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1. Find the general solution of the differential equation

2
dx? dx

(6)
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Question 1 continued

Q1
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2. Use algebra to find the set of values of x for which

6 x+6
x—1 X

(6)
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3. (a) Express ———— — in partial fractions.
r(r+1)(r+2)
3
(b) Hence find, in terms of »,
2 : 1
P EE—— neN,n>1
r(r+1)(r+2)
r=1
. . n(n+ A)
Give your answer in the form , where 4 and B are constants to be found.
Bn+1)(n+2)
(C))
5P
poseseteds
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4. A transformation 7 from the z-plane, where z = x + iy, to the w-plane, where w = u + iv, e
is given by
w=z>+4

The line in the z-plane with equation y = 2 is mapped by 7 onto the curve C in the w-plane.

(1) Show that C is a parabola.

(i) Find the coordinates of the focus of C.

(ii1) Find an equation for the directrix of C.
(6
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5. Given that .
d’y dy)
— +5—=| -5=0
Y dx? (dx Y
3 2y, d
(a) find an expression for Y in terms of = , = and y.
dx? dx? " dx
“4)
i dy 1
Given also thaty =4and — = — atx =0
dx 2
(b) find a series solution for y in ascending powers of x with simplified coefficients, up
to and including the term in x*
)
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6. (a) Show that the substitution v = y transforms the differential equation
d
xd—z 2y =3t x>0 0
into the differential equation
v 6, —Ox? >0 11
R v X X 1)
)
(b) Find the general solution of the differential equation (II).
)
(c) Hence obtain the general solution of the differential equation (I), giving your answer
in the form y* = f(x).
1)
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7. (a) Use de Moivre’s theorem to show that
sin56 — 5sinf = 16sin’ @ — 20sin’ ¢
)
(b) Hence find the 5 distinct solutions of the equation
32x° = 40x* + 10x —1=0
giving your answers to 3 decimal places where appropriate.
)
(¢) (i) Find J‘(8sin50 — 10sin’0) d@
5
(i1) Hence find (8sin’H — 10sin®H)do
0
(C))
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Figure 1 ‘
Figure 1 shows a curve C with polar equation
. T
r = asin26, Oéeéa

where a is a positive constant.
The point A4 has polar coordinates (R, ¢). The tangent to C at 4 is parallel to the initial line.

(a) Show that tan¢ = V2
“4)

(b) Find, in terms of a, the exact value of R.

2

The tangent to C at B is perpendicular to the initial line. The region S, shown shaded in
Figure 1, is bounded by OA4, OB and C, where O is the pole.
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(¢) Show that the area of S is given by

2
—a2J. —(1 - cos46)do
2 arctan| 2

(6

(d) Hence show that the exact area of S'is

a? (ﬁ _r + lar(:tanx/z)

18 8 2
(6)
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(Total 17 marks)
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