

Mark Scheme (Results)

Summer 2019

Pearson Edexcel GCE In Mechanics Paper 1 6677/01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019 Publications Code 6677_01_1906_MS All the material in this publication is copyright © Pearson Education Ltd 2019

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for `knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

General Principles for Mechanics Marking

(But note that specific mark schemes may sometimes override these general principles)

- Rules for M marks: correct no. of terms; dimensionally correct; all terms that need resolving (i.e. multiplied by cos or sin) are resolved.
- Omission or extra g in a resolution is an accuracy error not method error.
- Omission of mass from a resolution is a method error.
- Omission of a length from a moments equation is a method error.
- Omission of units or incorrect units is not (usually) counted as an accuracy error.
- DM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of g = 9.8 should be given to 2 or 3 SF.
- Use of g = 9.81 should be penalised once per (complete) question.

N.B. Over-accuracy or under-accuracy of correct answers should only be penalised *once* per complete question. However, premature approximation should be penalised every time it occurs.

- Marks must be entered in the same order as they appear on the mark scheme.
- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),.....then that working can only score marks for that part of the question.
- Accept column vectors in all cases.
- Misreads if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft
- Mechanics Abbreviations
 - M(A) Taking moments about A.
 - N2L Newton's Second Law (Equation of Motion)
 - NEL Newton's Experimental Law (Newton's Law of Impact)
 - HL Hooke's Law
 - SHM Simple harmonic motion
 - PCLM Principle of conservation of linear momentum
 - RHS, LHS Right hand side, left hand side.

Question Number	Scheme	Marks	
1(a)	$\tan \alpha = \frac{3}{2}$	M1	
	1	IVI I	
	$q = 71.565^{\circ}$	A1	(2)
	Bearing is 162° (nearest degree)	AI	(3)
(b)	$(p\mathbf{i} + 2\mathbf{j}) + (3\mathbf{i} - q\mathbf{j}) + (q\mathbf{i} + 2p\mathbf{j}) = 2(\mathbf{i} - 3\mathbf{j})$	M1	
	p + q + 3 = 2	M1	
	2p - q + 2 = -6	M1	
	p = -3, q = 2	A1; A1	(5)
		(0)	
		(8)	
	Notes		
	Accept use of column vectors		
1(a)	M1 for finding a relevant angle e.g. $\tan \theta = (\pm \frac{3}{1}) \operatorname{or}(\pm \frac{1}{3})$ oe		
	First A1 for a correct relevant angle to nearest degree or better		
	Second A1 162° (nearest degree is specified)		
1(b)	First M1 for use of $\mathbf{F} = m\mathbf{a}$; M0 if term missing or '2' missing or $\mathbf{a} = 0$		
	Second M1, independent but must have sum of at least two force = $(m)\mathbf{a}$, for equating the i		
	cpts, to produce a <u>correct</u> unsimplified equation in p and q only, for their vector equation. M0 if using $\mathbf{a} = 0$		
	Third M1, independent but must have at least two forces, for equating the j cpts to produce		
	a <u>correct</u> unsimplified equation in <i>p</i> and <i>q</i> only , for their vector equation.		
	M0 if using $\mathbf{a} = 0$		
	First A1 for $p = -3$		
	Second A1 for $q = 2$		

Scheme	Marks
T + 4T = 60g + 30g	M1 A1
OR $M(P)$, $60g \times 2 + 30g \times 4 = 4T(4-x)$	M1 A1 A1
OR $M(Q)$, $4Tx + T \times 4 = 60g \times 2$	
OR $M(R)$, $T(4-x) + 30gx = 60g(2-x)$	
OR $M(G)$, $T \times 2 + 30g \times 2 = 4T(2-x)$	
$T = \frac{90g}{5}$ oe, 176 N or 180 N (Tension at P)	A1
$x = \frac{2}{3}$ (0.67 or better)	A1
	(7)
Notes	
and 4 <i>T</i> reversed consistently, treat as one error in any MOMENTS equations so e max: M1A1M1A1A0A0A0	
or resolving vertically or a moments equation, with all terms, condone sign missing g 's. ngth is missing from a moments equation.	
or a correct equation in one unknown	
1 for a(nother) moments equation, with all terms, condone sign errors and s)	
d third A1's for a correct equation in two unknowns	
\mathbf{t} omission of g is one error.	
one error; A0A0 for two or more errors	
tor any of the 3 answers.	
or $2/3$ oe, 0.6 / or better. mark can be scored if they have consistently omitted g's $(T = 18)$	
	SchemeT+4T = $60g + 30g$ OR $M(P)$, $60g \times 2 + 30g \times 4 = 4T(4 - x)$ OR $M(Q)$, $4Tx + T \times 4 = 60g \times 2$ OR $M(R)$, $T(4 - x) + 30gx = 60g(2 - x)$ OR $M(G)$, $T \times 2 + 30g \times 2 = 4T(2 - x)$ $T = \frac{90g}{5}$ oe, 176 N or 180 N (Tension at P) $x = \frac{2}{3}$ (0.67 or better)Notesmod 4T reversed consistently, treat as one error in any MOMENTS equations soe max: M1A1M1A1A0A0A0or resolving vertically or a moments equation, with all terms, condone signmissing g's.ngth is missing from a moments equation.or a correct equation in one unknown1 for a (nother) moments equation, with all terms, condone sign errors and $\frac{s}{s}$ d third A1's for a correct equation in two unknownst omission of g is one error.one error; A0A0 for two or more errorsfor any of the 3 answers.or 2/3 oe, 0.67 or better.mark can be scored if they have consistently omitted g's. (T = 18)

Question Number	Scheme	Marks
3 (a)	$v = 5.25 \times 2.8 = 14.7$	M1 A1
	0 = 14.7 - 9.8t	M1 A1
	T(=5.25+1.5)=6.75 or 6.8	A1 (5)
(b)	24	B1 1 st line
		B1 ft 2 nd line with their value of <i>T</i> CLEARLY marked
	N.B. Graph could be reflected in the <i>t</i> -axis	(2)
		(7)
	Notes	
3 (a)	First M1 for a complete method to find the speed or velocity at $t = 5.25$ using $a = 2.8$	
	First A1 for 14.7 or – 14.7	
	Second M1 for a complete method to produce an (unsimplified) equation in one unknown	
	(either their t of T) using their 14.7 and $v = 0$ Condone sign errors but need all terms	
	Second A1 for a correct equation. Allow if using $t = T$ (A0 if they use $g = 9.81$, but can	
	score final A1)	
	Third A1 for $T = 6.75$ or 6.8 (as $g = 9.8$ used)	
3(b)	First B1 for a straight line starting at the origin	
	Second Blft for another straight line starting at the end of their first line, with opposite gradient, which crosses the t axis at 6.75 OP ft on their T	
	Penalise any extra lines including a solid vertical line at the end	

Question Number	Scheme	Marks		
4 (a)	Otherwise one particle would have to move through the other oe	B1		(1)
(b)	For P: $m\left(\frac{3u}{2} - (-v_P)\right) = \frac{7mu}{2}$	M1	A1	
	speed of $P = 2u$	A1		(3)
(c)	For $Q: 4m(\frac{u}{8} - v_Q) = -\frac{7mu}{2}$	M1 A	41	
	$v_Q = u$	A1 OR		(3)
	$4mv_Q - m2u = 4m\frac{u}{8} + m\frac{3u}{2}$	M1 A	41	
	$v_Q = u$	A1		(3)
		(7)		
	Notes			
4(a)	B1 for a clear statement e.g if they are moving in the same direction, the one at the front must be going faster (than the one behind) or: the <u>original</u> momentum of <i>P</i> is less than the impulse exerted on <i>P</i> oe			
	N.B. For (b) and (c), they may find v_Q first and then use it to find v_P			
(b)	M1 for impulse-momentum principle applied to P ; condone sign errors but must be using m for mass and subtracting momenta M0 if g included			
	First A1 for a correct equation. They may have v_p instead of $-v_p$			
	Second A1 for 2 <i>u</i> ; must be positive			
(c)	M1 for impulse-momentum principle applied to Q ; condone sign errors but must be using $4m$ for mass and subtracting momenta M0 if g included			
	First A1 for a correct equation. They may have $(-v_Q)$ instead of v_Q			
	OR			
	M1 for conservation of momentum, with correct no. of terms, condone sign errors, using			
	their v_p or their v_q .			
	M0 if equation has more than one unknown			
	First A1 for a <u>correct</u> equation. They may have $(-v_q)$ instead of v_q			
	Second A1 for <i>u</i> ; must be positive			

Question Number	Scheme	Mark	S
	If <i>F</i> and <i>R</i> are interchanged, can score max: (a) M0A0M0A0M1M1A0 (b) M0A0M0A0		
5 (a)	$T\sin\alpha = R$	M1 A1	
	$T\cos\alpha = 0.5g + F$	M1 A1	
	$F = \frac{1}{4}R$	M1	
	Solving for <i>T</i>	M1	
	$T = \frac{5g}{4} = 1.25g = 12$ N or 12.3 N	A1	(7)
(b)			
	$T\cos\alpha = 0.5g - F$	M1 A1	
	$T\sin \alpha = R$ and $F = \frac{1}{4}R$ and solving for T	M1	
	$T = \frac{5g}{8} = 0.625g = 6.1$ N or 6.13 N	A1	(4)
		(11)	
	Notes		
5 (a)	First M1 for resolving horizontally, with usual rules		
	First A1 for a correct equation		
	Second M1 for resolving vertically, with usual rules		
	Second A1 for a correct equation		
	Third M1 for use of $F = \frac{1}{4}R$		
	Fourth M1 for solving for <i>T</i>		
	Third A1 cao for any of the 4 alternatives		
5(b)	First M1 for resolving vertically, with usual rules		
	N.B. M0 if using the value of R or F and/or T found in part (a)		
	First A1 for a correct equation		
	Second M1 for the other two equations, which must be correct, <i>and</i> solving for <i>T</i>		
	N.B. MU it using the value of <i>R</i> or <i>F</i> and/or <i>T</i> found in part (a)		
	Second A1 cao for any of the 4 alternatives		
	If the working for (b) is the same as for (a), they can score max MIAUMIAU		

Question Number	Scheme		Mark	s
6(a)	(i) $r = (i + 4i) + t(2i - 2i)$	M1	A1	
	$(1) 1_{P} - (1 + 4\mathbf{J}) + i(3\mathbf{I} - 2\mathbf{J})$			
	$(ii)\mathbf{r}_{Q} = (7\mathbf{i} + 8\mathbf{j}) + t(5\mathbf{i} + 6\mathbf{j})$		A1	(3)
(b)	$\mathbf{QP} = (\mathbf{i} + 4\mathbf{j}) + t(3\mathbf{i} - 2\mathbf{j}) - \left[(7\mathbf{i} + 8\mathbf{j}) + t(5\mathbf{i} + 6\mathbf{j}) \right]$	M1		
	$= (-6-2t)\mathbf{i} + (-4-8t)\mathbf{j}$ Given Answer	A1		(2)
(c)		-		
	(-6 - 2t) = (-4 - 8t)	M1		
	t = 1	A 1		
	$l = \frac{1}{3}$	AI		
	$\mathbf{QP} = (-6 - \frac{2}{3})\mathbf{i} + (-4 - \frac{8}{3})\mathbf{j}$	M1		
	$QP = \sqrt{\left(-\frac{20}{3}\right)^2 + \left(-\frac{20}{3}\right)^2}$	M1		
	$=\frac{20\sqrt{2}}{2}=9.4$ km (or better)	A1		
	3		(:	5)
		(10)		,
	Notes			
	Allow column vectors throughout apart from the given answer in (b)			
6(a)	M1 for attempt at either or \mathbf{r}_{Q} with the correct structure oe			
	First A1 for a correct expression for \mathbf{r}_p in any form			
	Second A1 for a correct expression for \mathbf{r}_o in any form			
(b)	M1 for their \mathbf{r}_p – their \mathbf{r}_Q in any form			
	A1 for given answer Must be in i – j form			
(c)	First M1 for using SW to produce an equation in <i>t</i> only.			
	MU if they use the ratio 1 cpt: J cpt = -1 First A1 for $t = 1/3$ cao			
	Second M1 for substituting their t into OP but can only be scored if t has come from	+		
	using ratio \mathbf{i} cpt: \mathbf{j} cpt = 1 or -1			
	N.B. M0 if t is negative or if they have more than one value of t.	<u> </u>		
	Third M1 for finding the magnitude of their QP (even if $t < 0$), but must have found a value for t and substituted it in to give a QP with superiod ants			
	Second A1 for surd answer, in any form, or 9.4 (km) or better	+		

Question Number	Scheme	Marks
7(a)	$0 = u - 0.5 \times 5$	M1
	$u = 2.5 \text{ (m s}^{-1}\text{)}$ Given answer	
		AI (2)
(b)		M1
	$0 = 2.5^2 - 2 \times 5s$	1011
	s = 0.625 (m) or oe	A1 (2)
	OR e.g. $s = \frac{(0+2.5)}{2} \times 0.5 = 0.625$ (m)	
(c)	$64.8 \text{ km h}^{-1} = 18 \text{ m s}^{-1}$	B1
	0 = 18 - 5t $2.5 = 18 - 5t$	M1
	t = 3.6 OR $t = 3.1$	A 1ft on their 19
		And on them 18
		M1
	Any of: e.g. $18 \times (4.2-t)$ OR $18 \times (4.2-0.5-t)$	
	$s = \frac{1}{2}(18 + 2.5) \times 3.1$	
	$(18 \times 2 1 + \frac{1}{2} \times 5 \times 2 1^2)$	
	$s = (18 \times 5.1 + \frac{-1}{2} \times 5.1)$	
	$s = (2.5 \times 3.1 - \frac{1}{2} \times -5 \times 3.1^2)$	
	$25^2 = 18^2 + 2 \times (-5)s$	
	$2.5 = 10 + 2 \times (-5)^{5}$	
	10.8	A1 ft on <i>t</i> &18
	21 775 m	A1 cao
	31.773 III	
	Total distance = $(10.8 + 31.775) = 42.575$ (m)	A1 cao (7)
		(11)
	Notes	
7(a)	M1 for a complete method to obtain an equation in <i>u</i> only and must see $v = 0$ and $a = -5$	
	used. N.B. M0A0 for $5 \ge 0.5 = 2.5$	
	A1 for 2.5 (ms ⁻¹) correctly obtained	
7(b)	M1 for a complete method to obtain an equation in s only	
7(c)	B1 for 18 (ms ⁻¹)	
	N.B. If no attempt to change units, only M marks available	
	First M1 for finding the time t to decelerate from their 18 to rest OR from 18 to S	
	Second M1 for an attempt at finding	

EITHER	the distance travelled at their constant speed using a calculated value of	
OR	the distance travelled while decelerating until car passes S	
Second A1 ft	for distance travelled at constant speed, ft on their 18 and t value	
Third A1 ca	o 31.775 (m) (can be unsimplified)	
Fourth A1 for	42.575 (m) cao	

Question Number	Scheme	Marks	
8 (a)	3mg - T = 3ma	M1 A1	
	T - mg = ma	M1 A1	(4)
(b)	3mg - mg = 4ma	DM 1	(+)
	a = 0.5g Given answer	A 1	(2)
(c)	The magnitude of the acceleration for both particles is the same	B1	(2) (1)
(d)	$V = \sqrt{2 \cdot 0.5\sigma h} = \sqrt{\sigma h}$	M1 A1	(2)
(e)	$I = 3m(\frac{1}{2}VV)$	M1 A1	
	$=\frac{9m\sqrt{gh}}{2}$	A1	(3)
(f)	$\frac{2}{\left(1-\left(\frac{1}{2}V\right)^2-2\right)^2}$	M1	
	$0 = (\frac{-1}{2}v) - 2ga$		
	$d = \frac{h}{d}$	A1	(2)
	8	(14)	
		(14)	
	Notes		
8 (a)	First M1 for an equation of motion for A with usual rules		
	First A1 for a correct equation. Allow <i>a</i> replaced by (- <i>a</i>) in both equations		
	Second M1 for an equation of motion for B with usual rules $S_{\text{rescal}} = A_{\text{rescal}} + A$		
(b)	Second A1 for a correct equation. Allow <i>a</i> replaced by $(-a)$ in both equations DM 1 for producing an equation in <i>a</i> only, dependent on two M marks in (a), must show		
(~)	elimination of <u>T</u> i.e. at least one line of working e.g. $2mg = 4ma$		
	A1 for $a = 0.5g$ with given answer correctly obtained		
	$(A0 \text{ for } \frac{1}{2}g)$		
	N.B. M0 for the whole system equation		
	Allow <i>a</i> replaced by $(-a)$ but to get final A1 must state (magnitude) acceleration is $0.5g$		
(C)	B1 Clear statement. E σ They have the same acceleration – allow omission of 'magnitude'		
	Penalise incorrect extras.		
(d)	M1 for a complete method to give an equation in <i>V</i> , <i>g</i> and <i>h</i> only, using $a = \frac{1}{2}g$		
	A1 for $V = \sqrt{gh}$ oe		
(e)	M1 for use of impulse-momentum with $3m$ (M0 if using m or no mass or extra g), condone sign errors, but must be subtracting momenta		
	First A1 for $\pm 3m(\frac{1}{2}VV)$ with their V; can be in terms of V only or a mix of V, g and		
	h		
	Second A1 for $\frac{9m\sqrt{gh}}{2}$ oe; Must be positive.		
(f)	M1 for a complete method to give an equation in V, g and d only with $a = \pm g$ and		
	$v = 0$ and $u = \frac{1}{2}V$ or $v = \frac{1}{2}V$ and $u = 0$		
	Must be a dimensionally correct equation.		
	A1 for $\frac{h}{8}$ or 0.125 <i>h</i>		

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom