

Mark Scheme (Results)

Summer 2019

Pearson Edexcel GCE In Mathematics (6665) Paper 1 Core Mathematics 3

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019 Publications Code 6665_01_1906_MS All the material in this publication is copyright © Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Questic	n Scł	neme	Marks
1	Way 1	Way 2	
	$\frac{4x-6}{x^2+0x-4)4x^3-6x^2-18x+20}$	$\frac{4x^2 - 14x + 10}{x + 2)4x^3 - 6x^2 - 18x + 20}$	
	$4x^3 + 0x^2 - 16x$	$\frac{4x^3+8x^2}{2}$	M1
	$-6x^2-2x+20$	$-14x^2 - 18x + 20$	A1
	$-6\underline{x^2+0x+24}$	$-14\underline{x^2-28x}$	
	-2x-4	10x + 20	
		10x+20	
		$\frac{4x-6}{x-2)4x^2-14x+20}$	
	$\frac{4x^3-6x^2-18x+20}{x^2-4}$	$4x^2 - 8x^2$	
	x^{-4}	-6x+20	M1
	$\equiv 4x - 6 + \frac{1}{(x+2)(x-2)}$	-6x+12	
		-2	
	$\equiv 4x-6-\frac{2}{(x-1)^2}$	$\frac{1}{2}$	A1
		2)	(4)
Way 3	$4x^{3}-6x^{2}-18x+20 \equiv (ax+b)(x^{2}-4x^{2})$	(+)+c(x+2) o.e.	1 st M1
	Either substitutes/ and or equates coe	efficients to find a value for a, b or c	2 nd M1
	One of $a = 4$	4, $b = -6$, $c = -2$	1 st A1
	All of $a = 4$	b, b = -6, c = -2	2 nd A1
			(4)
	N		(4 marks)
Way 1	IN	otes	
<u>M1</u>	ivides $4x^3 - 6x^2 - 18x + 20$ by $x^2 - 4$ to	get a linear quotient and a linear remaind	ler.
Г	b award this look for a minimum of the fo	llowing	
	$\frac{4x+A}{4x^{2}(+0x)-4\sqrt{4x^{3}-6x^{2}-18x+20}}$		
	$4x^3 + 0x^2 - 16x$		
	$\frac{(Cx) + D}{(Cx) + D}$		
A1 (uotient = $4x - 6$ and Remainder = $-2x - 6$	4	
M1 V	M1 Writes their expression in the appropriate form. Allow a slip with sign if the intention is clear.		
($\left(\frac{4x^3-6x^2-18x+20}{12}\right) \equiv$ Their Linear Quotient + Their linear remainder and factorises x^2-4		
($x^2 - 4$)	x^2-4	
i	to $x-2$ $x+2$. This may be in one line	'Their Linear Quotient + $\frac{1}{(x-2)(x)}$	$\frac{\text{mainder}}{+2}$,
Г	his may be seen as Their Linear Quotient	+ $\frac{\text{Their linear remainder}}{r^2}$ followed by wr	riting
	. Their linear remainder	x = 4	
S	parately $(x-2)(x+2)$		

Question	Scheme	Marks
A1 Al	values correct $a = 4$, $b = -6$ and $c = -2$ or writes $4x - 6 - \frac{2}{(x-2)}$	
<u>Way 2</u>		
M1 Di	vides $4x^3 - 6x^2 - 18x + 20$ by $(x+2)$ to get a quadratic quotient and a constant r	emainder.
То	award this look for a minimum of the following	
	$\frac{4x^2 + Ax + B}{x + 2)4x^3 - 6x^2 - 18x + 20}$	
	$4x^3 + 0x^2 - 16x$	
	\overline{D}	
A1 Qu	otient = $4x^2 - 14x + 10$ and Remainder = 0	
M1 Di	vides their $4x^2 - 14x + 10$ by $(x - 2)$ to get a linear quotient and a constant remainder the re	inder.
То	award this look for a minimum of the following	
x	$-2\overline{\smash{\big)}4x^2-14x+20}$	
	$\frac{4\boldsymbol{x}^2-8\boldsymbol{x}^2}{2}$	
	\overline{F}	
A1 Al	values correct $a = 4$, $b = -6$ and $c = -2$ or writes $4x - 6 - \frac{2}{(x-2)}$	
Way 3		
1st M1	Forms the correct identity by muliplying through by $x^2 - 4$	
2nd M1	Either equates coefficients and/or substitutes a value for x in an attempt to find either a , b or c	1 a value for
1st A1	At least one correct value $a = 4$, $b = -6$ or $c = -2$	
2nd A1	All values correct $a = 4$, $b = -6$ and $c = -2$ or writes $4x - 6 - \frac{2}{(x-2)}$	

Question	Scheme	Marks
2(i)(a)	$y = \frac{(2x-1)^3}{(3x-2)} \Rightarrow \frac{dy}{dx} = \frac{\alpha (3x-2)(2x-1)^2 - \beta (2x-1)^3}{(3x-2)^2} \text{ where } \alpha > 0 \text{ and } \beta > 0$ OR $y = (2x-1)^3 (3x-2)^{-1} \Rightarrow \frac{dy}{dx} = \alpha (2x-1)^2 (3x-2)^{-1} - \beta (3x-2)^{-2} (2x-1)^3$ where $\alpha > 0$ and $\beta > 0$	M1
	$y = \frac{(2x-1)^3}{(3x-2)} \Rightarrow \frac{dy}{dx} = \frac{(3x-2) \times 6(2x-1)^2 - (2x-1)^3 \times 3}{(3x-2)^2}$ OR $y = (2x-1)^3 (3x-2)^{-1} \Rightarrow \frac{dy}{dx} = 3 \times 2 \times (2x-1)^2 (3x-2)^{-1} - 3(3x-2)^{-2} (2x-1)^3$	A1
	$\frac{dy}{dx} = \frac{(2x-1)^2 (18x-12-6x+3)}{(3x-2)^2}$	M1
	$\frac{dy}{dx} = \frac{(2x-1)^2 (12x-9)}{(3x-2)^2} \text{ or } \frac{3(2x-1)^2 (4x-3)}{(3x-2)^2} \text{ or } (2x-1)^2 (12x-9) (3x-2)^{-2}$	A1
	0.0	(4)
(i)(b)	$\frac{dy}{dx} \ge 0 \Rightarrow$ either their $(12x-9) \ge 0 \Rightarrow x \ge \dots$ or $2x-1=0 \Rightarrow x=\dots$	M1
	$dx \qquad \qquad x = \frac{1}{2}, \ x \ge \frac{3}{4}$	
		(2)
(ii)	$\frac{\text{Way 1}}{y = \ln(1 + \cos 2x)} \Rightarrow \frac{\text{dy}}{\text{dx}} = \frac{\pm \lambda \sin 2x}{1 + \cos 2x}$	M1
	$\frac{dy}{dx} = \frac{-2\sin 2x}{1+\cos 2x}$	A1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-4\sin x \cos x}{2\cos^2 x}$	M1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -2\tan x$	A1
		(4)
	<u>Way 2 Careful with the order of the Method marks</u> $y = \ln(1 + \cos 2x) \Rightarrow y = \ln(2\cos^2 x)$	2nd M1
	$\frac{1}{dy} = \frac{1}{dx} \frac{1}{dx}$	1 st M1
	$\Rightarrow \frac{dx}{dx} = \frac{1}{2\cos^2 x}$	1 st A1
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -2 \tan x$	2 nd A1
		(4)
		(10 marks)

Question	Scheme	Marks		
	Notes			
(i)(a)				
M1 U	Uses either quotient rule or product rule to the achieve the correct form.			
A1 C	orrect unsimplified or simplified expression for $\frac{dy}{dx}$			
M1 Q ni P. th	Quotient Rule: Takes out a common factor of at least $(2x-1)^2$ from the numerator, allow numerical slips but not algebraic slips, as long as the intention is clear. Product Rule: Combines as a single fraction with a correct numerator allow numerical slips in the denominator AND takes out a common factor of at least $(2x-1)^2$ from the numerator, allow numerical slips as long as the intention is clear.			
A1	$\frac{dy}{dx} = \frac{(dx-3)^2 (2dx-2)^2}{(3x-2)^2} \text{ o.e. such as } \frac{dy}{dx} = (2x-1)^2 (12x-9)(3x-2)^2$			
(i)(b)				
M1 S	ets their $\frac{dy}{dx} \ge 0$ or $\frac{dy}{dx} = 0$ or $\frac{dy}{dx} > 0$ and proceeds correctly to find a critical value	for their		
d d	$\frac{y}{x} = 0$ provided that their numerator is at least a quadratic. Condone setting equal t	to 0 and		
Са	ancelling a common factor first as long as a value for x is achieved.			
A1 :	$x = \frac{1}{2}, x \ge \frac{3}{4}$			
(ii) Way 1				
M1 Dif	Efferentiates to a form $\frac{dy}{dx} = \frac{\pm \lambda \sin 2x}{1 + \cos 2x}$			
A1 A c	correct derivative $\frac{dy}{dx} = \frac{-2\sin 2x}{1+\cos 2x}$			
M1 Us $\cos 2x =$	es the correct double angle identities $\sin 2x = 2\sin x \cos x$ and = $2\cos^2 x - 1$			
If ı	uses $\cos 2x = \cos^2 x - \sin^2 x$ do not award this mark until either $1 - \sin^2 x$ becomes	$\cos^2 x$ or		
1+	$\cos^2 x - \sin^2 x$ becomes $2\cos^2 x$ in the denominator			
A1 Ac	hieves $\frac{dy}{dx} = -2 \tan x$ with no incorrect work seen			
Way 2 Careful with the order of the Method marks				
2 nd M1 Re	places $1 + \cos 2x$ with $2\cos^2 x$			
1 st M1 Differentiates $y = \ln(f(x)) \Rightarrow \frac{dy}{dx} = \frac{f'(x)}{f(x)}$ with their $f(x)$				
1 st A1 Cor	1 st A1 Correct derivative $\frac{dy}{dx} = \frac{-4\sin x \cos x}{2\cos^2 x}$			
2 nd A1 Ac	2^{nd} A1 Achieves $\frac{dy}{dx} = -2 \tan x$ with no errors or omissions			

Questio	Scheme	Marks	
3. (a)	$R = \sqrt{65}$	B1	
	$\tan \alpha = \frac{8}{1} \Longrightarrow \alpha = \text{awrt } 82.87^{\circ}$	M1A1	
		(3)	
(b)	$13 + \frac{R'}{10} = 13.81(^{\circ}C)$	M1 A1	
	10	(2)	
(c)	$\cos(15t+82.87)^\circ = -\frac{5}{\sqrt{57}}$	M1	
	$\sqrt{65}$ 15t+82.87=128.33 \Rightarrow t = 3.03	A1	
	$15t + 82.87 = (360 - 128.33) \Rightarrow t =(9.92)$	dM1	
	Both times correct 03:02 and 09:55	(4)	
		(9 marks)	
(2)	Notes		
B1 S	ight of $R = \sqrt{65}$. Condone $R = \pm \sqrt{65}$		
(Do not allow decimals for this mark e.g. 8.06 but remember to isw after $\sqrt{65}$)		
M1 I	or sight of $\tan \alpha = \pm \frac{8}{1} \Longrightarrow \alpha = \dots$ or $\tan \alpha = \pm \frac{1}{2} \Longrightarrow \alpha = \dots$		
(Condone either $\sin \alpha = 8$, $\cos \alpha = 1 \Rightarrow \tan \alpha = 8 \Rightarrow \alpha =$ or using θ instead of α	χ	
I	<i>E R</i> is found first accept only $\sin \alpha = \pm \frac{8}{R}$, $\cos \alpha = \pm \frac{1}{R} \Longrightarrow \alpha =$		
A1 (b)	$\alpha = $ awrt 82.87° Answer in radians (1.45) are A0		
M1 I	or their $13 + \frac{R'}{10}$		
A1 a	wrt 13.81(°C)		
(c)			
M1 9	ets $13 \pm \frac{R}{cos}(15t \pm \alpha) = 12.5$ with their values for R and α and rearranges t	o achieve	
	Sets $13 + \frac{10}{10} \cos(15t + \alpha) = 12.5$ with their values for K and α and rearranges to achieve		
	$\cos(15t + \alpha) = k$ where $-1 < k < 1$. Condone starting from $13 + R \cos(15t + \alpha)$)=12.5	
l	Allow for $13 + \frac{\pi}{10} \cos(\theta + \alpha') = 12.5$ leading to $\cos(\theta + \alpha') = k$		
A1 H dM1 H	For one correct value of <i>t</i> . Accept either awrt $t = 3.03$ or $t = 9.92$ Dependent on the first method mark. For the correct method to find a second value for <i>t</i> . Look for $15t + "82.87" = (360 - "128.33") \rightarrow t =$		
A1 I	oth times correct 03:02 and 09:55		
<u>Note 1:</u> Starting with $13 + R'\cos(15t + \alpha') = 12.5$ can score a maximum of M1 A0 dM1 A0. It should			
lead to $t = 0.712$ and $t = 12.238$			
$\frac{\text{Note 2:}}{t = 0.21}$	<u>Note 2:</u> Alpha in radians can score a maximum of M1 A0 dM1 A0. It should lead to $t = 0.012$ and $t = 0.213$		

Question	Scheme	Marks	
4(a)	$ff(x) = \frac{2\left(\frac{2x+5}{x-2}\right) + 5}{\left(\frac{2x+5}{x-2}\right) - 2}$	M1	
	$ff(x) = \frac{2(2x+5)+5(x-2)}{(2x+5)-2(x-2)} = x$	dM1, A1	
		(3)	
(b)	Sets $fg(a) = g(a) \Rightarrow \frac{2 \ln a + 5}{\ln a - 2} = \ln a$	M1	
	$\Rightarrow (\ln a)^2 - 4\ln a - 5 = 0$	A1	
	$\Rightarrow (\ln a - 5)(\ln a + 1) = 0 \Rightarrow \ln a = 5, -1$	dM1	
	$\Rightarrow a = e^5, e^{x^4}$	A1	
		(4) (7 marks)	
	Notes		
(a) (a) M1 Attempts $ff(x) = \frac{2\left(\frac{2x+5}{x-2}\right)+5}{\left(\frac{2x+5}{x-2}\right)-2}$ condoning sign and numerical slips Alternatively writes $f(x) = 2 + \frac{9}{x-2}$ and hence $ff(x) = 2 + \frac{9}{2 + \frac{9}{x-2}} - 2$			
dM1 C	orrect processing to obtain a single fraction of the form $\frac{p}{q}$. Achieved by either,		
•	multiplying all terms in both the numerator and the denominator by $(x-2)$		
•	• attempting to write both the numerator and denominator as a single fraction followed by the		
	multiplication of the numerator by an inverted denominator to obtain a single fraction of the form $\frac{p}{q}$		
•	• attempting to write both the numerator and denominator as a single fraction followed by the <i>n</i>		
	cancelling of the same denominators to obtain a single fraction of the form $\frac{r}{q}$		
A1 1	A1 $\operatorname{tf}(x) = x$		

Question	Scheme	Marks
(b) Cond	one the use of x instead of a for the first 3 marks	
M1 S	ets $fg(a) = g(a) \Longrightarrow \frac{2 \ln a + 5}{\ln a - 2} = \ln a$	
A1 C	orrect simplified quadratic equation in lna. Note $\ln^2 a - 4\ln a - 5 = 0$ is fine	
C	ondone poor notation $\ln a^2 - 4\ln a - 5 = 0$ if an attempt to solve as a quadratic equ	ation for lna
dM1 C	orrect attempt to find a value for lna by solving 3TQ in lna	
A1 <i>c</i>	= e^5 only, the solution $a = e^{-1}$ must be rejected. A0 for $x = e^5$	

L

Question	Scheme	Marks		
5(a)	$\begin{pmatrix} y \\ 0 \\ q \end{pmatrix}$ V shape on the +ve x axis	B1		
	$(0,a) \text{ and } \left(\frac{a}{3}, 0\right)$ $(0,a) \text{ and } \left(\frac{a}{3}, 0\right)$	B1		
(b) Way 1	Substitutes $x = 4$ into $ 3x - a = \frac{1}{2}x + 2 \Rightarrow 3 \times 4 - a = \frac{1}{2} \times 2 + 2$ Solves $12 - a = \pm 4 \Rightarrow a = 8, 16$	M1 dM1 A1	(2)	
	Substitutes u - 1 equeres both sides or 1 former 200 in a		(3)	
Way 2	Substitutes $x = 4$, squares both sides and forms a 51Q in a $(3x-a)^2 = \left(\frac{1}{2}x+2\right)^2 \Rightarrow 4a^2 - 96a + 512 = 0$	M1		
	Solves 3TQ to find values for a	dM1		
	<i>a</i> = 8, 16	A1	(3)	
	Sets $\pm (3x-a) = \frac{1}{2}x + 2$ and substitutes $x = 4$	M1		
	Rearranges an equation to find a value for a	dM1		
	a = 8,16	A1	(3)	
(c)	Chooses larger value of 'a' solves $3x - a = \frac{1}{2}x + 2 \Longrightarrow x =$	M1		
	$x = \frac{36}{5}$ or 7.2	A1		
	Notos	(7 marks)		
(a)				
B1 For a V shape on the positive x - axis in quadrants one and two. It must clearly pass through the y - axis B1 Points $(0, a)$ and $\left(\frac{a}{3}, 0\right)$ both lie on the graph. Allow a on the y - axis and $\frac{a}{3}$ on the x - axis				

Questio	on Scheme	Marks		
(b)				
<u>Way 1</u>				
M1	Scored for setting $ 3x-a = \frac{1}{2}x+2$ and substituting in $x=4$			
	Implied by $ 12-a = 4$, or $12-a = 4$ or $12-a = -4$			
dM1	An acceptable method of finding one value of <i>a</i>			
A1	Both $a = 8, 16$			
Way 2				
M1	Substitutes $x = 4$ and squared both sides in either order to form a 3TQ in <i>a</i>			
dM1	Solve their 3TQ to find a value for <i>a</i>			
A1	Both $a = 8, 16$			
Way 3	(See if Way 1 is more relevant)			
M1	Sets $3x - a = \frac{1}{2}x + 2$ and either $-3x + a = \frac{1}{2}x + 2$ or $3x - a = -\frac{1}{2}x - 2$ and substitue	tutes in $x = 4$		
dM1 <u>Note:</u> I	Rearranges an equation to find a value for a f they rearrange to find $a = \dots$ then substitutes in $x = 4$ both M's awarded at this p	point.		
A1	Both $a = 8, 16$			
(c)	1			
M1	Chooses the larger value of 'their <i>a</i> ' and solves $3x - a = \frac{1}{2}x + 2 \Longrightarrow x =$			
A1	$x = \frac{36}{5}$ or 7.2			
<u>Note:</u>] followi	Note: If they use both values of their <i>a</i> then M1 and/or A1 is awarded when the largest value of <i>x</i> following their values of <i>a</i> is selected.			

Questic	n Scheme	Marks
6.(a)	$f'(x) = \frac{d(x^2 - x - 12)}{dx} \times \ln(x + 3) + \frac{d(\ln(x + 3))}{dx} \times (x^2 - x - 12)$	M1
	$f'(x) = \ln(x+3)(2x-1) + (x^2 - x - 12) \times \frac{1}{x+3}$	A 1
	or $f'(x) = \ln(x+3)(2x-1) + x - 4$	
		(2)
(b)	$\ln(x+3)(2x-1) + (x-4)(x+3) \times \frac{1}{x+3} = 0$	M1
	$\Rightarrow \ln(x+3)(2x-1)+(x-4)=0$	
	$\Rightarrow 2x\ln(x+3) + x = 4 + \ln(x+3)$	dM1
	$\Rightarrow x \left(2\ln(x+3)+1\right) = 4 + \ln(x+3) \Rightarrow x = \frac{\ln(x+3)+4}{2\ln(x+3)+1} *$	A1 *
		(3)
(c)	Substitutes $x_0 = 1$ in $x = \frac{4 + \ln(x+3)}{2\ln(x+3) + 1} \Rightarrow x_1 = \frac{4 + \ln(4)}{2\ln(4) + 1} = $ awrt 1.428	M1, A1
	$x_2 = $ awrt 1.38(0), $x_3 = $ awrt 1.385	A1
		(3)
(d)	$k = \pm 2 \times f(0) \Longrightarrow k = 24 \ln 3$	M1 A1
		(2)
	N	(10 marks)
(a)	Notes	
M1	Applies correctly the product rule to $f(x) = (x^2 - x - 12)\ln(x+3)$. If they state	
	$u = \Rightarrow u' = and v = \Rightarrow v' = follow through on their u' = v' = as long and u and v are correct.$	
A1	$f'(x) = \ln(x+3)(2x-1) + (x^2 - x - 12) \times \frac{1}{x+3}$ correct un-simplified or simplified.	
	Award as soon as a correct version is seen, isw Must have correct notation e. g. $\ln x + 3$ is A0	
(b)		
M1	Sets $f'(x) = 0$ and attempts to factorise $(x^2 - x - 12)$ which may have already been done in part	
dM1	(a) Rearranges to an equation of the form $\pmx \ln(x+3) \pmx = \pm \pm \ln(x+3)$	
	racionises and drivides to form the given equation with no errors of offissions of po	or notation

Question	Scheme	Marks
(c)		
M1 Su	lbstitutes $x_0 = 1$ in $x = \frac{4 + \ln(x+3)}{2\ln(x+3) + 1}$. Implied by $x_1 = \frac{4 + \ln(4)}{2\ln(4) + 1}$ or awrt 1.4	
A1 av	vrt 1.428	
A1 x	$x_2 = $ awrt 1.38(0), $x_3 = $ awrt 1.385	
(d) M1 k A1 k	$=\pm 2 \times f(0)$ This mark can be implied by seeing $k = a \text{ wrt } 26.4$ with no working se $= 24 \ln 3$	en

Question	Scheme	Marks
7(a) Way 1	$2\cos(A-30^\circ)\sec A \equiv 2(\cos A\cos 30^\circ + \sin A\sin 30^\circ) \times \sec A$	M1
, ag i	$\frac{2(\cos A \cos 30^\circ + \sin A \sin 30^\circ)}{3} \Rightarrow \dots \Rightarrow \tan x + k$	dM1
	$\cos A$	
	$\equiv \tan A + \sqrt{3} \ \mathbf{cso}$	Al*
Way 2	$2\cos(A-30^\circ)\sec A \equiv \tan A + k \Longrightarrow 2\cos(A-30^\circ) \equiv \sin A + k\cos A$ $\implies 2(\cos A\cos 30^\circ + \sin A\sin 30^\circ) = \sin A + k\cos A$	M1
	$\Rightarrow 2(\cos A\cos 50^{\circ} + \sin A\sin 50^{\circ}) = \sin A + k\cos A$ $\Rightarrow \sqrt{3}\cos A + \sin A = \sin A + k\cos A$	dM1
	Hence true and $k = \sqrt{3}$	A1
		(3)
(b)	$2\cos(x-30^\circ) = \sec x$ and $2\cos(x-30^\circ) \sec x \equiv \tan A + \sqrt{3}$	
Way 1	For example	
	1) $2\cos(x-30^\circ) \sec x = \sec^2 x \Longrightarrow \tan x + \sqrt[4]{3'} = \sec^2 x$	
	$\tan x + \sqrt{3}$	
	2) $\frac{1}{\sec x} = \sec x \Rightarrow \tan x + \sqrt{3} = \sec x$	
	OR $2\cos(x-30^\circ) \equiv (\tan A + \sqrt{3})\cos x \Longrightarrow \sec x = (\tan A + \sqrt{3})\cos x$	M1
	3) $2\cos(x^2 + \cos y) = (4\pi i + \sqrt{2}) \cos x = 5\cos x^2 + (4\pi i + \sqrt{2}) \cos x^2$ $\Rightarrow \tan x + \sqrt{3} = \sec^2 x$	
	OR	
	4) $2\cos(x-30^\circ) = \sec x \Longrightarrow 2(\cos x \cos 30^\circ + \sin x \sin 30^\circ) = \sec x$	
	$\Rightarrow 2\cos^2 x \cos 30^\circ + 2\sin x \cos x \sin 30^\circ = 1$ $\Rightarrow \cos^2 x \sqrt{5} + \sin x \cos x - 1 \Rightarrow \sqrt{5} + \tan x - \sin^2 x$	
	$\Rightarrow \cos x\sqrt{3} + \sin x \cos x = 1 \Rightarrow \sqrt{3} + \tan x = \sec x$	M1A1
	$\Rightarrow \tan x - \tan x + 1 - \sqrt{3} = 0$	MIAI
	$\tan x = \frac{1 \pm \sqrt{1 - 4(1 - \sqrt{3})}}{2} = \text{awrt } 1.49, -0.49 \Longrightarrow x = \dots$	M 1
	$x = $ awrt 56.2°, -26.2°	A1
		(5)
		(8 marks)
Alt (b)	$2\cos(x-30^\circ) = \sec x \Longrightarrow 2(\cos x \cos 30^\circ + \sin x \sin 30^\circ) = \sec x$	
	$\Rightarrow 2\cos^2 x \cos 30^\circ + 2\sin x \cos x \sin 30^\circ = 1$	
	$\Rightarrow \sqrt{3} (\cos 2A + 1) + 1 \sin 2A = 2$	M 1
	$\Rightarrow 2\cos(2A - 30^\circ) = 2 - \sqrt{3}$	M1A1
	$x = $ awrt 56.2°, -26.2°	M1, A1
		(5)

Question		Scheme	Marks
		Notes	
(a)			
M1	Uses $\cos(A-30^\circ) \equiv \cos A \cos 30^\circ \pm \sin A \sin 30^\circ$ (Condone a slip with a missing 2)		
dM1	Uses $\sec A = \frac{1}{\cos A}$ (maybe	e implied) and divides with an inter-	mediate line to reach $\tan A + k$
A1	Achieves $\tan A + \sqrt{3}$ with no errors or poor notation cso		
(b) M1 M1 side. A1 M1 A1	Uses part (a) and the equation Uses $\sec^2 x = \pm 1 \pm \tan^2 x$ to $\tan^2 x - \tan x + 1 - \sqrt{3} = 0$ of Solves quadratic and proces $x = \operatorname{awrt} 56.2^\circ, -26.2^\circ$	ation correctly to reach the form tan b form a quadratic in $\tan x$, does no r equivalent including $\tan^2 x - \tan x$ eds to one value for x.	$x + \sqrt[3]{3} = \sec^2 x$ it need to be collected onto one $x - \operatorname{awrt} 0.73 = 0$

Question	Scheme	Marks	
8 (a)	Substitute $N_A = 7200$ in $N_A = 3000 + 600e^{0.12t}$	B1	
	$\Rightarrow e^{0.12t} = 7$	M1 A1	
	$\Rightarrow t = \frac{\ln 7}{0.12} = 16.22 \text{ years}$	M1, A1	
(b)	Differentiates to achieve $\frac{dN_A}{dt} = \beta e^{0.12t} \left[\frac{dN_A}{dt} = 600 \times 0.12 e^{0.12t} \right]$ Substitutes $e^{0.12t} = \frac{N_A - 3000}{600}$ into $\frac{dN_A}{dt} = \beta e^{0.12t}$	(5) M1	
	OR Substitutes $600e^{0.12t} = N_A - 3000$ into $\frac{dN_A}{dt} = \alpha \times 600e^{0.12t}$	dM1	
	$\Rightarrow \frac{\mathrm{d}N_A}{\mathrm{d}t} = 0.12 \left(N_A - 3000 \right) = 0.12 N_A - 360 \text{ or } \frac{3}{25} N_A - 360$	A1	
		(3)	
(c)(i)	$200 = Ce^{\kappa}$ and $500 = Ce^{2\kappa}$	M1	
	$e^k = \frac{500}{200} \Longrightarrow k = \dots$ or $e^{-k} = \frac{200}{500} \Longrightarrow k = \dots$	dM1	
	$k = \ln\left(\frac{5}{2}\right) * \csc \theta$	A1*	
(ii)	80	B1	
		(4)	
		(12 marks)	
	Notes		
(a) B1 $7200 = 3000 + 600e^{0.12t}$			
operations and algebra to achieve an equation $a^{0.12t} - \lambda$ where $\lambda > 0$			
A1 Achieves $e^{0.12t} = 7$ from correct work			
dM1 Moving from $e^{0.12t} = \lambda$ using lns to $t = \frac{\ln \lambda}{0.12}$ where $\lambda > 0$			
A1 cso 16.22 years			
<u>Note:</u> If they work with $2N_A$ do not award any marks until a value for N_A is substituted. If they achieve the correct answer then all marks can be awarded. If they do not achieve the correct answer B0 M1 A0 dM1 A0.			

Special Case: A student who starts with $N_A = 6000$ and achieves t = 13.41 years can score a maximum B0, M1, A1 $e^{0.12t} = 5$, M1, A0 for 3 out of 5

Question	Scheme	Marks
(b)		
M1 I	Differentiates to achieves the correct form $\frac{dN_A}{dt} = \beta e^{0.12t}$	
dM1 F	Rearranges the equation $N_A = 3000 + 600e^{0.12t}$ to $e^{0.12t} =$ and substitutes into	
$\frac{\mathrm{d}N_A}{\mathrm{d}t} =$	$3e^{0.12t}$	
	or rearranges to $600e^{0.12t} = \dots$ and substitutes into $\frac{dN_A}{dt} = \alpha \times 600e^{0.12t}$	
Alternat	ively writes $\frac{3}{25} (3000 + 600e^{0.12t})$ and substitutes $\frac{dN_A}{dt} = \beta e^{0.12t}$ to achieve	
$\frac{\mathrm{d}N_A}{\mathrm{d}t} = \frac{1}{2}$	$\frac{3}{25} \left(3000 + 600 \mathrm{e}^{0.12t} \right) - \lambda$	
A1 -	$\frac{dN_A}{dt} = 0.12N_A - 360 \text{ or } \frac{3}{25}N_A - 360 \text{ o.e.}$	
(c)(i)		
M1 S	tates $200 = Ce^{k}$ and $500 = Ce^{2k}$	
dM1 U	Uses a correct method to eliminate C from their equations to achieved either	
$e^{k} = "\frac{50}{20}$	$\frac{10}{00}$ " $\Rightarrow k = \dots$ or $e^{-k} = \frac{200}{500} \Rightarrow k = \dots$	
A1* A	Achieves $k = \ln\left(\frac{5}{2}\right)$ with no errors or omissions or poor notation. cso	
(c)(ii) B1 8	30	

Question	Scheme	Marks
9(a) Way 1	$x = \frac{1}{1 + \cot y} \Longrightarrow \frac{\mathrm{d}x}{\mathrm{d}y} = \frac{-1}{\left(1 + \cot y\right)^2} \times \dots \text{ OR } \frac{\dots}{\left(1 + \cot y\right)^2} \text{ OR } \dots (1 + \cot y)^{-2}$	M1
	$x = \frac{1}{1 + \cot y} \Longrightarrow \frac{dx}{dy} = \frac{-1}{(1 + \cot y)^2} \times -\csc^2 y \text{ OR } \frac{dx}{dy} = \frac{-1 \times -\csc^2 y}{(1 + \cot y)^2}$	A1
	$\cot y = \frac{1}{x} - 1 \text{ or } \cot y = \frac{1 - x}{x}$	B1
	Uses $\csc^2 y = 1 + \cot^2 y$ and $\cot y = \frac{1}{x} - 1$ to eliminate y and achieve $\frac{dx}{dy} = f(x)$	M1
	$\frac{\mathrm{d}x}{\mathrm{d}y} = 2x^2 - 2x + 1 \ *$	A1*
Way 2	$r = \frac{1}{1} \Longrightarrow \cot y = \frac{1}{1} = 1$ or $\cot y = \frac{1}{1} = x$	(3)
way 2	$x = \frac{1}{1 + \cot y} \xrightarrow{\longrightarrow} \cot y = \frac{1}{x} \xrightarrow{\longrightarrow} 1$ of $\cot y = \frac{1}{x}$	DI
	Differentiates $\Rightarrow \dots \times \frac{dy}{dx} = -\frac{1}{x^2}$	M1
	$-\csc^2 y \times \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{x^2}$	A1
	Uses $\csc^2 y = 1 + \cot^2 y$ and $\cot y = \frac{1}{x} - 1$ to eliminate y and achieve	
	$\frac{\mathrm{d}x}{\mathrm{d}y} = \mathbf{f}\left(x\right)$	MI
	$\frac{\mathrm{d}x}{\mathrm{d}y} = 2x^2 - 2x + 1*$	A1*
		(5)
Way 3	$x = \frac{1}{1 + \cot y} \Longrightarrow \cot y = \frac{1}{x} - 1 \Longrightarrow \tan y = \frac{x}{1 - x}$	B1
	Differentiates $\Rightarrow \dots \times \frac{dy}{dx} = \frac{1}{(1-x)^2}$	M1
	$\sec^2 y \times \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\left(1 - x\right)^2}$	A1
	Uses $\sec^2 y = 1 + \tan^2 y$ to eliminate y and achieve $\frac{dx}{dy} = f(x)$	M1
	$\frac{\mathrm{d}x}{\mathrm{d}y} = 2x^2 - 2x + 1*$	A1*
		(5)
(b)	$x = \frac{1}{1+3} = \frac{1}{4}$	B1
		(1)

Question	Scheme	Marks
(c)	Subs their $x = \frac{1}{4}$ into their $\Rightarrow \frac{dx}{dy} = 2x^2 - 2x + 1$ and INVERTS	M1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 1.6 \text{ or } \frac{8}{5}$	A1
		(2)
		(8 marks)
(a) <u>Way 1</u>		
M1 Attempts to differentiate using the chain rule to reach a form on the rhs $\frac{1}{(1+\cot y)^2} \times$ or		
quotient rule to reach the form ${(1 + \cot y)^2}$ or $(1 + \cot y)^{-2}$		
A1 Co	A1 Correct differentiation $\frac{dx}{dy} = \frac{-1}{(1 + \cot y)^2} \times -\csc^2 y$ or $\frac{dx}{dy} = \frac{-1 \times -\csc^2 y}{(1 + \cot y)^2}$	

B1 States
$$\cot y = \frac{1}{x} - 1$$
 or $\cot y = \frac{1-x}{x}$

M1 Attempts to use $\csc^2 y = \pm 1 \pm \cot^2 y$ with $\cot y = \frac{1}{x} \pm 1$ to eliminate y and find an expression for

$$\frac{\mathrm{d}x}{\mathrm{d}y} \text{ in terms of } x \text{ only e.g. } \frac{\mathrm{d}x}{\mathrm{d}y} = \frac{1 + \left(\frac{1}{x} - 1\right)^2}{\left(\frac{1}{x}\right)^2}$$

<u>Note:</u> $\cot^2 y = \left(\frac{1}{x} - 1\right)^2$ $\csc^2 y = 1 + \left(\frac{1}{x} - 1\right)^2$ $1 + \cot y = \frac{1}{x}$

A1* Achieves the printed answer $\frac{dx}{dy} = 2x^2 - 2x + 1$ with no errors or omissions

Way 2

B1 States $\cot y = \frac{1}{x} - 1$ or $\cot y = \frac{1 - x}{x}$ M1 Using implicit differentiation to reach $\Rightarrow \dots \times \frac{dy}{dx} = -\frac{1}{x^2}$ A1 Correct differentiation $-\csc^2 y \times \frac{dy}{dx} = -\frac{1}{x^2}$ M1 Attempts to use $\csc^2 y = \pm 1 \pm \cot^2 y$ with $\cot y = \frac{1}{x} \pm 1$ to eliminate y and find an expression for $\frac{dx}{dy}$ in terms of x only e.g. $\frac{dx}{dy} = -\left(1 + \left(\frac{1}{x} - 1\right)^2\right) \times -x^2$ A1* Achieves the printed answer $\frac{dx}{dy} = 2x^2 - 2x + 1$ with no errors or omissions

Question	Scheme	Marks
<u>Way 3</u>		
B1 ta	$n y = \frac{x}{1 - x}$	
M1 Us	sing implicit differentiation to reach $\Rightarrow \dots \times \frac{dy}{dx} = \frac{1}{(1-x)^2}$	
A1 Co	prrect differentiation $\sec^2 y \times \frac{dy}{dx} = \frac{1}{(1-x)^2}$	
M1 Atter	npts to use $\sec^2 y = \pm 1 \pm \tan^2 y$ with $\tan y = \frac{x}{1 \pm x}$ to eliminate y and find an expre	ssion for
$\frac{\mathrm{d}x}{\mathrm{d}y}$ in terr	ns of x only $\frac{dx}{dy} = \left(1 + \left(\frac{x}{x-1}\right)^2\right) \times \left(1-x\right)^2$	
A1* Acł	lieves the printed answer $\frac{dx}{dy} = 2x^2 - 2x + 1$ with no errors or omissions	
(b)		
B1 St	ates $x = \frac{1}{4}$ o.e.	
(c)	-	
M1 Su	bs their $x = \frac{1}{4}$ into $\Rightarrow \frac{dx}{dy} = 2x^2 - 2x + 1$ and INVERTS	
<u>Note:</u> If t	hey do not show you the substitution you will need to check their value of x .	
A1 $\frac{d}{dt}$	$\frac{2}{6} = \frac{8}{5}$ or 1.6 cso	
<u>Note:</u> If p	art (b) $x = \frac{3}{4}$ this still leads to $\frac{dy}{dx} = \frac{8}{5}$ this scores M1 A0	

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom