conflicting statements	
		2 nd A1cso fully correct solution and correct contextual statement	
		Allow equivalent words to proportion eg fraction but do not allow number	
		Allow equivalent words for supported eg true. Allow her for Olivia	
(b) Other metl	nods seen. Answers are for using 3.95 and 4.05. Allow 2 sf	
	F(x) - 0.75	= 0	
	awr	t -0.033 and awrt +0.0076	
	(F(x) - 0.7)	5)*3125*4=0	
	awrt	+95.3 and awrt -416/416.5	
	(F(x) - 0.7)	(5) * 3125 = 0	
	awrt	-104.12 and awrt +23.8	

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom