

Mark Scheme (Final)

Summer 2019

Pearson Edexcel GCE In Statistics 2 Paper 6684/01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019 Publications Code 6684_01_1906_MS All the material in this publication is copyright © Pearson Education Ltd 2019

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for `knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
 - 7. Ignore wrong working or incorrect statements following a correct answer.

Statistics S2 (6684) June 2019 Final

Question Number	Scheme	Marks	
1 (a)	Customers arrive at the bank independently/randomly Customers arrive one at a time (accept "singly") The rate of arrival at the bank is constant ("fixed rate" is B0)	B1 B1 (2)	
(b)	Po(2)	B1	
	(i) $P(X = 2) = \frac{e^{-2}2^2}{2}$	M1	
	= 0.2707 awrt <u>0.271</u>	A1	
	(ii) $P(X > 4) = 1 - P(X \le 4)$	M1	
	= 0.0527 awrt <u>0.0527</u>	A1 (5)	
(c)	$H_0: \mu = 8 \text{ (or } \lambda = 10)$ $H_1: \mu > 8 \text{ (or } \lambda > 10)$	(5 B1	
	$X \sim Po(8)$ and $P(X \ge 9) = 1 - P(X \le 8)$ or $P(X \le 13) = 0.9658$		
	$P(X \le 12) = 0.9362$	M1	
	$= 0.40745 \qquad CR: X \ge 14$	A1	
	so not significant/ do not reject H_0 / accept H_0 / Not in CR	dM1	
	he does not have evidence to open up another service till	Alcso	
:		(5	
(d)	Writing or using of Po(2) $P(W, T) = 0.004722$	B1	
	$P(X \le 6) = 0.9955$ so $P(X \ge 7) = 0.004533$	M1	
	so needs <u>7</u> Customers	A1 (2	
		(3 Total 1	
	Notes		
(a)	B1: any assumption in context ("customers arrive/come" [allow "people"] <u>or</u> "bank" B1: 2 assumptions with context in at least 1	mentioned	
(b)	B1 : Stating or using Po(2) may be implied by either correct answer		
	1 st M1: $\frac{e^{-\lambda}\lambda^2}{2}$ or $P(X \le 2) - P(X \le 1)$		
	1 st A1: awrt 0.271 (correct answer implies M1)		
	2nd M1: writing or using $1 - P(X \le 4)$ oe		
	2 nd A1: awrt 0.0527 (correct answer implies M1)		
(c)	B1: both hypotheses in terms of λ or μ (accept $\lambda = 8$ etc)		
	1 st M1: Stating or using Po(8) and $1 - P(X \le 8)$ or $P(X \le 13) = 0.9658$ or $P(X \le 12) = 0.9362$		
	1 st A1: awrt 0.407 or $X \ge 14$ (correct answer implies the M1)		
	2 nd dM1: dependent on the previous method mark being awarded. Correct (non contextual)		
	comment. May be implied by a correct contextual comment. 2 nd A 1cso: correct contextual comment with word till (den on all other marks scored)		
	 2nd A1cso: correct contextual comment with word till (dep on all other marks scored) B1: Writing or using Po(2)[may be implied by the correct answer or a correct probability see M1] 		
	B1. Writing or using $P_0(2)$ [may be implied by the correct answer or a correct probability	V SEE MIT	
	B1: Writing or using Po(2)[may be implied by the correct answer or a correct probabilit M1: either $P(X \le 6) = awrt \ 0.995/0.996$ or $P(X \ge 7) = awrt \ 0.0045$ or $P(X \le 7) = 0$	-	
(d)	B1: Writing or using Po(2)[may be implied by the correct answer or a correct probabilit M1: either $P(X \le 6) = awrt \ 0.995 / \ 0.996 \ or \ P(X \ge 7) = awrt \ 0.0045 \ or \ P(X \le 7) = 0.$ Correct probability seen with appropriate label	-	

Qu No	Scheme	Marks	
2 (a)	$\int_{(1)}^{(4)} \frac{1}{18} \left(x^4 - 2x^3 + x^2 \right) dx + \int_{(4)}^{(6)} \left(\frac{3}{2} x^2 - \frac{x^3}{4} \right) dx = \frac{1}{18} \left[\frac{x^5}{5} - \frac{x^4}{2} + \frac{x^3}{3} \right]_{(1)}^{(4)} + \left[\frac{x^3}{2} - \frac{x^4}{16} \right]_{(4)}^{(6)}$	M1A1	
	$=\frac{1}{18}\left[\frac{1472}{15} - \frac{1}{30}\right] + \left[27 - 16\right] \underline{\text{or}} \frac{109}{20} + 11 ; \qquad = \frac{329}{20} *$	dM1 ; A1cso	
		(4)	
(b)(i)	$\operatorname{Var}(x) = \frac{329}{20} - \left(\frac{95}{24}\right)^2 \text{ allow } \frac{2251}{2880} ; \qquad \sigma = \operatorname{awrt} \underline{0.884}$	M1; A1 (2)	
(ii)	Mode = $4 > \text{mean } \underline{\text{or}} \text{ diagram}$ 1 2 4 6	M1	
	Negative skew <u>or</u> Mode = $4 \approx$ mean [or mode = $4 =$ median] therefore no skew	A1 (2)	
(c)			
	$ [F(x)] = \begin{cases} 0 & x < 1 \\ \frac{1}{54}(x^3 - 3x^2 + 3x - 1) & \text{or } \frac{1}{54}(x - 1)^3 & 1 \le x < 4 \\ \frac{3}{2}x - \frac{x^2}{8} - \frac{7}{2} & 4 \le x \le 6 \end{cases} $ Allow < or < there exists a state of the exists of the	M1A1	
	$\frac{-x}{2} - \frac{-x}{8} - \frac{-x}{2}$ $4 \le x \le 6$	M1A1	
	1 Otherwise	B1 (5)	
(d)	$F(5) - F(2) = \frac{7}{8} - \frac{1}{54}$; = $\frac{185}{216}$ or awrt <u>0.856</u>	M1; A1 (2)	
		Total 15	
	Notes		
(a)	M1: Use of $\int x^2 f(x)$ in at least one part, multiplied out (unless integration by parts), integ'	attempted,	
	both parts added (somewhere) ignore limits		
	A1: Correct Integration for both parts (ignore limits)		
	dM1: (dep on 1^{st} M1) Substituting correct limits for each part – must see some evidence A1 *age: Fully correct solution with no errors and all provious marks awarded(329 seen or all	10w16.45)	
(b)(i)	 A1*cso: Fully correct solution with no errors and all previous marks awarded(³²⁹/₂₀ seen or al M1: Using the correct formula for Variance or standard deviation 	10w10.43)	
	A1: awrt 0.884		
(ii)	M1: for the correct mode being stated and $4 > \text{mean}$ (or median = 4 and $4 > \text{mean}$)		
	<u>or</u> sketch (concave LHS, straight line RHS) and at least 1, 4 a	nd 6 seen	
(c)	A1: negative skew (allow arguments for no skew (see above))		
	1 st M1: $\left[\frac{1}{18}\left(\frac{t^3}{3}-t^2+t\right)\right]_1^x$ Attempt to integrate 1 st line and using limits <i>x</i> and 1 or + <i>C</i> and F(1) = 0		
	1 st A1: for $\frac{1}{54}(x^3 - 3x^2 + 3x - 1)$ oe attached to $1 \le x < 4$ (must use the same variable in range)		
	2nd M1: $\left[\frac{3}{2}t - \frac{t^2}{8}\right]_4^x$ Attempt to integ' the 2 nd line with 4 and x and +"their F(4)" or + C and use F(6) =1		
	2nd A1: for $\frac{3}{2}x - \frac{x^2}{8} - \frac{7}{2}$ oe attached to $4 \le x \le 6$ (must use the same variable in range)		
	B1: for the top and bottom lines with correct ranges for x		
(d)	M1: for using $F(5) - F(2)$ some evidence of correct sub in each part-condone $F(5)$ or $F(2)$ n A1: awrt 0.856 (allow 0.8565) [correct answer 2/2]	ot in [0,1]	
	[101100 (allow 0.0000) [collect allower $2/2$]		

Question Number	Scheme	Marks	
3 (a)(i)	B(12, 0.05)	B1	
	$P(X = 1) = P(X \le 1) - P(X = 0)$	M1	
	= 0.8816 - 0.5404		
	= 0.3412 awrt <u>0.341</u>	A1	
(ii)	$P(X > 2) = 1 - P(X \le 2)$	M1	
	[= 1 - 0.9804] = 0.01956 awrt <u>0.0196</u>	A1 (5)	
(b)	$P(y, 1) = [4, 1/(10, 241, 10/(1, 10, 241, 10)^3)]$	(5)	
(0)	$P(Y=1) = [4\times]("0.341")(1-"0.341")^{3}$	M1	
	$=4 \times ("0.341")(1 - "0.341")^{3}$	M1	
	= 0.390 awrt <u>0.390</u>	A1	
		(3)	
(c)	$H_0: p = 0.04 \qquad H_1: p > 0.04 \qquad \underline{\text{or}} \qquad H_0: \lambda \text{ or } \mu = 6 \qquad H_1: \lambda \text{ or } \mu > 6$	B1	
	$\begin{array}{c} Po(6) \\ P(D \ge 10) & 1 \\ P(D \le 0) \end{array}$	M1	
	$P(B \ge 10) = 1 - P(B \le 9)$	M1	
	[= 1 - 0.9161] = 0.0839 awrt 0.0839 Accept H ₀ , not significant	A1 M1	
	There is insufficient evidence that the promotion has been successful	Alcso	
		(6)	
		Total 14	
() (•)	Notes	1	
(a)(i)	B1: for stating or using B(12,0.05) in either part (may be implied by one correct probability $P(W_{12}, W_{12}, W_$	lity)	
	1st M1: for writing or using $P(X \le 1) - P(X = 0)$ or ${}^{12}C_1(0.05)(0.95)^{11}$		
(ii)	2nd M1: for writing or using $1 - P(X \le 2)$		
(b)	1st M1: for ("their (a)(i)")×(1 – "their (a)(i)") ³ 2nd M1: for 4×("their (a)(i)")×(1 – "their (a)(i)") ³		
	<u>or</u> expression of the form $4p(1-p)^3$ with 0) < <i>p</i> < 1	
(c)	B1: Both hypotheses correct and in terms of p or correct in terms of λ or μ		
	1 st M1: Stating or using Po(6)		
	[Must be Po(6) or Poisson (6) but may be implied by a correct Po(6) probability ≤ 9	$\theta \text{ or } \leq 10$]	
	2nd M1: stating or using $1 - P(B \le 9)$	and M(1)	
	1 st A1: awrt 0.0839 { NB Binomial gives 0.0797 normal gives 0.07237 may score B1, 3 rd M1: A correct (contextual or non contextual) conclusion based on comparing their pr		
	(which is < 0.5) with 0.05 (or the 10 sales with their CR) with no contradicting of		
	2^{nd} A1cso: a complete correct method and conclusion in context containing the words promotion		
	and successful oe or increase and sold oe [all other marks in (c) scored]		
ALT	$2^{\text{nd}} \text{ M1} \text{ for } P(B \ge 11) = 1 - P(B \le 10) = 1 - 0.9574 = 0.0426$		
(CR)	1 st A1 for critical region of : $B \ge 11$ or $B > 10$ (other letters OK)		

Question Number	Scheme	Marks	
4 (a)	$\lambda > n$ where <i>n</i> is at least 10 <u>or</u> λ is large	B1	
		(1)	
(b)	The <u>Poisson</u> is <u>discrete</u> and the <u>normal</u> is <u>continuous</u> .	B1	
(~)		(1)	
	Let X represent the number of skis hired $X \sim Po(205)$		
	$X \sim N(205, 205)$	B1	
(c)	$P(X > 220) \approx P\left(Z > \frac{220.5 - 205}{\sqrt{205}}\right)$	M1 M1	
(0)	$\approx P(Z > 1.08)$	A1	
	≈1-0.8599	dM1	
	$\approx 0.1401 \text{ or } 0.1395 \text{ (calc: } 0.139500)}$	Al	
		(6)	
(d)	Number of weekends = 0.1401×20	M1	
	= awrt 2.8	A1	
		(2)	
		Total 10	
(-)	Notes		
(a)	B1: allow use of μ (ignore any reference to <i>p</i> etc)		
(b)	B1: need to have all 4 words: Poisson, discrete, normal, continuous		
	B1: N(205,205) can be implied by standardisation		
	1 st M1: sight of or use of a continuity correction either 220.5 or 219.5 or 221.5 2 nd M1: standardising using either 220.5 or 219.5 or 221.5 or 220		
(a)			
(c)	If distribution not stated must use 205 and $\sqrt{205}$ otherwise can ft their mean and st. dev.		
	1st A1: correct standardisation or awrt 1.08 [can ignore the inequality sign up to this point] 3rd dM1: (dop on 2^{nd} M1) for attempting one tail prob (such <0.5) and 1 = n where 0.8 < n < 0.0		
	3rd dM1: (dep on 2^{nd} M1) for attempting one tail prob (prob <0.5) and $1 - p$ where $0.82nd A1: awrt 0.14 NB Poisson gives 0.13988and scores 0/6 Ans only of awrt 0.14 is 0/6$		
	2 ²⁴ A1: awft 0.14 INB Poisson gives 0.13988 and scores $0/6$ Ans only of aw M1: their "(c)" $\times 20$	11 0.14 18 0/0	
(d)	A1: awrt 2.8 or (2 or 3 from correct working)		
	AL. dwit 2.0 01 (2 01 5 110111 contest working)		

Qu No	Sch	eme	Marks
5(a)	$\frac{\alpha + \beta}{2} = 20.4$	$P(20.4 < X < 23) = \frac{1}{4}$ $[Q_3 - Q_2 =]2.6$	B1
	$\frac{23-\alpha}{\beta-\alpha} = \frac{3}{4}$	$[Q_3 - Q_2 =]2.6$	B1
	$23-40.8+\beta = 0.75(\beta-40.8+\beta)$ or $23-\alpha = 0.75(40.8-\alpha-\alpha)$	$\beta = 23 + "2.6" \text{ or } 20.4 + 2 \times "2.6"$ $\alpha = 20.4 - 2 \times 2.6$	M1
	$\alpha = 15.2$ and $\beta = 25.6$	$\alpha = 15.2$ and $\beta = 25.6$	A1
			(4)
(b)	$\sigma = \frac{1}{\sqrt{12}} ("25.6" - "15.2") [= 3.00022214] $ (0.0	e.) e.g. $\frac{26\sqrt{3}}{15}$ or $\sqrt{\frac{676}{75}}$ (Allow variance)	M1
	$P(\mu - \sigma < X < \mu + \sigma) = \frac{2 \times \sigma}{"25.6" - "15.2"} \text{or}$	awrt 0.577	M1
		$=\frac{\sqrt{3}}{3}$ (o.e)	A1
			(3)
(c)	$P(Y > 8) \left[= \frac{1}{2} \right] ; P(Y < 7) \left[= \frac{3}{8} \right]$	<u>or</u> M2 for $P(7 < Y < 8) \left[= \frac{1}{8} \right]$	M1;M1
	One of these three probabilities correct		A1
	$Total = \frac{1}{2} + \frac{3}{8}$	<u>or</u> Total = $1 - \frac{1}{8}$	dM1
		$=\frac{7}{8}$ or 0.875	A1cao
			(5) Total 12
	Να	otes	10tal 12
(a)	1 st B1: Correct equation any form	may be implied by 2.6 seen or correct α or	
	2nd B1: 2^{nd} correct equation any form	2.6 seen - may be implied by correct α or β	в
	M1: eliminating one variable leading to equa	-	
	-	, μ or probs, or quartiles. Use of normal and α	
(b)	A1: both values correct e.g. $\alpha = \frac{76}{5}, \beta = \frac{128}{5}$ (
(b)	1 st M1: ft their α and β in a correct formu	la for variance or st.dev. e.g. $\sigma = \frac{1}{\sqrt{12}} (\beta - \alpha)$)
	(decimal or surd form is OK) NB $E(X^2)$	$=\frac{31688}{75}$	
	2nd M1: = $\frac{2 \times \text{"their } \sigma \text{"}}{\text{"their } \beta \text{"-"their } \alpha \text{"}}$ or a decimal	10	
	Their β "-"their α " of a decimal		
	A1: $=\frac{\sqrt{3}}{3}$ NB M1 M1 A0 for awrt 0.5	77 if answer not given in exact form at all.	
(c)	1 st M1: for writing or attempting $P(Y > 8)$		
	2nd M1: for writing or attempting $P(Y < 7)$	NB award M1M1 for attempting to find P(7 < Y < 8)
	1 st A1: either $P(Y > 8) = \frac{1}{2}$ or $P(Y < 7) = \frac{3}{8}$	$\underline{\text{or}} \qquad P(7 < Y < 8) = \frac{1}{8}$	
	3rd dM1: (dep on 1^{st} M1 and 2^{nd} M1) P(Y <	0	A1: cao
	[Correct answer only scores 5/5]		

Qu No	Scheme	Marks	
6	$\int_{(-b)}^{(b)} \frac{k}{b} \left(1 - \frac{x}{b}\right) dx \left[=1\right]$	M1	
	$\left[\frac{k}{b}\left(x-\frac{x^2}{2b}\right)\right]_{-b}^{b} = 1 \text{or} \frac{k}{b}\left(b-\frac{b^2}{2b}+b+\frac{b^2}{2b}\right) = 1 \text{or} \frac{k}{b}\left(\frac{b}{2}+\frac{3b}{2}\right) = 1$	dM1	
	$[2k=1] k=\frac{1}{2} ext{ oe}$	A1	
	$\int_{(-b)}^{(b)} \frac{k}{b} \left(x - \frac{x^2}{b} \right) dx = \frac{k}{b} \left(\frac{x^2}{2} - \frac{x^3}{3b} \right)_{(-b)}^{(b)}$	M1A1	
	$=\frac{k}{b}\left(\frac{b^2}{2}-\frac{b^3}{3b}\right)-\frac{k}{b}\left(\frac{b^2}{2}+\frac{b^3}{3b}\right)$	dM1	
	$= -\frac{2kb}{3}$ (o.e.) (allow + if used E(X) = -1)	A1ft	
	$-\frac{2"\frac{1}{2}"b}{3} = -1$	dM1	
	$\frac{b}{3} = 1 \therefore b = 3$	A1cso	
		(9) Total 9	
	Notes	Total 7	
	1 st M1: method for finding the area (ignore limits and "= 1" for this mark)		
	eg $\int \frac{k}{b} \left(1 - \frac{x}{b}\right) dx$ with an attempt at integration, at least one $x^n \to x^{n+1}$		
	or sketch of triangle with $-b$, $+b$ and height $=\frac{2k}{b}$ clearly marked		
	2^{nd} dM1: use of correct limits and their area or integration = 1 and an attempt to solve to find	nd k	
	<u>or</u> use of area of triangle formula: $\frac{1}{2}(bb) \times \frac{2k}{b} = 1$ and attempt to solve for k		
	1 st A1: $k = \frac{1}{2}$ oe		
	3rd M1: attempt to integrate $xf(x)$ ignore limits		
	2 nd A1: correct integration		
	4 th dM1: (dep on 3 rd M1)substituting in the correct limits (some correct substitution seen)		
	3rd A1ft: for a correct simplified answer of the form : $\pm \frac{2kb}{3}$ or $\pm \frac{b}{3}$ or $\pm \frac{2"k"b}{3}$ or $\pm \frac{2kb^2}{3b}$	(o.e.)	
	ft their value for k if answer not given in terms of k		
	5th dM1: (dep on 1 st M1 and 2 nd M1) subst their k value into their integral and equating to -	-1	
	4th A1cso: correct work leading to the correct statement that $b = 3$ all other marks scored Show $k = 0.5$ Allow 1 st M1 and 2 nd M1 but 1 st A0		
SC Assume b=3	Use $b = 3$ and $k = 0.5$ Allow 3 rd M1, 2 nd A1, 4 th M1 and 3 rd A1ft (for correct use of limits 5 th M1 for clearly showing that mean = -1 but 4 th A0 (i.e. 5/7 m		
	If you see anyone using the centre of gravity of a triangle to show $b = 3$ please send to revie		

G. B. Attwood 10th July 2019

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom