| Please check the examination de | etails below before ent | ering your candidate information | | | |--|-------------------------|----------------------------------|--|--| | Candidate surname | | Other names | | | | Pearson
Edexcel GCE | Centre Number | Candidate Number | | | | Wednesday 5 June 2019 | | | | | | Morning (Time: 1 hour 30 minutes) Paper Reference 6668/01 | | | | | | Further Pure Mathematics FP2 Advanced/Advanced Subsidiary | | | | | | You must have: Mathematical Formulae and St | | Total Marks | | | Candidates may use any calculator allowed by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them. ## Instructions - Use black ink or ball-point pen. - If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used. - **Fill in the boxes** at the top of this page with your name, centre number and candidate number. - Answer all questions and ensure that your answers to parts of questions are clearly labelled. - Answer the questions in the spaces provided there may be more space than you need. - You should show sufficient working to make your methods clear. Answers without working may not gain full credit. - When a calculator is used, the answer should be given to an appropriate degree of accuracy. ## Information - The total mark for this paper is 75. - The marks for each question are shown in brackets use this as a guide as to how much time to spend on each question. ## **Advice** - Read each question carefully before you start to answer it. - Try to answer every question. - Check your answers if you have time at the end. Turn over ▶ P55814A ©2019 Pearson Education Ltd. 1/1/1/1/1/1/ Leave blank | $\frac{d^2}{dx}$ | $\frac{y}{2} + 6\frac{\mathrm{d}y}{\mathrm{d}x} + 9y =$ | $= e^{2x}$ | | |------------------|---|------------|----| | uл | uл | | (6 | Question 1 continued | blank | |----------------------|-------| Q1 | | (Total 6 marks) | | | Use algebra to find the set of values of x for which | | |--|-----| | $6 \qquad x + 6$ | | | $\frac{6}{x-1} < \frac{x+6}{x}$ | | | | (6) | Le | |----------------------|----| | Question 2 continued | estion 2 continued | | | |--------------------|--|--| Question 2 continued | | Leav | |----------------------|-----------------|-----------| Q2 | | | | | | | (Total 6 marks) | | 3. (a) Express $\frac{2}{r(r+1)(r+2)}$ in partial fractions. **(3)** (b) Hence find, in terms of n, $$\sum_{r=1}^{n} \frac{1}{r(r+1)(r+2)} \qquad n \in \mathbb{N}, n > 1$$ Give your answer in the form $\frac{n(n+A)}{B(n+1)(n+2)}$, where A and B are constants to be found. **(4)** | | | Le
bl | |----------------------|--|----------| | Question 3 continued | 1 | | Question 3 continued | | Leave | |----------------------|----------------------|-------| | Question 3 communes | Question 2 continued | blank | | | Question 5 continued | I I | Question 3 continued | blank | |----------------------|-------| | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | | | | | | | | | | | | | | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | _ | | | | | | _ | | | _ | | | _ | | | _ | | | Q3 | | (Total 7 mar | ·ks) | **4.** A transformation T from the z-plane, where z = x + iy, to the w-plane, where w = u + iv, is given by $$w=z^2+4$$ The line in the z-plane with equation y = 2 is mapped by T onto the curve C in the w-plane. - (i) Show that C is a parabola. - (ii) Find the coordinates of the focus of C. - (iii) Find an equation for the directrix of C. | (| U | " | |---|---|---| | | | | | Question 4 continued | | |----------------------|--| Question 4 continued | Leave | |----------------------|-------| Question 4 continued | blank | |----------------------|-----------| Q4 | | (Total 6 marks) | | **5.** Given that $$y\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 5\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 - 5y = 0$$ (a) find an expression for $\frac{d^3y}{dx^3}$ in terms of $\frac{d^2y}{dx^2}$, $\frac{dy}{dx}$ and y. **(4)** Given also that y = 4 and $\frac{dy}{dx} = \frac{1}{2}$ at x = 0 (b) find a series solution for y in ascending powers of x with simplified coefficients, up to and including the term in x^3 **(4)** | | Le
bla | |----------------------|-----------| | Question 5 continued | Question 5 continued | blank | |----------------------|-------| | Question 5 continued | I | | Question 5 continued | Leave
blank | |----------------------|----------------| | Question 5 continued | Q5 | | (Total 8 marks) | | **6.** (a) Show that the substitution $v = y^{-3}$ transforms the differential equation $$x\frac{\mathrm{d}y}{\mathrm{d}x} + 2y = 3x^4y^4 \qquad x > 0 \tag{I}$$ into the differential equation $$\frac{\mathrm{d}v}{\mathrm{d}x} - \frac{6}{x}v = -9x^3 \qquad x > 0 \tag{II}$$ (5) (b) Find the general solution of the differential equation (II). **(5)** (c) Hence obtain the general solution of the differential equation (I), giving your answer in the form $y^3 = f(x)$. **(1)** | | Leave | |----------------------|--------| | | blank | | Overtion (continued | Dialik | | Question 6 continued | stion 6 continued | |--|-------------------| Question 6 continued | Leave
blank | |----------------------|----------------| | Question o continued | Q6 | | (Total 11 marks) | | | (Total II marks) | | Leave blank 7. (a) Use de Moivre's theorem to show that $$\sin 5\theta - 5\sin \theta = 16\sin^5 \theta - 20\sin^3 \theta$$ **(5)** (b) Hence find the 5 distinct solutions of the equation $$32x^5 - 40x^3 + 10x - 1 = 0$$ giving your answers to 3 decimal places where appropriate. (5) (c) (i) Find $\int_{C} dx$ (ii) Hence find $\int (8\sin^5\theta - 10\sin^3\theta) \,d\theta$ $\int_0^{\frac{\pi}{3}} (8\sin^5\theta - 10\sin^3\theta) \,d\theta$ **(4)** 24 | | Leave | |----------------------|-------| | Overtion 7 continued | blank | | Question 7 continued | uestion 7 continued | | b | |---------------------|---|---| _ | 1 | | Question 7 continued | blank | |----------------------|-------| Q7 | | (Total 14 marks) | | Figure 1 Figure 1 shows a curve C with polar equation $$r = a\sin 2\theta, \quad 0 \leqslant \theta \leqslant \frac{\pi}{2}$$ where a is a positive constant. The point A has polar coordinates (R, ϕ) . The tangent to C at A is parallel to the initial line. (a) Show that $\tan \phi = \sqrt{2}$ **(4)** (b) Find, in terms of *a*, the exact value of *R*. **(2)** The tangent to C at B is perpendicular to the initial line. The region S, shown shaded in Figure 1, is bounded by OA, OB and C, where O is the pole. (c) Show that the area of S is given by $$\frac{1}{2}a^2 \int_{\arctan\left(\frac{1}{\sqrt{2}}\right)}^{\arctan\sqrt{2}} \frac{1}{2} (1 - \cos 4\theta) d\theta$$ (5) (d) Hence show that the exact area of S is $$a^2 \left(\frac{\sqrt{2}}{18} - \frac{\pi}{8} + \frac{1}{2} \arctan \sqrt{2} \right)$$ (6) | | Leave
blank | |----------------------|----------------| | Question 8 continued | estion 8 continued | | | |--------------------|--|--| Leave | |----------------------|-------| | | blank | | Question 8 continued | uestion 8 continued | | bian | |---------------------|---------------------------|------| Q | | | (Total 17 marks) | | | | TOTAL FOR PAPER: 75 MARKS | | | 10 | END | |