

Mark Scheme (Results)

Summer 2019

Pearson Edexcel GCE Mathematics Core Mathematics C4 (6666/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019 Publications Code 6666_01_1906_MS All the material in this publication is copyright © Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- o.e. or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- dM1 denotes a method mark which is dependent upon the award of the previous method mark.
- aef "any equivalent form"
- 4. All A marks are `correct answer only' (cao), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles)

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^{2}+bx+c) = (x+p)(x+q)$, where |pq| = |c|, leading to x = ...

$$(ax^2 + bx + c) = (mx + p)(nx + q)$$
, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = ...$

2. Formula

Attempt to use the correct formula (with values for *a*, *b* and *c*).

3. Completing the square

Solving $x^2 + bx + c = 0$: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0, \quad q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

<u>Use of a formula</u>

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

June 2019 6666/01 Core Mathematics 4 Mark Scheme

Question Number		Scheme		Notes	Marks		
1.	$(1+ax)^{\frac{2}{3}}$	$(1+ax)^{\frac{2}{3}} \approx 1 + \frac{1}{2}x + kx^{2}; f(x) = (4-9x)(1+ax)^{\frac{2}{3}}, ax < 1$					
	$\left\{ (1+ax)^{\frac{2}{3}} \right\}$	$\left\{ (1+ax)^{\frac{2}{3}} \approx 1 + \left(\frac{2}{3}\right)(ax) + \frac{\left(\frac{2}{3}\right)\left(-\frac{1}{3}\right)}{2!}(ax)^{2} + \dots = 1 + \frac{2}{3}ax - \frac{1}{9}a^{2}x^{2} + \dots \right\}$					
(a)	$\frac{2}{3}a = \frac{1}{2}$			see notes	M1		
	$\frac{\frac{2}{3}a = \frac{1}{2}}{a = \frac{3}{4}}$			$a = \frac{3}{4}$ or 0.75	A1 o.e.		
					(2)		
(b)	$\frac{(\frac{2}{3})(-\frac{1}{3})}{2!}($	$a)^2$		$\frac{\frac{2}{3}\left(\frac{2}{3}-1\right)}{2!}\left(a\right)^{2} \text{ or } \frac{\left(\frac{2}{3}\right)\left(-\frac{1}{3}\right)}{2!}\left(a\right)^{2}}{\frac{\left(\frac{2}{3}\right)\left(-\frac{1}{3}\right)}{2!}}\left(\text{their } a\right)^{2} \text{ or } -\frac{1}{9}a^{2}$	M1		
	$\begin{cases} k = \frac{\left(\frac{2}{3}\right)\left(\frac{2}{3}\right)}{2} \end{cases}$	$\frac{(1-\frac{1}{3})}{2!}\left(\frac{3}{4}\right)^2 \Rightarrow k = -\frac{1}{16}$		$k = -\frac{1}{16}$ or -0.0625	A1		
					(2)		
(c)	$\begin{cases} (4-9x) \end{cases}$	$x)\left(1+\frac{1}{2}x-\frac{1}{16}x^{2}\right)\right\}$					
	$\{r^2:\}$	$\frac{1}{4} - \frac{9}{2}$; = $-\frac{19}{4}$ or -4.75	Either 4(their k)	M1			
		4 2, 4		A1			
					(2)		
			Question 1 Notes		6		
1.	Note	Writing down $\left\{ (1+ax)^{\frac{2}{3}} \right\} = 1$	-	$(x)^{2} +$ gets (a) M1 and (b) M	/11		
(a)	Note	Give M1 for any of					
		• writing down $\frac{2}{3}a = \frac{1}{2}$	• expandi	ng $(1+ax)^{\frac{2}{3}}$ to give $1+(\frac{2}{3})(a)$	ux)		
		• writing down $\frac{2}{3}ax = \frac{1}{2}$ or	$\frac{2}{3}a = \frac{1}{2}x$ or $\frac{2}{3}ax = \frac{1}{2}x$	$\frac{1}{2}x$			
	Note	Give M1 A1 $a = \frac{3}{4}$ from no w					
(b)	Note	Give A0 for $k = -\frac{1}{16}x^2$ or -0		10			
	Note	Allow A1 for $k = -\frac{1}{16}x^2$ or $-\frac{19}{16}x^2$	$0.0625x^2$ followed by	$k = -\frac{1}{16}$ or -0.0625			
(c)	Note	Give A0 for $-\frac{19}{4}x^2$ or -4.75	$5x^2$ without reference to	$o -\frac{19}{4}$ or -4.75			
	Note	Allow A1 for $-\frac{19}{4}x^2$ or -4.7	$75x^2$ followed by $-\frac{19}{4}$	or -4.75			

Question Number	Scheme	Notes	Marks
--------------------	--------	-------	-------

	x	π	7π	4π		π			
2.		$\frac{\pi}{3}$	18	9		$\frac{\pi}{2}$			
	У	0.75	0.60402	0.33682	2	0			
(a)		0	2(0.60402+0.				Outside	e brackets $\frac{1}{2} \times \frac{\pi}{18}$ or $\frac{\pi}{36}$ or awrt 0.087	B1 o.e.
	{Note	e: The "0" do	es not have to	be include	d in	[]}		For structure of [] ndone one copying slip	
	$\begin{cases} =\frac{\pi}{36} \end{cases}$	$\left\{ (2.63168) \right\} =$	= 0.22965740	. = 0.2297	7 (4	sf)		g that rounds to 0.2297	
(1-)	(.						、 、		(3)
(b) Way 1	{∫sin	$2x\sin x dx =$	$\int 2\sin x \cos x \sin x$	$\sin x \mathrm{d}x = \int 2$	2sin	$x^{2} \cos x \mathrm{d}x$)		
	2	$\sin^3 x \{+c\}$						o give $\pm \lambda \sin^3 x$; $\lambda \neq 0$ λu^3 where $u = \sin x$	M1
	=-31	$\lim x \{+c\}$						$\frac{2}{3}u^3$ where $u = \sin x$	A1
	Are	$a(R) = \left[\frac{2}{3}\sin^3\right]$	$x \left] \frac{\pi}{2} \\ \frac{\pi}{3} \right\}$						
	$= \left(\frac{2}{3}\sin^3\left(\frac{\pi}{2}\right)\right) - \left(\frac{2}{3}\sin^3\left(\frac{\pi}{3}\right)\right)$				dependent on the previous M markSome evidence of applying limits of $\frac{\pi}{2}$ and $\frac{\pi}{3}$ and subtracts the correct way round				dM1
	$=\left(\frac{2}{3}\right)$	$\Bigg) - \Bigg(\frac{2}{3}\Bigg(\frac{3\sqrt{3}}{8}\Bigg)\Bigg)$							
	$=\frac{2}{3}$	$-\frac{1}{4}\sqrt{3}$			$\frac{2}{3} - \frac{1}{4}\sqrt{3} \text{ or } \frac{2}{3}\left(1 - \frac{3}{8}\sqrt{3}\right) \text{ or } \frac{1}{12}\left(8 - 3\sqrt{3}\right) \text{ isw}$				A1 o.e. cso (4)
(b) Way 2	{∫sin	$a 2x \sin x dx = -$	$-\frac{1}{2}\int(\cos 3x - \frac{1}{2})$	$\cos x$) dx					
	1	(1)		In	M1			
	$=-\frac{1}{2}$	$\frac{1}{3}\sin 3x - \sin 3x$	$\left(x\right)\left\{+c\right\}$		$-\frac{1}{2}($	A1			
	Are	$\operatorname{va}(R) = \left[-\frac{1}{6}\operatorname{si}\right]$	$\ln 3x + \frac{1}{2}\sin x \Big]_{\frac{3}{2}}$	$\left[\frac{\pi}{2}\right]$					
	=($\frac{1}{6}\sin\left(\frac{3\pi}{2}\right) + \frac{1}{2}$	$\frac{\pi}{2}\sin\left(\frac{\pi}{2}\right) - \left(-\frac{\pi}{2}\right)$	$-\frac{1}{6}\sin(\pi)$ -	$\frac{dependent on}{previous M m}$ Some evidence of apply limits of $\frac{\pi}{2}$ and and subtracts correct way ro				dM1
	$\left\{=\left(\begin{array}{c} \\ \\ \\ \\ \end{array}\right)$	$\frac{1}{6} + \frac{1}{2} \right) - \left(0 + \frac{1}{2}\right) - \left(0 + \frac{1}{2}\right) - \left(0 + \frac{1}{2}\right) + \frac{1}{2} \left(0 + 1$	$\left.\frac{1}{4}\sqrt{3}\right\} = \frac{2}{3}$					A1 o.e. cso	
									(4)
									7

Question Number	Scheme	Notes	Marks	
--------------------	--------	-------	-------	--

2. (b) Way 3	$\begin{cases} A = \int sin f(x) dx = \int sin f(x) dx $	$\frac{1}{2x\sin x dx} \begin{cases} u = \sin 2x \Rightarrow \frac{du}{dx} = 2\cos 2x \\ \frac{dv}{dx} = \sin x \Rightarrow v = -\cos x \end{cases} \begin{cases} u = 2\cos 2x \Rightarrow \frac{du}{dx} = -4\sin 2x \\ \frac{dv}{dx} = \cos x \Rightarrow v = \sin x \end{cases}$					
	$A = -\sin \theta$	$2x\cos x + \int 2\cos 2x\cos x dx$					
	$A = -\sin \theta$	$2x\cos x + 2\cos 2x\sin x + \int 4\sin 2x$	csin xdx				
	$A = -\sin \theta$	$2x\cos x + 2\cos 2x\sin x + 4A$					
	-3A = -	$\sin 2x \cos x + 2\cos 2x \sin x$					
	1	Uses integration by parts twice to give $\pm \alpha \sin 2x \cos x \pm \beta \cos 2x \sin x; \alpha, \beta \neq 0$					
	$A = -\frac{1}{3}$	$(-\sin 2x \cos x + 2\cos 2x \sin x)$		$-\frac{1}{3}(-\sin 2x\cos x + 2\cos 2x\sin x)$	A1		
				simplified or un-simplified			
	$\left\{ \operatorname{Area}(R)\right\}$	$P = \left[\frac{1}{3}(\sin 2x \cos x - 2\cos 2x \sin x)\right]$	$ \begin{bmatrix} \frac{\pi}{2} \\ \frac{\pi}{3} \end{bmatrix} $				
	5	$(\pi)\cos\left(\frac{\pi}{2}\right) - 2\cos(\pi)\sin\left(\frac{\pi}{2}\right)$		dependent on the previous M mark Some evidence of applying limits of			
	_	$\frac{1}{3}\left(\sin\left(\frac{2\pi}{3}\right)\cos\left(\frac{\pi}{3}\right) - 2\cos\left(\frac{2\pi}{3}\right)\right)$	$\left \sin\left(\frac{\pi}{3}\right)\right $	$\frac{\pi}{2}$ and $\frac{\pi}{3}$ and subtracts the correct way round	dM1		
	$=\frac{1}{3}(0+2)$	$(2) - \frac{1}{3} \left(\frac{\sqrt{3}}{4} + \frac{\sqrt{3}}{2} \right)$					
	$=\frac{2}{3}-\frac{1}{4}$	$\sqrt{3}$	$\frac{2}{3}$ -	$\frac{1}{4}\sqrt{3}$ or $\frac{2}{3}\left(1-\frac{3}{8}\sqrt{3}\right)$ or $\frac{1}{12}\left(8-3\sqrt{3}\right)$	A1 o.e. cso		
					(4)		
		T	Question 2				
2. (a)	Note	For M1, no errors are allowed (e.g. an omission of a <i>y</i> -ordinate or an extra <i>y</i> -ordinate or a repeated <i>y</i> -ordinate).					
	Note	Working must be seen to demonstrate the use of the trapezium rule. (Actual area is 0.2336539648)					
	Note	Give B1 M1 A1 for $\frac{\pi}{36}(0.75) + \frac{\pi}{36}(0.75)$					
	Note	Using exact values of y at $x = \frac{\pi}{3}$	$,\frac{7\pi}{18},\frac{4\pi}{9}$	and $\frac{\pi}{2}$ gives 0.229658 = 0.2297 (4 sf)		

		Question 2 Notes Continued					
2. (a)	Note	Bracketing mistake:					
	Unless the final calculated answer implies that the method has been applied correctlyGive B1 M0 A0 for $\frac{\pi}{36}(0.75) + 2(0.60402 + 0.33682) + 0$ (answer of 1.947129847)Give B1 M0 A0 for $\frac{\pi}{36} + (0.75) + 2(0.60402 + 0.33682) + 0$ (answer of 2.718946463)						
	Alternative method: Adding individual trapezia						
	Area $\approx \frac{\pi}{18}$	$\frac{7}{8} \times \left[\frac{0.75 + 0.60402}{2} + \frac{0.60402 + 0.33682}{2} + \frac{0.33682 + 0}{2}\right] = 0.22965740$					
	B 1	$\frac{\pi}{18}$ and a divisor of 2 on all terms inside brackets					
	M1	First and last ordinates once and two of the middle ordinates inside brackets ignoring the 2,					
		with no omissions of y ordinates or no extra y ordinates.					
	A1	Anything that rounds to 0.2297					
(b)	Note	$\left[\frac{2}{3}\sin^3 x\right]_{\frac{\pi}{3}}^{\frac{\pi}{2}}$ followed by awrt 0.234 with no correct answer seen is dM1 A0					

Question Number	Scheme		Notes	Marks	
3.	$x^2 - y^3 - x - x\sin(\pi y) = -2$				
(a) Way 1	$\left\{\frac{\cancel{x}}{\cancel{x}}\times\right\} \ \underline{2x-3y^2 \frac{dy}{dx}-1} = \sin(\pi y) - \pi x \cos(\pi y)$	$\frac{dy}{dx} = 0$	(2 nd M1 is B1 on epen)	M1 <u>A1</u> <u>M1</u>	
	$\frac{dy}{dx}(-3y^2 - \pi x \cos(\pi y)) + 2x - 1 - \sin(\pi y) = 0$		dependent on the first M mark	dM1	
	$\left\{\frac{dy}{dx} = \right\} \frac{2x - 1 - \sin(\pi y)}{3y^2 + \pi x \cos(\pi y)} \text{ or } \frac{-2x + 1 + \sin(\pi y)}{-3y^2 - \pi x \cos(\pi y)}$	7) (y)	Correct answer or equivalent	A1 isw	
	Note: Condone omission of brackets o	r inconsis	stent use of brackets		(5)
	$d_{11} = 2(2) + 1 + cin(2-)$	5)	Substitutes $x = 3$ & $y = 2$. /
(b)	At (3, 2), $m_T = \frac{dy}{dx} = \frac{2(3) - 1 - \sin(2\pi)}{3(2)^2 + \pi(3)\cos(2\pi)} \bigg\{ = \frac{1}{12} - \frac{1}{12} \bigg\}$	At (3, 2), $m_T = \frac{dy}{dx} = \frac{2(3) - 1 - \sin(2\pi)}{3(2)^2 + \pi(3)\cos(2\pi)} \left\{ = \frac{5}{12 + 3\pi} \right\}$ Substitutes $x = 3$ & $y = 2$ into an equation involving $\frac{dy}{dx}$			
		depe	ndent on the previous M mark		
	• $y-2 = \left(\frac{5}{12+3\pi}\right)(x-3)$		Using a numerical $m_T (\neq m_N)$,		
	Cuts y-axis $\Rightarrow x = 0 \Rightarrow y - 2 = \left(\frac{5}{12 + 3\pi}\right)(-3)$		where m_T is in terms of π ,		
	$x = 0 \Rightarrow y = 2 = (12 + 3\pi)^{-1} (3)$		either $y - 2 = m_{\rm T}(x - 3)$	dM1	
			and sets $x = 0$ in their tangent		
	• $2 = \left(\frac{5}{12+3\pi}\right)(3) + c \left\{ \Rightarrow c = 2 - \frac{15}{12+3\pi} \right\}$				
			or $2 = (\text{their } m_T)(3) + c$		
		depen	dent on the final A mark in (a)		
	So, $\left\{ y_Q = \frac{-5}{4+\pi} + 2 \Rightarrow \right\} y_Q = \frac{2\pi+3}{\pi+4}$.	$\frac{2\pi+3}{\pi+4} \{a=2, b=3, c=4\}$	A1	
					(3)
					0
(a) Way 2	$\left\{\frac{\partial x}{\partial y} \times \right\} = \frac{2x\frac{dx}{dy} - 3y^2 - \frac{dx}{dy}}{\frac{dy}{dy} - \frac{dx}{dy}} = \frac{\sin(\pi y)\frac{dx}{dy} - \pi x\cos(\pi y)\frac{dx}{dy}}{\frac{dy}{dy} - \frac{dx}{dy}}$	$s(\pi y) = 0$		$\underline{\underline{M1}}_{\underline{M1}}$	
	$\frac{\mathrm{d}x}{\mathrm{d}y}(2x-1-\sin(\pi y)) - 3y^2 - \pi x\cos(\pi y) = 0$		dependent on the first M mark	dM1	
	$\frac{dy}{dx} = \frac{2x - 1 - \sin(\pi y)}{3y^2 + \pi x \cos(\pi y)} \text{ or } \frac{-2x + 1 + \sin(\pi y)}{-3y^2 - \pi x \cos(\pi y)}$	-)	Correct answer or equivalent	A1	
					(5)
	Ouest	ion 3 Not	tes		
3. (a)	Note Writing down <i>from no working</i>				
	• $\frac{dy}{dx} = \frac{2x - 1 - \sin(\pi y)}{3y^2 + \pi x \cos(\pi y)}$ or $\frac{-2x + 1 + \sin(\pi y)}{-3y^2 - \pi x \cos(\pi y)}$ scores M1A1B1M1A1 • $\frac{dy}{dx} = \frac{-2x + 1 + \sin(\pi y)}{3y^2 + \pi x \cos(\pi y)}$ scores M1A0B1M1A0				
	$dx = \frac{3y^2 + \pi x \cos(\pi y)}{3y^2 + \pi x \cos(\pi y)}$		-		
	Note Some will write $2xdx - 3y^2dy - 1dx - \sin^2 \theta$	$n(\pi y)dx$	$-\pi x \cos(\pi y) dy = 0$ leading to		
	$\frac{dy}{dx} = \frac{2x - 1 - \sin(\pi y)}{3y^2 + \pi x \cos(\pi y)}$ or equivalent.				

		Question 3 Notes Continued					
3. (a)	M1	Differentiates implicitly to include either $\pm \pi x \cos(\pi y) \frac{dy}{dx}$ or $y^3 \rightarrow \pm 3y^2 \frac{dy}{dx}$. $\left(\text{Ignore} \left(\frac{dy}{dx} = \right) \right)$					
	1 st A1	$\frac{x^2 - y^3 - x \rightarrow 2x - 3y^2 \frac{dy}{dx} - 1 \text{and} -2 \rightarrow 0}{2x - 3y^2 \frac{dy}{dx} - 1 - \sin(\pi y) - \pi x \cos(\pi y) \frac{dy}{dx} \rightarrow 2x - 1 - \sin(\pi y) = 3y^2 \frac{dy}{dx} + \pi x \cos(\pi y) \frac{dy}{dx}}$					
	Note	$2x - 3y^2 \frac{dy}{dx} - 1 - \sin(\pi y) - \pi x \cos(\pi y) \frac{dy}{dx} \rightarrow 2x - 1 - \sin(\pi y) = 3y^2 \frac{dy}{dx} + \pi x \cos(\pi y) \frac{dy}{dx}$					
		will get 1^{st} A1 (implied) as the "= 0" can be implied by the rearrangement of their equation.					
	M1	$-x\sin(\pi y) \rightarrow -\sin(\pi y) - \pi x\cos(\pi y)\frac{dy}{dx}$ or $+\sin(\pi y) - \pi x\cos(\pi y)\frac{dy}{dx}$					
		or $-\sin(\pi y) + \pi x \cos(\pi y) \frac{dy}{dx}$ or $+\sin(\pi y) + \pi x \cos(\pi y) \frac{dy}{dx}$					
	Note	If an extra term appears then give 1 st A0					
	dM1	dependent on the first M mark					
		An attempt to factorise out all the terms in $\frac{dy}{dx}$ as long as there are <i>at least two terms</i> in $\frac{dy}{dx}$.					
		i.e. $\frac{dy}{dx}(-3y^2 - \pi x \cos(\pi y)) + =$					
	Note	Writing down an extra $\frac{dy}{dx} = \dots$ and including it in their factorisation is fine for the dM1 mark.					
	Note	Final A1 cso: If their solution is not completely correct, then do not give this mark.					
	Note	Final A1 isw: You can, however, ignore subsequent working following on from a correct solution.					
(a)	Way 2	Apply the mark scheme for Way 2 in the same way as Way 1					
(b)	1 st M1	1 st M1 can be gained by seeing at least one example of substituting $x = 3$ and at least one					
		example of substituting $y = 2$; unless it is clear that they are instead applying $x = 2$ and $y = 3$.					
		Otherwise, you will need to check (with your calculator) that $x = 3$, $y = 2$ has been substituted					
		into their expression for $\frac{dy}{dx}$.					
	Note	$\sin(2\pi)$ or $\cos(2\pi)$ are not considered as being in terms of π for the 2 nd M1 mark, but $\pi(3)\cos(2\pi)$ is considered to be in terms of π .					

Question Number		Scheme		Notes		
4.	$y = \frac{8}{5(2x-1)}$	$\frac{3}{(x+3)^2}$; $x > -\frac{3}{2}$				
	$\pi \int \left(\frac{1}{5(2x)} \right)^{1/2} dx$	$\frac{8}{(x+3)^2}\right)^2 \mathrm{d}x$	or equ	For $\pi \int \left(\frac{8}{5(2x+3)^2}\right)^2 dx$ or $\frac{64\pi}{25} \int \left(\frac{1}{(2x+3)^2}\right)^2$ nivalent. Ignore the limits and dx . Can be implied.	B1	
	$\left\{=\frac{64\pi}{25}\right\}$	$\left(2x+3\right)^{-4}\mathrm{d}x\bigg\}$				
				$(2x\pm3)^{-4} \rightarrow \pm \lambda(2x\pm3)^{-3}; \lambda \neq 0$ or $(2x\pm3)^{-4} \rightarrow \pm \lambda u^{-3}; \lambda \neq 0$, where $u = 2x\pm3$ low $(K(2x\pm3))^{-4} \rightarrow \pm \lambda(K(2x\pm3))^{-3}; \lambda, K \neq 0$	M1	
	$=\left\{\frac{64\pi}{25}\right\}$	$\left(\frac{(2x+3)^{-3}}{(-3)(2)}\right)$		$(2x+3)^{-4} \rightarrow \frac{(2x+3)^{-3}}{(-3)(2)}$		
	(23)	((-3)(2))		or $(2x+3)^{-4} \rightarrow \frac{u^{-3}}{(2)(-3)}$ where $u = 2x+3$ which can be simplified or un-simplified	A1	
			Note			
	$\left\{ V = \left[- \right] \right\}$	$\frac{64\pi}{150} \left(\frac{1}{(2x+3)^3}\right) \right]_{-1}^{\frac{1}{2}}$				
				dependent on the previous M mark Applies limits of 0.5 and -1		
	$= -\frac{64\pi}{150}$	$\left(\frac{1}{\left(2\left(\frac{1}{2}\right)+3\right)^3}-\frac{1}{\left(2\left(-1\right)+3\right)^3}\right)$	$\left(+3\right)^{3}$	to an expression of the form $\pm C(2x \pm 3)^{-3}$ or $\pm C(K(2x \pm 3))^{-3}$; $C, K \neq 0$ or applies limits of 4 and 1 to an expression of the form $\pm Cu^{-3}$ where $u = 2x + 3$ or applies limits of -2 and -5 to an expression	dM1	
	(of the form $\pm Cu^{-3}$ where $u = 2x - 3$ Note: Subtraction of limits is not required		
	$\left\{=-\frac{64\pi}{150}\right\}$	$\frac{\pi}{0} \left(\frac{1}{64} - 1 \right) = -\frac{64\pi}{150} \left(\frac{1}{10} \right)$	$-\frac{63}{64}\bigg)\bigg\}$			
	$=\frac{21}{50}\pi$		$\frac{21}{50}\pi \text{ or } \frac{63}{150}\pi \text{ or } \frac{42}{100}\pi \text{ or } 0.42\pi$			
			(Question 4 Notes	(5)	
	Note:	B1 can be implied by		rect formula $\pi \int y^2 dx$ (with or without dx) and a c	orrect	
	expression for y^2 seen in their working. E.g. $y^2 = \left(\frac{8}{5(2x+3)^2}\right)^2$ or even = $\left(\frac{1}{5(2x+3)^2}\right)^2$				$\left(\frac{8}{(x+3)^2}\right)^2$	

Question Number	Scheme		Notes	Marks
5.	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{k}{h+4} , \ 0 \le h \le 35$			
(a)	$\left\{h = 16, \frac{dh}{dt} = 0.6 \implies 0.6 = \frac{k}{16+4} \implies \right\} k$	k =12	k = 12	B1
				(1)
(b) Way 1	$\left\{\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{12}{h+4} \Longrightarrow \int (h+4)\mathrm{d}h = \int 12 \mathrm{d}t\right\}$			
	, 2		$h \pm 4 \rightarrow \alpha h^2 + \beta h; \ \alpha, \ \beta \neq 0$	M1
	$\frac{h^2}{2} + 4h = 12t \{+c\}$		et integration with a follow through on eir <i>k</i> found in (a). Ignore limits or $+c$	A1ft
	$\left\{ \left[\frac{h^2}{2} + 4h \right]_0^{30} = \left[12t \right]_0^T \right\}$			
			dependent on the previous M mark	
	$\frac{900}{2} + 120 = 12T \Longrightarrow T = \dots$			
	$\left\{T = \frac{570}{12} \Longrightarrow\right\} T = 47.5 \text{ (seconds)}$	47.5	A1	
				(4)
(b) Way 2	$\left\{\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{12}{h+4} \Longrightarrow \int (h+4)\mathrm{d}h = \int 12 \mathrm{d}t\right\}$			
	$\frac{(h+4)^2}{2} = 12t \{+c\}$		$h\pm 4 \rightarrow \alpha (h+4)^2; \ \alpha \neq 0$	M1
	$\frac{1}{2} = 12i \{+c\}$	Co	prrect integration. Ignore limits or $+c$	A1
	$\left\{ \left[\frac{(h+4)^2}{2} \right]_0^{30} = \left[12t \right]_0^T \right\}$			
	$\frac{(34)^2}{2} - \frac{(4)^2}{2} = 12T \Longrightarrow T = \dots$		dependent on the previous M mark Applies $h = 30$ and $h = 0$ correctly to an integrated equation of the form $(a \pm 4)^2 = \gamma t + c; \ \alpha, \ \gamma \neq 0$ (<i>c</i> can be 0) belows to find a value for the time taken	dM1
	$\left\{T = \frac{570}{12} \Longrightarrow\right\} T = 47.5 \text{ (seconds)}$		47.5	A1
				(4)
(c) Way 1	$\left\{\frac{\mathrm{d}V}{\mathrm{d}t} = 96\pi \Longrightarrow\right\} \text{ Volume} = 96\pi(47.5)$	3	96π (their "47.5"), where their "47.5" is positive	M1
	$\{=4560\pi = 14325.6625\} = 14300$	cm ³) (3 sf)	14300	A1 cao
(c) Way 2	$\left\{\frac{\mathrm{d}V}{\mathrm{d}h} = \frac{\mathrm{d}V}{\mathrm{d}t} \div \frac{\mathrm{d}h}{\mathrm{d}t} \Longrightarrow\right\} \frac{\mathrm{d}V}{\mathrm{d}h} = 96\pi \times \left(\frac{h+1}{12}\right)$	$\left(\frac{-4}{2}\right)$	Applies $96\pi \div \left(\text{their } \frac{\mathrm{d}h}{\mathrm{d}t} \right)$, integrates	(2)
	$\frac{\mathrm{d}V}{\mathrm{d}h} = 8\pi h + 32\pi \Longrightarrow V = 4\pi h^2 + 32\pi h \ \{$	{ <i>+ c</i> }	to find V (with or without $+c$), and substitutes $h=30$	M1
	So, volume = $4\pi(30)^2 + 32\pi(30)$		into their expression for V	
	$\{=4560\pi = 14325.6625\} = 14300$	cm^{3}) (3 sf)	14300	A1 cao
				(2)
				7

Question Number	Scheme	Notes	Marks			
5. (b) Way 3	$\begin{cases} \frac{dh}{dt} = \frac{12}{h+4} \implies \frac{dt}{dh} = \frac{1}{12}(h+4) \implies \frac$	$\left\{\frac{1}{2}h+\frac{1}{3}\right\}$				
č		$\lambda(h\pm 4) \to \alpha h^2 + \beta h; \ \alpha, \ \beta, \ \lambda \neq 0$	M1			
	$t = \frac{1}{24}h^2 + \frac{1}{3}h \{+c\}$	Correct integration. Ignore limits or $+c$. You can imply $t =$	A1			
	$\left\{ \left[t\right]_{0}^{T} = \left[\frac{1}{24}h^{2} + \frac{1}{3}h\right]_{0}^{30} \right\}$					
	$T = \frac{1}{24}(30)^2 + \frac{1}{3}(30)$	dependent on the previous M mark Applies $h = 30$ correctly to an integrated equation of the form $t = \alpha h^2 + \beta h + c; \ \alpha, \ \beta \neq 0 \ (c \text{ can be } 0)$	dM1			
	T = 47.5 (seconds)	47.5	A1			
			(4)			
5. (b) Way 4	$\left\{\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{12}{h+4} \implies \frac{\mathrm{d}t}{\mathrm{d}h} = \frac{1}{12}(h+4)\right\}$					
	1	$\lambda(h\pm 4) \rightarrow \alpha(h+4)^2; \ \alpha, \lambda \neq 0$	M1			
	$t = \frac{1}{24}(h+4)^2 \{+c\}$	Correct integration. Ignore limits or $+c$. You can imply $t =$	A1			
	$\left\{ \left[t\right]_{0}^{T} = \left[\frac{1}{24}(h+4)^{2}\right]_{0}^{30} \right\}$					
	$T = \frac{1}{24}(34)^2 - \frac{1}{24}(4)^2$	dependent on the previous M mark Applies $h = 30$ and $h = 0$ correctly to an integrated equation of the form $t = \alpha (h \pm 4)^2 + c; \ \alpha \neq 0 \ (c \text{ can be } 0)$				
	T = 47.5 (seconds)	47.5	A1			
			(4)			
		Question 5 Notes				
5. (b)	Note Give M1 A1 dM1 for the solution $\begin{cases} \frac{dh}{dt} = \frac{k}{h+4} \Rightarrow \int (h+4)dh = \int k dt \Rightarrow \frac{h^2}{2} + 4h = kt \{+c\} \\ \left\{ \left[\frac{(h+4)^2}{2} \right]_0^{30} = \left[kt \right]_0^T \right\} \Rightarrow \frac{900}{2} + 120 = kT \Rightarrow T = \dots \text{ (where they do not use the value of } k\text{)} \\ \text{followed by final A1 for} \\ \left\{ T = \frac{570}{k} \Rightarrow \right\} T = 47.5 \text{ (seconds)} \end{cases}$					

Question Number	Scheme			Notes	Marks
6. (i)	$\int \frac{5}{6e^{3x}} dx = \int \frac{5}{6}e^{-3x} dx = -\frac{5}{18}e^{-3x} \{+c\}$	}		to give $\pm \alpha e^{-3x}$, $\alpha \neq 0, \frac{5}{6}, 30$	M1
	$\int 6e^{3x} \int 6 = 18$	$-\frac{5}{18}e^{-3x}$ o	$r - \frac{5}{18e^{3x}}$ with or without $+ c$	A1 (2)	
(ii)(a)	$\frac{4y^2 + 3y - 4}{y(2y - 1)} \equiv A + \frac{B}{y} + \frac{C}{(2y - 1)}$				(2)
(11)(a)	y(2y-1) $y'(2y-1)$				
	$\{y^2: 4=2A \Longrightarrow\} A=2$			Their constant term $= 2$	B1
	$4y^2 + 3y - 4 \equiv Ay(2y - 1) + B(2y - 1)$ Either)+Cy		Forming a correct identity	B1
	• constant: $-4 = -B \Rightarrow B = 4$ • $y: -A + 2B + C \Rightarrow 3 = -2 + 8 + C$ • $y = 0 \Rightarrow -4 = -B \Rightarrow B = 4$ • $y = \frac{1}{2} \Rightarrow 1 + \frac{3}{2} - 4 = \frac{1}{2}C \Rightarrow C = 0$			Uses their identity in an attempt find the value of at least one of either their <i>B</i> or their <i>C</i>	M1
	$\left\{\frac{4y^2 + 3y - 4}{y(2y - 1)} \equiv \right\} 2 + \frac{4}{y} - \frac{3}{(2y - 1)}$		C	Correct partial fractions. an be seen anywhere in part (ii)	A1
				D	(4)
(b) Way 1	$\left\{\int \frac{4y^2 + 3y - 4}{y(2y - 1)} \mathrm{d}y\right\}$			st one of either $\frac{B}{y} \rightarrow \pm \lambda \ln y$ or -1) or $\gamma \ln(y - \frac{1}{2}), B \neq 0, C \neq 0$	M1
	$= \int \left(2 + \frac{4}{y} - \frac{3}{(2y-1)}\right) dy$		•	ntegration for at least two terms or from their <i>B</i> or from their <i>C</i>	A1 ft
	$= 2y + 4\ln y - \frac{3}{2}\ln(2y - 1) \{+c\}$	$2y + 4\ln x$	$\ln y - \frac{3}{2} \ln(2y -$	-1) or $2y + 4\ln y - \frac{3}{2}\ln(y - \frac{1}{2})$ can apply isw	A1
	Final A1: Correct bracketing requir	red. Can be s	simplified or u	(3)	
(iii)	$\left\{\int \frac{1}{\sqrt{x}} \ln(2x) dx\right\}, \begin{cases} u = \ln(2x) \Rightarrow \\ \frac{dv}{dx} = x^{-\frac{1}{2}} \Rightarrow v \end{cases}$		*		
	$= 2x^{\frac{1}{2}}\ln(2x) - \int 2x^{\frac{1}{2}}\left(\frac{1}{x}\right) \{dx\}$ Either $\frac{1}{\sqrt{x}}\ln(2x) \rightarrow \pm \lambda x^{\frac{1}{2}}\ln(kx) \pm \int \mu x^{\frac{1}{2}}\left(\frac{\alpha}{\beta x}\right) \{dx\}$ or $\pm \lambda x^{\frac{1}{2}}\ln(kx) \pm \int \mu x^{-\frac{1}{2}} \{dx\}; \lambda, \mu, k \neq 0$				M1
	dependent on the previous M mark $= 2x^{\frac{1}{2}} \ln(2x) - 4x^{\frac{1}{2}}$ Integrates the second term to give $Ax^{\frac{1}{2}}; A \neq 0$			dM1 A1 on epen	
		$2x^{\frac{1}{2}}\ln(2x) - 4$	$x^{\frac{1}{2}}$, simplified or un-simplified	A1	
	$\begin{cases} \left[2\sqrt{x}\ln(2x) - 4\sqrt{x} \right]_{1}^{4} \right\} & \text{dependent on the first M mark} \\ = \left(2\sqrt{4}\ln(8) - 4\sqrt{4} \right) - \left(2\sqrt{1}\ln(2) - 4\sqrt{1} \right) & \text{and 1 and subtracts the correct way round} \end{cases}$				dM1
	$\{=4\ln 8 - 8 - 2\ln 2 + 4\} = -4 + 10\ln 2$			$-4 + 10 \ln 2$	A1 cso
					(5)
					14

Question Number		Scheme	Notes	Marks			
6. (ii)(a) Way 2	$\frac{4y^2+3y}{y(2y-x)}$	$\frac{-4}{1} = 2 + \frac{5y-4}{y(2y-1)}$	Their constant term = 2	B1			
	$\frac{5y-4}{y(2y-1)}$	$\frac{1}{y} = \frac{B}{y} + \frac{C}{(2y-1)}$					
	$5y-4 \equiv$	B(2y-1) + Cy	Forming a correct identity	B1			
	 y:5= y=0 	ant: $-4 = -B \Rightarrow B = 4$ $= 2B + C \Rightarrow 5 = 8 + C \Rightarrow C = -3$ $\Rightarrow -4 = -B \Rightarrow B = 4$ $= 2B + C \Rightarrow 5 = 8 + C \Rightarrow C = -3$	Uses their identity in an attempt to find the value of at least one of either their <i>B</i> or their <i>C</i>	M1			
	• $y = \frac{1}{2} \Rightarrow \frac{5}{2} - 4 = \frac{1}{2}C \Rightarrow C = -3$ $\left\{\frac{4y^2 + 3y - 4}{y(2y - 1)} \equiv \right\} 2 + \frac{4}{y} - \frac{3}{(2y - 1)}$		Correct partial fractions. Can be seen anywhere in part (ii)	A1			
				(4)			
		Question 6 Notes					
6. (ii)(a)	Note	Give B1B1M1A1 writing down $2 + \frac{4}{y} - \frac{3}{(2y-1)}$ from no working.					
(iii)	SC	Give Special Case 1st M1 for writing down the correct "by parts" formula and using					
		$u = \ln(2x), \frac{dv}{dx} = \frac{1}{\sqrt{x}}$, but making only one error in the application of the correct formula If the Special Case 1 st M1 is given, then this allows access to any of the other two M marks in					
	this part.						

Question Number	Scheme		Notes	Marks	
7.	$x = -3 + 6\sin\theta$, $y = 4\sqrt{3}\cos 2\theta$, $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$				
	dy $-(2)(4)\sqrt{3}\sin 2\theta$ $\left[-4\sqrt{3}\sin 2\theta + 8\right]_{12}$	their $\frac{dy}{d\theta} \div$ their $\frac{dx}{d\theta}$	M1		
(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-(2)(4)\sqrt{3}\sin 2\theta}{6\cos\theta} \left\{ = \frac{-4\sqrt{3}\sin 2\theta}{3\cos\theta} = -\frac{8}{3}\sqrt{3}\sin\theta \right\}$		Correct simplified or un-simplified result	A1 isw	
				(2)	
(b)	$\{x = 0 \Rightarrow\} 0 = -3 + 6\sin\theta \Rightarrow \sin\theta = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{6}$	Set	Sets $x = 0$ to find θ or $\sin \theta$ and uses their θ or $\sin \theta$ to find y		
	$y_A = 4\sqrt{3}\cos\left(\frac{\pi}{3}\right) = 2\sqrt{3} \ \{ \Rightarrow A(0, 2\sqrt{3}) \}$		$y_A = 2\sqrt{3}$ or $\sqrt{12}$ or awrt 3.46	A1	
	$m_{T} = \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-4\sqrt{3}\sin\left(2(\frac{\pi}{6})\right)}{3\cos(\frac{\pi}{6})} = \frac{-4\sqrt{3}\left(\frac{\sqrt{3}}{2}\right)}{3\left(\frac{\sqrt{3}}{2}\right)} = -\frac{4\sqrt{3}}{3}$		$\begin{array}{c} 2 & dx \\ Can be implied. \end{array}$	M1	
	So, $m_N = \frac{3}{4\sqrt{3}}$ or $\frac{\sqrt{3}}{4}$	(Correctly applies $m_N = -\frac{1}{\text{their } m_T}$	M1	
	• $y - 2\sqrt{3} = \frac{\sqrt{3}}{4}(x - 0)$ • $y = \frac{\sqrt{3}}{4}x + 2\sqrt{3}$	$y - (\text{their } y_A) = (\text{their } m_N)(x - 0) \text{ o}$ $y = (\text{their } m_N)x + (\text{their } y_A)$ with a numerical $m_N (\neq m_T)$ Correct proo		M1	
	$4y - 8\sqrt{3} = \sqrt{3}x \Longrightarrow \sqrt{3}x - 4y + 8\sqrt{3} = 0 *$			A1*	
(c) Way 1	$\sqrt{3}\left(-3+6\sin\theta\right)-4\left(4\sqrt{3}\cos 2\theta\right)+8\sqrt{3}=0$	Substitutes $x = -3 + 6\sin\theta$ and $y = 4\sqrt{3}\cos 2\theta$ into the normal equation to form an equation in θ only		M1	
	$-3+6\sin\theta-16\cos 2\theta+8=0$				
	$-3 + 6\sin\theta - 16(1 - 2\sin^2\theta) + 8 = 0$	de	ependent on the previous M mark Applies $\cos 2\theta \equiv 1 - 2\sin^2 \theta$	dM1	
	$32\sin^2\theta + 6\sin\theta - 11 = 0$ or $32\sin^2\theta + 6\sin\theta = 3$	Correct 3TQ in $\sin \theta$ e.g. $32\sin^2 \theta + 6\sin \theta - 11 \{=0\}$	A1		
	$(2\sin\theta - 1)(16\sin\theta + 11) = 0 \Rightarrow \sin\theta =$		dependent on the first M mark Correct method (e.g. factorising, applying the quadratic formula, completing the square or calculator) of solving a 3TQ to give $\sin \theta =$	dM1	
	$\left\{\sin\theta = \frac{1}{2}\right\} \sin\theta = -\frac{11}{16}$				
	So, $B(x, y) = B\left(-\frac{57}{8}, \frac{7}{32}\sqrt{3}\right)$		Either x or y is correct	A1 o.e.	
			Both <i>x</i> and <i>y</i> are correct	A1 o.e.	
				(6)	
				14	

Question Number		Scheme Notes			Marks	
7.	x = -3 + 6	6sin θ , $y = 4\sqrt{3}\cos 2\theta$, $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$; $\mathbf{N}: \sqrt{3}x - 4y + 8\sqrt{3} = 0$				
(c) Way 2	$y = 4\sqrt{3}$	$\cos 2\theta = 4\sqrt{3} (1 - 2\sin^2 \theta)$ $-8\sqrt{3}\sin^2 \theta$	Car	Substitutes the normal equation tesian equation of C which is o $y = \lambda \pm \mu (x \pm 3)^2$ to give an equation	f the form $; \lambda, \mu \neq 0$	M1
		$-8\sqrt{3}\left(\frac{x+3}{6}\right)^2$		dependent on the previous Applies $\cos 2\theta \equiv 1$		dM1
	$\frac{\sqrt{3}x+8}{4}$	$\frac{\sqrt{3}}{3} = 4\sqrt{3} - 8\sqrt{3}\left(\frac{x+3}{6}\right)^2$		Correct un- or simplified equ	.	A1
	$36\left(\frac{\sqrt{3}x}{x}\right)$	$\frac{+8\sqrt{3}}{4} = 144\sqrt{3} - 8\sqrt{3}(x^2 + 6x + 9)$				
	$9\sqrt{3}x+7$	$2\sqrt{3} = 144\sqrt{3} - 8\sqrt{3}x^2 + 48\sqrt{3}x - 72\sqrt{3}$				
	$8\sqrt{3}x^2 + 5$	$57\sqrt{3}x = 0 \implies x = \dots$		dependent on the first M markCorrect method of solving theirquadratic equation in x to give $x =$ Note: x could be cancelled outto give a linear equation in x		dM1
	So, $B(x,$	$y) = B\left(-\frac{57}{8}, \frac{7}{32}\sqrt{3}\right)$	- √3		is correct	A1 o.e.
				Both <i>x</i> and <i>y</i> are correct		A1 o.e. (6)
		(Questior	n 7 Notes		(0)
7. (a)	Note	Condone poor notation, when they are applying the method of parametric differentiation				
(b)	Note	2 nd M1 can be implied by writing down a correct result for their $\frac{dy}{dx}$ at $\theta = \frac{\pi}{3}$ or 60°				þ
(c)	Note	Condone for $\theta = \frac{-6 \pm \sqrt{6^2 - 4(32)(-11)}}{2(32)}$ for the 3 rd M1 mark				
	Note	Allow 2 nd A1 for any of $x = -\frac{57}{8}$ or awrt -7.13 or -7.125				
		or $y = \frac{7}{32}\sqrt{3}$ or awrt 0.379 or $\sqrt{\frac{1}{1}}$	024			

Question Number	Scheme Notes			Notes	Marks	
7.	$x = -3 + 6\sin\theta$, $y = 4\sqrt{3}\cos 2\theta$, $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$; $\mathbf{N}: \sqrt{3}x - 4y + 8\sqrt{3} = 0$					
(c) Way 3	$\sqrt{3} = 4\sqrt{3}\cos 2\theta = 4\sqrt{3}(1-2\sin^2\theta)$ Complete method of eliminating equations for C and N simult achieve an equation			l N simulta	neously to	M1
	$\sin\theta = \frac{4y - 5\sqrt{3}}{6\sqrt{3}} \Longrightarrow \sin^2\theta = \frac{(4y - 5\sqrt{3})^2}{108}$					dM1
	$y = 4\sqrt{3} \left(1 - \frac{2(4y - 5\sqrt{3})^2}{108} \right)$			Correct un- nplified equ	<u> </u>	A1
	$\frac{\sqrt{3}y}{12} = \frac{108 - 2(4y - 5\sqrt{3})^2}{108}$ $9\sqrt{3}y = 108 - 32y^2 + 80\sqrt{3}y - 150$ $32y^2 - 71\sqrt{3}y + 42 = 0$					
	$32y - 71\sqrt{3y+42} = 0$		dependent	on the firs	t M mark	
	$(32y - 7\sqrt{3})(y - 2\sqrt{3}) = 0 \implies y = \dots$		Correct me applying t completing the	thod (e.g. fa he quadrati	actorising, c formula, calculator)	dM1
	So, $B(x, y) = B\left(-\frac{57}{8}, \frac{7}{32}\sqrt{3}\right)$		Either <i>x</i> or <i>y</i> is correct		A1 o.e.	
			Both <i>x</i> and <i>y</i> are correct		A1 o.e.	
					(6)	
(c) Way 4	$y = 4\sqrt{3}\cos 2\theta = 4\sqrt{3}(1 - 2\sin^2\theta)$		Complete method of eliminating θ from the equations for <i>C</i> and <i>N</i> simultaneously to achieve an equation in <i>y</i> only		M1	
	$\sin^2 \theta = \frac{4\sqrt{3-y}}{8\sqrt{3}} \Rightarrow \sin \theta = \sqrt{\frac{4\sqrt{3-y}}{8\sqrt{3}}}$ dependen			dependent on the previous M mark Applies $\cos 2\theta \equiv 1 - 2\sin^2 \theta$		dM1
	$\sqrt{3} \left(-3 + 6\sqrt{\frac{4\sqrt{3} - y}{8\sqrt{3}}} \right) - 4y + 8\sqrt{3} = 0$			Correct un- nplified equ	.	A1
	$\left(-3+6\sqrt{\frac{4\sqrt{3}-y}{8\sqrt{3}}}\right) = \frac{4y-8\sqrt{3}}{\sqrt{3}} \implies 6\sqrt{\frac{4\sqrt{3}-y}{8\sqrt{3}}} = \frac{4y}{\sqrt{3}}$					
	$\sqrt{\frac{4\sqrt{3}-y}{8\sqrt{3}}} = \frac{2y}{3\sqrt{3}} - \frac{5}{6} \Longrightarrow \frac{4\sqrt{3}-y}{8\sqrt{3}} = \frac{4}{27}y^2 - \frac{10}{9\sqrt{3}}y + \frac{25}{36}$					
	$\frac{1}{2} - \frac{y}{8\sqrt{3}} = \frac{4}{27}y^2 - \frac{10}{9\sqrt{3}}y + \frac{25}{36} \implies \frac{4}{27}y^2 - \frac{71}{72\sqrt{3}}y + \frac{7}{36} = 0$					
	$32y^2 - 71\sqrt{3}y + 42 = 0$					
	$(32y-7\sqrt{3})(y-2\sqrt{3})=0 \Rightarrow y=$		dependent on the first M markCorrect method (e.g. factorising, applying the quadratic formula, completing the square or calculator) of solving a 3TQ to give $y =$		dM1	
	So, $B(x, y) = B\left(-\frac{57}{8}, \frac{7}{32}\sqrt{3}\right)$		Either x or y is		is correct	A1 o.e.
			Both <i>x</i> and <i>y</i> are correct		are correct	A1 o.e.
					(6)	

Question Number	Scheme			Notes	Marks
8.	$l_1 : \mathbf{r} = \begin{pmatrix} -6\\13\\1 \end{pmatrix} + \mu \begin{pmatrix} 4\\-5\\3 \end{pmatrix}; \text{ direction } \mathbf{d} = \begin{pmatrix} 4\\-5\\3 \end{pmatrix},$	$\overrightarrow{OA} = \begin{pmatrix} 6 \\ -1 \\ 7 \end{pmatrix}$ and \overrightarrow{OB}	$\vec{b} = \begin{pmatrix} 2 \\ c \\ d \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ 7 \end{pmatrix}$		
	$ \begin{array}{c} -6 + 4\mu = 2 \Longrightarrow \mu = 2 \\ (-6) (4) (2) \end{array} $		the i component μ into l_1 to find	-	M1
(a)	$\overrightarrow{OP} = \begin{pmatrix} -6\\13\\1 \end{pmatrix} + 2 \begin{pmatrix} 4\\-5\\3 \end{pmatrix} = \begin{pmatrix} 2\\3\\7 \end{pmatrix}$	Correct vector	for \overrightarrow{OP} or $c=3$	and $d = 7$	A1
	$\overrightarrow{PA} = \overrightarrow{OA} - \overrightarrow{OP} = \begin{pmatrix} 6\\-1\\7 \end{pmatrix} - \begin{pmatrix} 2\\3\\7 \end{pmatrix} = \begin{pmatrix} 4\\-4\\0 \end{pmatrix}$				
	$AP = \sqrt{(4)^2 + (-4)^2 + (0)^2} = \sqrt{32} = 4\sqrt{2}$		Full method for		M1
				4√2	A1 (4)
(b)	$\{l_2:\} \mathbf{r} = \begin{pmatrix} 6\\-1\\7 \end{pmatrix} + \lambda \begin{pmatrix} 4\\-5\\3 \end{pmatrix}$	either $\mathbf{a} = 6$	or $\mathbf{a} + \mu \mathbf{d}$, $\mathbf{a} \neq 0$ $\mathbf{i} - \mathbf{j} + 7\mathbf{k}$ or $\mathbf{d} =$ r \mathbf{d} =multiple of 4	4i – 5j + 3k li – 5j + 3k	M1
		ct vector equation us		$l_2 = \text{or } L =$	A1
	Do not allow l_2 : or l_2			1 . 1 .	(2)
(c)	$\overrightarrow{PA} = \begin{pmatrix} 4 \\ -4 \\ 0 \end{pmatrix} \text{ and } \mathbf{d}_2 = \begin{pmatrix} 4 \\ -5 \\ 3 \end{pmatrix} \Rightarrow \begin{pmatrix} 4 \\ -4 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ -5 \\ 3 \end{pmatrix}$	Re is requi	ealisation that the red between their and $\pm Ke$	dot product \overrightarrow{AP} or \overrightarrow{PA} \mathbf{l}_2 or $\pm K\mathbf{d}_1$	M1
	$\left\{\cos\theta = \frac{\overrightarrow{PA} \cdot \mathbf{d}_2}{ \overrightarrow{PA} \mathbf{d}_2 } = \right\} \frac{\pm \left(\begin{pmatrix}4\\-4\\0\end{pmatrix}\right)}{\sqrt{(4)^2 + (-4)^2 + (0)^2}} \sqrt{\frac{1}{2}}$	$ \begin{pmatrix} 4 \\ -5 \\ 3 \end{pmatrix} $ $ \overline{(4)^2 + (-5)^2 + (3)^2} $	the previo		dM1
	$\{\cos\theta = \} \frac{16+20+0}{\sqrt{32}\sqrt{50}} = \frac{9}{10} *$		{cos <i>t</i>	$\theta = \frac{9}{10} *$	A1
					(3)
(d) Way 1	$\left\{ \overrightarrow{PB} = \overrightarrow{OB} - \overrightarrow{OP} = \begin{pmatrix} 6+4\lambda \\ -1-5\lambda \\ 7+3\lambda \end{pmatrix} - \begin{pmatrix} 2 \\ 3 \\ 7 \end{pmatrix} \right\} \Rightarrow \overrightarrow{PB}$	$= \begin{pmatrix} 4+4\lambda \\ -4-5\lambda \\ 3\lambda \end{pmatrix}$	finding P B	method for in terms of λ . be implied)	M1
			(
	$(4+4\lambda)^2 + (-4-5\lambda)^2 + (3\lambda)^2 = (4\sqrt{2})^2$	Uses Py equation in te	ent on the previo thagoras correctly rms of λ for <i>PB</i>	us M mark y to form an	dM1
	$\{16+32\lambda+16\lambda^{2}+16+40\lambda+25\lambda^{2}+9\lambda^{2}=$	Uses Py equation in te 32 }	thagoras correctly rms of λ for $PB^2 = ($	us M mark y to form an = their $4\sqrt{2}$ their $4\sqrt{2}$) ²	dM1
		Uses Py equation in te $32 \}$ $\lambda = -\frac{72}{50}$	ent on the previo thagoras correctly rms of λ for PB^2 or $PB^2 = ($ $\lambda = -\frac{72}{50}$ or $-\frac{32}{2}$	us M mark y to form an = their $4\sqrt{2}$ their $4\sqrt{2}$ ² $\frac{6}{5}$ or -1.44	dM1 A1
	$\{16+32\lambda+16\lambda^{2}+16+40\lambda+25\lambda^{2}+9\lambda^{2}=$	Uses Py equation in te $32 \}$ $\lambda = -\frac{72}{50}$ depende	ent on the previous thagoras correctly rms of λ for PB^2 or $PB^2 = ($ $\lambda = -\frac{72}{50}$ or $-\frac{30}{2}$ ent on the previous Substitutes non-zero value(s)	us M mark y to form an = their $4\sqrt{2}$ their $4\sqrt{2}$ ² $\frac{6}{5}$ or -1.44 us M mark one of their of λ into l_2	
	$\{16+32\lambda+16\lambda^2+16+40\lambda+25\lambda^2+9\lambda^2 = \{\Rightarrow 50\lambda^2+72\lambda=0 \Rightarrow \lambda(50\lambda+72)=0\} \Rightarrow \lambda(50\lambda+72)=0\}$	Uses Py equation in te $32 \}$ $\lambda = -\frac{72}{50}$ depende	ent on the previo thagoras correctly rms of λ for PB^2 or $PB^2 = ($ $\lambda = -\frac{72}{50}$ or $-\frac{3}{2}$ ent on the previo Substitutes	us M mark y to form an = their $4\sqrt{2}$ their $4\sqrt{2}$ ² $\frac{5}{5}$ or -1.44 us M mark one of their of λ into l_2 dinates of B.	A1 dM1 A1 o.e.
	$\{16+32\lambda+16\lambda^{2}+16+40\lambda+25\lambda^{2}+9\lambda^{2} = \\ \{\Rightarrow 50\lambda^{2}+72\lambda=0 \Rightarrow \lambda(50\lambda+72)=0\} \Rightarrow \lambda$ $\overrightarrow{OB} = \begin{pmatrix} 6\\-1\\7 \end{pmatrix} - \frac{36}{25} \begin{pmatrix} 4\\-5\\3 \end{pmatrix} = \begin{pmatrix} \frac{6}{25}\\\frac{31}{5}\\\frac{67}{25} \end{pmatrix} \text{ or } \begin{pmatrix} 0.24\\6.2\\2.68 \end{pmatrix}$	Uses Py equation in te $32 \}$ $\lambda = -\frac{72}{50}$ depende	ent on the previous thagoras correctly rms of λ for PB : or $PB^2 = ($ $\lambda = -\frac{72}{50}$ or $-\frac{32}{2}$ ent on the previous Substitutes non-zero value(s) Correct coord	us M mark y to form an = their $4\sqrt{2}$ their $4\sqrt{2}$ ² $\frac{5}{5}$ or -1.44 us M mark one of their of λ into l_2 dinates of B.	A1 dM1

Question Number		Scheme		Notes		Marks
8. (d) Way 2	$AB = 4\sqrt{2}$	$\overline{2}\left(\frac{9}{10}\right)(2) \left\{=\frac{36}{5}\sqrt{2}\right\}$			$AB = (\text{their } "4\sqrt{2}")(0.9)$	M1
		$\frac{4}{(-5\lambda)^{2} + (3\lambda)^{2}} = 4\sqrt{2}\left(\frac{9}{10}\right)(2) \text{ or } \frac{3}{5}$ $\frac{3}{(-5\lambda)^{2}} + (3\lambda)^{2} = \left(4\sqrt{2}\left(\frac{9}{10}\right)(2)\right)^{2} \text{ or } \frac{3}{5}$,	- Forms a correct equation in terms of λ for their <i>AB</i> or their <i>AB</i> ²		dM1
	$\left\{\pm\sqrt{50\lambda}\right.$	$\overline{2}^{2} = \frac{36}{5}\sqrt{2} \Rightarrow \lambda = \pm \frac{36\sqrt{2}}{5\sqrt{50}} \} \Rightarrow \lambda = -\frac{36}{2}$			$= -\frac{72}{50} \text{ or } -\frac{36}{25} \text{ or } -1.44$ re $\lambda = \frac{72}{50} \text{ or } \frac{36}{25} \text{ or } 1.44$	A1
	$\overrightarrow{OB} = \begin{pmatrix} e \\ -1 \\ 2 \\ 7 \end{pmatrix}$	$ \frac{5}{1} - \frac{36}{25} \begin{pmatrix} 4\\ -5\\ 3 \end{pmatrix} = \begin{pmatrix} \frac{6}{25}\\ \frac{31}{5}\\ \frac{67}{25} \end{pmatrix} \text{ or } \begin{pmatrix} 0.24\\ 6.2\\ 2.68 \end{pmatrix} $		-	t on the previous M mark Substitutes one of their on-zero value(s) of λ into l_2	dM1
		$\Rightarrow B(0.24, 6.2, 2.68)$	C	ondone <i>B</i> exp	Correct coordinates of <i>B</i> . pressed as a position vector.	A1 o.e.
						(5)
(d) Way 3	(the midpoint of AB $\overrightarrow{B} - \overrightarrow{OP} = \begin{pmatrix} 6+4\lambda \\ -1-5\lambda \\ 7+3\lambda \end{pmatrix} - \begin{pmatrix} 2 \\ 3 \\ 7 \end{pmatrix} \Rightarrow \overrightarrow{PX} =$	$ \begin{array}{c} \begin{array}{c} 4+4\lambda \\ -4-5\lambda \\ 3\lambda \end{array} \end{array} \begin{array}{c} \hline \\ \end{array} \begin{array}{c} Correct method for \\ finding \ensuremath{\overrightarrow{PX}} (or \ensuremath{\overrightarrow{PB}}) \\ in \ terms \ of \ \lambda. \\ (Can \ be \ implied) \end{array} \end{array} \\ \hline \\ \begin{array}{c} \hline \\ \end{array} \begin{array}{c} \end{array} \begin{array}{c} \hline \\ \end{array} \begin{array}{c} \hline \\ \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \hline \\ \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array}$		finding \overrightarrow{PX} (or \overrightarrow{PB}) in terms of λ .	M1
		$= 0 \Longrightarrow \begin{pmatrix} 4+4\lambda \\ -4-5\lambda \\ 3\lambda \end{pmatrix} \cdot \begin{pmatrix} 4 \\ -5 \\ 3 \end{pmatrix} = 0$			dM1	
	$\{16+16\lambda$	$+20+25\lambda+9\lambda=0 \}$				
	{⇒50λ -	$+36=0 \Longrightarrow \} \Longrightarrow \lambda_x = -\frac{36}{50}$		$\lambda_{_X}$	$=-\frac{36}{50}$ or $-\frac{18}{25}$ or -0.72	A1
	$\overrightarrow{OB} = \begin{pmatrix} 0 \\ -1 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2$	$ \begin{pmatrix} 5 \\ 1 \\ 7 \end{pmatrix} - (2) \frac{36}{50} \begin{pmatrix} 4 \\ -5 \\ 3 \end{pmatrix} = \begin{pmatrix} \frac{6}{25} \\ \frac{31}{5} \\ \frac{67}{25} \end{pmatrix} \text{ or } \begin{pmatrix} 0.24 \\ 6.2 \\ 2.68 \end{pmatrix} $		dependent on the previous M mark Substitutes one of their non-zero value(s) of 2λ into l_2 or a complete method to find <i>B</i>		dM1
		$\Rightarrow B(0.24, 6.2, 2.68)$	C	Correct coordinates of <i>B</i> . Condone <i>B</i> expressed as a position vector.		
		Ωι	lestion	8 Notes		(5)
8. (b)	Note	M1 can be implied for $\begin{cases} 4 \\ -4 \\ 0 \end{cases} \begin{pmatrix} 4 \\ -5 \\ 3 \end{cases}$	$\left \right = 3$	6		
(c)	Note	Give final A1 for using a correct method to find $\cos\theta = -\frac{9}{10}$ followed by $\cos\theta = \frac{9}{10}$				9
(0)			ding $\cos\theta = -\frac{9}{10}$ by itself without reference to $\cos\theta = \frac{9}{10}$			
	Note	Give final A0 for finding $\cos \theta = -$	$\frac{9}{10}$ by i	tself without	reference to $\cos\theta = \frac{9}{10}$	
(d)		Give final A0 for finding $\cos \theta = -$ Give the final A0 for stating more the				

Question Number	Scheme	Notes	Marks	
8. (b)	Vector Cross Product: Use this scheme if a vector cross product method is being applied			
	$\overrightarrow{PA} \times \mathbf{d}_2 = \begin{pmatrix} 4 \\ -4 \\ 0 \end{pmatrix} \times \begin{pmatrix} 4 \\ -5 \\ 3 \end{pmatrix} = \begin{cases} \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 4 & -4 & 0 \\ 4 & -5 & 3 \end{vmatrix} = -12\mathbf{i} - 12\mathbf{j}$	$\mathbf{j} - 4\mathbf{k} \begin{cases} \mathbf{Realisation that the vector cross product is required between their \overline{AP} or \overline{PA} and \pm K\mathbf{d}_2 or \pm K\mathbf{d}$	t M1	
	$\sin\theta = \frac{\sqrt{(-12)^2 + (-12)^2 + (-4)^2}}{\sqrt{(4)^2 + (-4)^2 + (0)^2} \cdot \sqrt{(4)^2 + (-5)^2 + (3)^2}}$	Applies vector cross product formula between their \overrightarrow{AP} or \overrightarrow{PA} and $\pm K\mathbf{d}_2$ or $\pm K\mathbf{d}_3$ or a multiple of these vector	dM1	
	$\left\{ \sin \theta = \frac{\sqrt{304}}{\sqrt{32}.\sqrt{50}} = \sqrt{\frac{304}{1600}} = \sqrt{\frac{19}{100}} \right\}$ $\left\{ \Rightarrow \cos \theta \right\} = \sqrt{\frac{100 - 19}{100}} = \underline{\sqrt{\frac{81}{100}}} = \frac{9}{10}$	$\{\cos\theta\} = \frac{9}{10} *$	A1	
			[3]	

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom