

Mark Scheme (Results)

Summer 2019

Pearson Edexcel GCE In Mechanics 3 Paper 6679/01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019 Publications Code 6679_01_MS_1906 All the material in this publication is copyright © Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - **A** marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - **B** marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.
 - 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt[4]{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer

General Principles for Mechanics Marking

(But note that specific mark schemes may sometimes override these general principles)

- Rules for M marks: correct no. of terms; dimensionally correct; all terms that need resolving (i.e. multiplied by cos or sin) are resolved.
- Omission or extra g in a resolution is an accuracy error not method error.
- Omission of mass from a resolution is a method error.
- Omission of a length from a moments equation is a method error.
- Omission of units or incorrect units is not (usually) counted as an accuracy error.
- DM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of g = 9.8 should be given to 2 or 3 SF.
- Use of g = 9.81 should be penalised once per (complete) question.

N.B. Over-accuracy or under-accuracy of correct answers should only be penalised *once* per complete question. However, premature approximation should be penalised every time it occurs.

Marks must be entered in the same order as they appear on the mark scheme.

- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),.....then that working can only score marks for that part of the question.
- Accept column vectors in all cases.
- Misreads if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft
- Mechanics Abbreviations

M(A)	Taking moments about A
N2L	Newton's Second Law (Equation of Motion)
NEL	Newton's Experimental Law (Newton's Law of Impact)
HL	Hooke's Law
SHM	Simple harmonic motion
PCLM	Principle of conservation of linear momentum
RHS, LHS	Right hand side, left hand side.

Question Number	Scheme	Marks
1.	Mass ratio $1 \frac{2}{5} \frac{7}{5}$ (5 2 7)	
	Dist from O $\frac{h}{2}$ $h + \frac{x}{3}$ $\frac{3h}{4}$	B1
	$5 \times \frac{h}{2} + 2 \times \left(h + \frac{x}{3}\right) = 7 \times \frac{3h}{4}$	M1A1ft
	$x = \frac{9h}{8}$	A1
	Notes	ניז
B1	Correct distances – using $h + \frac{x}{3}$ or d (distance from ground). May use distant	ices from the
M1 A1ft A1	vertex or centre of the common face Dimensionally correct moments equation Correct equation, follow through their distances Correct height of cone	

Question Number	Scheme	Marks
2		
(a)	At surface $\frac{\kappa}{R^2} = mg \implies k = mgR^2$ *	MIAIcso (2)
(b)	$m\ddot{x} = -\frac{mgR^2}{x^2}$ $v\frac{dv}{dt} = -\frac{gR^2}{t}$	M1
	$\int v \frac{dv}{dx} dx = -gR^2 \int \frac{1}{x^2} dx \text{or} \int \frac{d\left(\frac{1}{2}v^2\right)}{dx} dx = -gR^2 \int \frac{1}{x^2} dx$	
	$\frac{1}{2}v^2 = \frac{gR^2}{x} (+c)$	DM1A1ft
	$x = \frac{4R}{3}, v = \sqrt{\frac{2gR}{5}} \implies c = -\frac{11gR}{20}$	DM1A1
	$v = 0 0 = \frac{gR^2}{x} - \frac{11gR}{20} \qquad \Rightarrow x = \dots \left(\frac{20R}{11}\right)$	M1
	Height above surface $=\frac{9R}{11}$	A1 (7)
	Notes	[9]
(a) M1 A1cso (b)	Attempt NL2 Complete to the given result – no errors in work	
M1	Attempt NL2 minus may be missing. Accel to be form $v \frac{dv}{dx}$	
DM1 A1ft DM1 A1	Attempt integration. Correct integration – follow through their equation Use given initial conditions to obtain a value for the constant (Definite integration must have correct limits) Correct constant (not ft) (or correct equation following substitution of limits)
M1 A1	Use $v = 0$ and obtain a value for x (or solve the equation for x) Complete to correct height above the surface	

Question Number	Scheme	Mar	ks
3 (a)	$T = \frac{\lambda x}{L}$		
	$l \lambda \times 0.5$		
	$25 = \frac{11000}{1.5}$	M1	
	$\lambda = 75$ N	A1	
	Initial EPE = $\frac{\lambda x^2}{2l} = \frac{75 \times 0.5^2}{3}$ (J)	B1	
	$\frac{75 \times 0.5^2}{3} - \frac{3}{4} \times \frac{1}{2} g \times 0.5 = \frac{1}{2} \times 0.5 v^2$ $v^2 = 17.65$	M1A1ft	
	$v = 4.201 v = 4.2 \text{ or } 4.20 \text{ m s}^{-1}$	A1	(6)
(b)	Comes to rest $0.75 \times 0.5g \times y = \frac{75 \times 0.5^2}{3}$	M1A1	
	$y = \frac{75 \times 0.5^2}{0.75 \times 0.5 \times 9.8 \times 3} = 1.7 \text{ or } 1.70 \text{ m}$	A1	(3)
	Notes		[9]
(a)			
M1	Attempt HL		
A1	Obtain $\lambda = 75$		
B1	Correct initial EPE		
M1	3 term energy equation		
Alft	Correct equation, follow through their EPE		
	Correct speed, 2 or 3 s f		
(D) M1	Attempt operate equation to rest		
	Correct energy equation to rest no ft		
A1 A1	Correct distance <i>BC</i>		
ALT 1	ALTs for (b): . Equate KE at nat length to work done by friction Solve for distance (1.2) Add 0.5 to answer.		
ALT 2	Find deceleration $(3/4 g)$ Use SUVAT equation to find distance Add 0.5 to answer		
	M1 complete method for the distance, A1 correct distance, A1 correct answer.		

Question Number	Scheme	Marks
4		
(a)	$\mathbf{R}\left(\uparrow\right) T\cos 30^\circ + R\cos 60^\circ = mg$	M1A1
	NL2 along radius: $T \sin 30^\circ + R \sin 60^\circ = m(a \cos 30^\circ)\omega^2$	M1A1A1
	$T = mg\sqrt{3} - \frac{\sqrt{3}}{2}ma\omega^2 \text{oe}$	DM1A1 (7)
(b)	$R = \frac{3}{2}ma\omega^2 - mg$	B1
	For contact: $\frac{3}{2}ma\omega^2 - mg > 0$	M1
	$\omega^2 > \frac{2g}{3a}$	A1
	time for 1 rev = $\frac{2\pi}{\omega} < 2\pi \sqrt{\frac{3a}{2g}}$ *	DM1A1cso (5)
	Notes	1
(a)		
M1	Resolve vertically, 3 term equation	
A1	Correct equation	
M1	Attempt NL2 along the radius, radius may be r, both forces included and reso	olved
A1	Correct LHS	
A1	Correct RHS	
DM1	Solve the equations to obtain an expression for the tension. Depends on prev	ious 2 M marks
	Correct expression – any equivalent allowed	
(D) R1	Correct expression for R_{-} any equivalent allowed	
M1	Use $R > 0$	
A1	Correct expression for $\omega \Omega \Omega \omega^2$	
	2π	
DM1	Use $T = \frac{2\pi}{\omega}$ and correct inequality to obtain the time for 1 rev	
A1cso	Correct given answer from correct working.	

Question Number	Scheme	Marks
5(a)	Vol $= \pi \int_0^3 y^2 dx = \pi \int_0^3 3x dx$	M1
	$=\pi\left[\frac{3x^2}{2}\right]_0^3=\frac{27\pi}{2}$	A1
	$\pi \int_0^3 x y^2 dx = \pi \int_0^3 3x^2 dx$	M1
	$\pi \left[x^3 \right]_0^3 = 27\pi$	A1
	$\overline{x} = \frac{\int xy^2 dx}{\int y^2 dx} = 27 \div \frac{27}{2} = 2$	DM1A1 (6)
(b)	$\tan \alpha = \frac{3}{2} = \frac{3}{1}$	M1A1
	$\alpha = 71.5$ Accept 71° or 72° for max	A1 (3)
	Moments about <i>B</i> :	
(c)	eg $k(Mg) \times 6\sin 10^\circ = (Mg)\cos 10(1-3\tan 10)$	M1A1A1
	or $k(Mg) \times 6\sin 10^\circ = (Mg)\sin\left(\tan^{-1}\left(\frac{1}{3}\right) - 10^\circ\right) \times \sqrt{10}$	
	<i>k</i> = 0.445	A1 (4) [13]
	Notes	
(a) M1 A1	Correct volume integral – ignore any limits shown - π may be omitted Correct result for the volume π may be omitted	
M1	Attempt $\pi \int_{-\infty}^{3} xy^2 dx = \pi \int_{-\infty}^{3} 3x^2 dx$ ignore limits π may be omitted	
A1	Correct result for this integral - π may be omitted	
DM1	Attempt $\overline{x} = \frac{\int xy^2 dx}{\int y^2 dx}$ using their results. π in both or neither integral. Depends on both	
	previous M marks	
Al (b)	Correct answer	
(b) M1	For tan α either way up with their \overline{x}	
A1	Correct value for $\tan \alpha$	
A1	Correct value for $\alpha_{\rm max}$	
(c)		
M1	Attempt a moments about B	
A1	Either term correct	
Al	Second term correct	
AI	Correct value for K – must be 3 si	

Question Number	Scheme	Marks
6(a)		
	Energy A to B:	
	$\frac{1}{2}mU^2 - \frac{1}{2}mv^2 = mgr(1 + \cos\alpha)$	M1A1
	NL2 at B $(R) + mg \cos \alpha = m \frac{v^2}{r}$	M1A1A1
	$\cos\alpha = \frac{1}{3gr} \left(U^2 - 2gr \right) *$	DM1A1 (7)
(b)	$\frac{1}{4} = \frac{1}{3gr} \left(U^2 - 2gr \right)$	M1
	$U^2 = \frac{11gr}{4}$	A1
	Energy A to C	
	$\frac{1}{2}mU^2 - \frac{1}{2}mV^2 = mgr$	M1
	$V^2 = \frac{11gr}{4} - 2gr, V = \sqrt{\frac{3gr}{4}}$ oe	DM1A1 (5)
	Notes	
(a)		
M1	Attempt an energy equation from A to B. Must have 2 KE terms and 1 or 2 P	'E terms
A1	Fully correct equation	
M1	Attempt an eqn of motion along the radius at <i>B</i> . Weight must be resolved, <i>R</i> may be	
A 1	Included or assumed to be zero here. Acceleration in either form.	
A1	Correct acceleration as shown	
DM1	Make $R = 0$ (if included) and solve for $\cos \alpha$ Depends on both previous M marks	
A1cso	Correct given expression for $\cos \alpha$ obtained from fully correct working.	
(b)		
M1	Use $\cos \alpha = \frac{1}{4}$ to obtain an expression for U^2 or v_B^2	
A1	Correct expression for U^2 or v_B^2	
M1	Attempt an energy equation from A to C or B to C . Must have the correct no	of terms and
DM1	KE and GPE terms must be consistent.	Doman de
DNII	Solve the equations to obtain an expression for v^2 – need not be simplified. I	Jepends on both
A1	Correct, simplified, expression for V	

Question Number	Scheme	Marks
7 (a)	$T_{AC} = \frac{12x}{1.6}$	M1
	$1.0 \\ 15(1.2 - x)$	
	$T_{BC} = \frac{T(T-T)}{1.2}$	A1
	$12x - 15(1.2 - x) \rightarrow x - x$	M1
	$\frac{1.6}{1.6} \xrightarrow{-1.2} \xrightarrow{\rightarrow} x \xrightarrow{-\dots}$	
	x = 0.75	A1
	(1)AC = 2.35 m $(11)BC = 1.65 m$	AI (5)
(b)	$\frac{15(0.45-y)}{12} - \frac{12(0.75+y)}{12} = 0.4\ddot{y}$	M1A1
	1.2 1.6 $-20y = 0.4\ddot{y}$	DM1
	$\ddot{v} = -50 v$ \therefore SHM (about C)	A1 (4)
	$8\sqrt{2}$ ($\sqrt{2}$)	
(c)	Max speed = $\frac{1}{5 \times 0.4}$, (= 4 $\sqrt{2}$) = $a\omega$	MI,MI
	$a = \frac{4\sqrt{2}}{(-0.8 \text{ m})}$	A 1
	$a = \frac{1}{\sqrt{50}} (= 0.8 \text{ m})$	AI
	$0.4 = 0.8\sin\left(\sqrt{50t}\right)$	M1
	$t = \frac{1}{1} \sin^{-1}\left(\frac{1}{1}\right)$	A 1
	$r = \frac{1}{\sqrt{50}} \sin \left(\frac{1}{2}\right)$	AI
	4t = kS	
	$\frac{4}{\sqrt{50}} \times \frac{\pi}{6} = k \frac{2\pi}{\sqrt{50}}$	DM1
	. 1	
	$k = \frac{1}{3}$	A1 (7) [16]
	Notes	•
(a)M1	HL for either string	
M1	Equate tensions and solve for the extension in one string	
A1	Correct extension for either string	
A1	Obtain the 2 required (correct) lengths –decimal or exact	
(b)M1	Attempt an equation of motion with the difference of 2 tensions. \ddot{y} or <i>a</i> for	acceleration
A1	Correct equation. \ddot{y} or <i>a</i> for acceleration	
DM1	Simplified equation. Must have \ddot{y} now. Depends on the previous M mark	
A1	Correct result for y and conclusion	
(c)M1	Use impulse-momentum equation to obtain the max speed	
	Equale their max speed to $a\omega$ Correct result for a Need not be simplified	
M1	Use $x = a \sin \omega t$ or $x = a \cos \omega t$ with their a and ω	
A1	Correct time for their choice of equation	
DM1	Correct method to complete to a value for k . Method used will depend on the	eir choice of
	equation for time. Depends on all M marks in (c)	
A1	Correct k	

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom