

Mark Scheme (Results)

Summer 2019

Pearson Edexcel International A Level In Further Pure Mathmatics F3 (WFM03/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019 Publications Code WFM03_01_1906_MS All the material in this publication is copyright © Pearson Education Ltd 2019

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol \hat{W} will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- L The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^2 + bx + c) = (x + p)(x + q)$, where |pq| = |c|, leading to x = ...

 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^2 + bx + c = 0$: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

<u>Use of a formula</u>

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these may not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does not cover this, please contact your team leader for advice.

Question Number	Sch	eme	Marks
1. (a)	$ae = 6, a^2(e^2 - 1) = 9$	Both correct equations needed but need not be shown explicitly	B1
	$e = \frac{6}{a} \Longrightarrow 36 - a^2 = 9 \Longrightarrow a = \dots$ Or $a = \frac{6}{e} \Longrightarrow 36 - \frac{36}{e^2} = 9 \Longrightarrow e = \frac{2\sqrt{3}}{3}$ $\Rightarrow a = \frac{6}{e} = \dots$	Eliminates <i>e</i> from their 2 equations to obtain an equation in <i>a</i> and solves for <i>a</i> or a^2 or Eliminates <i>a</i> from their 2 equations to find <i>e</i> and then finds <i>a</i>	M1
	$a = \sqrt{27}$ or $3\sqrt{3}$	Correct exact value. $a = \pm \sqrt{27}$ is A0 unless $-\sqrt{27}$ is rejected.	A1
			(3)
(b)	$e^2 - 1 = \frac{9}{27}$ $e^2 = \frac{36}{27}$ $e = \frac{2}{\sqrt{3}}$ or $\frac{2\sqrt{3}}{3}$ Finds a numerical value for e using a correct identity . This mark can be awarded if e has been found in part (a) or may be seen as part of their calculation to find $\frac{a}{2}$		M1
	$(x=)(\pm)\frac{a}{e}=\dots$	Obtains a numerical value for x using a correct equation for at least one directrix with their a and e (signs can be ignored)	M1
	$x = \pm \frac{9}{2}$	Two correct equations . Allow equivalents but must be simplified . So allow $x = \pm \frac{9}{2}$, $x = \pm 4.5$	A1
			(3)
			[Total 6]

Note: Use of $b^2 = a^2 (1 - e^2)$ can score (a) B0 M1 A0 and (b) M0 (if used again) M1 A0

Question Number	Sch	eme	Marks
2 (a)(i)	$2\cosh^{2} x - 1 = 2\frac{\left(e^{x} + e^{-x}\right)^{2}}{4} -$ Substitutes the correct definition for expansion must be seen	$2\cosh^{2} x - 1 = 2\frac{\left(e^{x} + e^{-x}\right)^{2}}{4} - 1 = \frac{\left(e^{2x} + 2e^{x} \times e^{-x} + e^{-2x}\right)}{2} - 1$ Substitutes the correct definition for coshx into the rhs and squares - full expansion must be seen but allow 2 for $2e^{x} \times e^{-x}$	
	$=\frac{\left(e^{2x}+e^{-2x}\right)}{2}+1-1=\cosh 2x^{*}$	Correct completion with no errors seen.	A1
	Working from	n left to right:	
	$\cosh 2x = \frac{\left(e^{2x} + e^{-2x}\right)}{2} = \frac{\left(e^{x} + e^{-x}\right)^{2} - 2}{2}$ Uses the correct definition for $\cosh 2x$ on lhs and expresses in terms of $\left(e^{x} + e^{-x}\right)^{2}$.		M1
	$2\cosh^2 x - 1^*$	Correct completion with no errors seen.	A1
(ii)	$2\sinh x \cosh x = 2\frac{\left(e^{x} - e^{-x}\right)}{2} \times \frac{\left(e^{x} + e^{-x}\right)}{2} = \dots$ Use both correct definitions on rhs and attempts to multiply $2\sinh x \cosh x = \frac{1}{2}\left(e^{x} - e^{-x}\right)\left(e^{x} + e^{-x}\right) = \dots$ scores M0 as the definitions for sinh x and cosh x have not been seen		M1
	$\frac{\left(\mathrm{e}^{2x}-\mathrm{e}^{-2x}\right)}{2}=\sinh 2x^{*}$	Correct completion with no errors seen.	A1
	Working fror		
	$\sinh 2x = \frac{\left(e^{2x} - e^{-2x}\right)}{2} = \frac{\left(e^{x} + e^{-x}\right)\left(e^{x} - e^{-x}\right)}{2}$ Uses the correct definition for sinh2x on lhs and uses the difference of 2 squares.		M1
	$2\sinh x\cosh x^*$	Correct completion with no errors seen.	A1

If they work from both ends then a clear link must be established as a conclusion e.g. lhs = rhs, tick QED etc.

(b)	$2\cosh^2 x - 1 - 7\cosh x + 7 = 0$	Use the identity for $\cosh 2x$	M1
	$2\cosh^2 x - 7\cosh x + 6 = 0 \Longrightarrow (2\cosh x)$	$(x-3)(\cosh x-2) = 0 \Longrightarrow \cosh x =$	
	Solve their 3	TQ in $\cosh x$	M1
	(the usual rules for solving	can be applied if necessary)	
	$\cosh x = \frac{3}{2}, 2$	Correct answers, both needed	A1
	$\cosh x = \alpha \Longrightarrow x =$	$=\ln\left(\alpha+\sqrt{\alpha^2-1}\right)$	
	0	r	
	$\frac{\mathrm{e}^{x} + \mathrm{e}^{-x}}{2} = 2 \Longrightarrow \mathrm{e}^{2x} - 4\mathrm{e}^{x} + 1 = 0 \mathrm{o}$	$r \frac{e^{x} + e^{-x}}{2} = \frac{3}{2} \Longrightarrow e^{2x} - 3e^{x} + 1 = 0$	
	$\Rightarrow e^x = \frac{4 \pm \sqrt{12}}{2}$	or $e^x = \frac{3 \pm \sqrt{5}}{2}$	M1
	$\Rightarrow x =$	= ln	
	Changes at least one arcosh to ln form either using the correct ln form of		
	arcosh of by returning to the correct exponential form of cosh and solving a quadratic in e^x .		
	(Note that returning to exponentials	is more likely to give all 4 answers	
	bel	ow)	
	$x = \ln\left(\frac{3}{2} + \sqrt{\frac{5}{4}}\right), -\ln\left(\frac{3}{2} + \sqrt{\frac{5}{4}}\right)$	$+\sqrt{\frac{5}{4}}\left(\operatorname{or} \ln\left(\frac{3}{2}-\sqrt{\frac{5}{4}}\right) \right),$	
	$\ln(2+\sqrt{3}), -\ln(2+\sqrt{3}) \text{ (or } \ln(2-\sqrt{3}))$ All 4 correct, must be exact logarithms but can be any equivalent to those shown with brackets .		
			A1
	Allow unsimplified if r	necessary and apply isw	
	e.g. allow $\ln\left(\frac{3}{2} + \sqrt{\frac{3}{2}}\right)$	$\left(\frac{3}{2} - 1\right)$ for $\ln\left(\frac{3}{2} + \sqrt{\frac{5}{4}}\right)$	
			(5)
			[Total 9]

Alternative for 2(b) using exponentials:	
$\cosh 2x - 7\cosh x = -7 \Rightarrow \frac{e^{2x} + e^{-2x}}{2} - 7\left(\frac{e^x + e^{-x}}{2}\right) = -7$ $\Rightarrow e^{4x} - 7e^{3x} + 14e^{2x} - 7e^x + 1 = 0$ Substitutes the correct exponential forms and forms quartic in e^x	M1
$e^{4x} - 7e^{3x} + 14e^{2x} - 7e^{x} + 1 = 0 \Rightarrow (e^{2x} - 4e^{x} + 1)(e^{2x} - 3e^{x} + 1) = 0$ $\Rightarrow e^{x} = \frac{4 \pm \sqrt{12}}{2} \text{ or } e^{x} = \frac{3 \pm \sqrt{5}}{2}$ M1: Attempts to solve one of their quadratics in e^{x} which has come from their quartic in e^{x} to obtain exact values for e^{x} A1: For at least 2 exact values of e^{x}	M1A1
$\Rightarrow e^{x} = \frac{4 \pm \sqrt{12}}{2} \text{ or } e^{x} = \frac{3 \pm \sqrt{5}}{2}$ $\Rightarrow x = \ln \dots$ Change at least one exponential form to ln form	M1
$\Rightarrow x = \ln\left(\frac{4 \pm \sqrt{12}}{2}\right) \text{ and } x = \ln\left(\frac{3 \pm \sqrt{5}}{2}\right)$ All 4 correct, must be exact logarithms but can be any equivalent to those shown with brackets if necessary but e.g. they would not be required in the above forms.	A1

Question Number	Scheme		Marks
3 (a)	$8 + 4x + x^2 = (x + 2)^2 + 4$	Correct completion of the square	B1
	$\int \frac{1}{\left(x+2\right)^2+4} \mathrm{d}x = \frac{1}{2} \mathrm{a}$	$\operatorname{rctan} \frac{x+2}{2} (+c)$	
	M1: For obtaining	$k \arctan f(x)$	
	Accept other notation for ar	ctan e.g. artan, \tan^{-1} etc.	M1A1
	A1: Correct result on e.g. $\frac{1}{2} \arctan\left(\frac{x}{2}+1\right)(+c)$ (must see brackets in this		
	case)		
	The constant of integra	tion is not required	
	May see substi	itution e.g.	
	$x+2 = 2\tan u \Longrightarrow \int \frac{1}{\left(x+2\right)^2 + 4} dx$	$dx = \int \frac{1}{4\tan^2 u + 4} 2\sec^2 u du$	
	$=\frac{1}{2}\int \mathrm{d}u = \frac{1}{2}u(+c) = \frac{1}{2}$	$\arctan\left(\frac{x+2}{2}\right)(+c)$	
	For M1 this requires a complete metho	d using a correct substitution and	
	including the reversal of the substitution and A1 as already defined Accept other notation for arctan e.g. artan, tan ⁻¹ etc.		
			(3)

(b)		For an attempt to complete the square. Allow	
	$8-4r-r^2 = 12-(r+2)^2$	$8-4x-x^2 = \alpha - (\pm x \pm 2)^2$	M1
	$\begin{bmatrix} 0 & 4x & x & -12 & (x+2) \\ 0 & 0 & 0 & 0 \end{bmatrix}$	Where $\alpha > 0$	
		$12 - (x+2)^2$	A1
	$\int \frac{1}{\sqrt{\left\{12 - \left(x + 2\right)^2\right\}}} dx$	$4x = \arcsin\frac{x+2}{\sqrt{12}} (+c)$	
	M1: For obtain	ing $\alpha \arcsin g(x)$	
	Accept other notation fo	r arcsin e.g. arsin, sin ⁻¹ etc.	M1A1
	A1: Correct result oe	e.g. $\arcsin \frac{x+2}{2\sqrt{3}} (+c)$	
	The constant of inte Accept other notation fo		
	May see substitution e.g.		
	$x + 2 = \sqrt{12} \sin u \Longrightarrow \int \frac{1}{\sqrt{12 - (x + 2)^2}}$	$\int_{0}^{2} dx = \int \frac{1}{\sqrt{12 - 12\sin^2 u}} \sqrt{12} \cos u du$	
	$=\int \mathrm{d}u=u(+c)=$	$\arcsin\left(\frac{x+2}{\sqrt{12}}\right)(+c)$	
	For M1 this requires a complete me	thod using a correct substitution and	
	including the reversal of the substitution and A1 as already defined		
	May see su	bstitution e.g.	
	$x+2 = \sqrt{12}\cos u \Longrightarrow \int \frac{1}{\sqrt{12 - (x+2)^2}}$	$\frac{1}{\int_{0}^{2}} dx = \int \frac{-1}{\sqrt{12 - 12\cos^{2} u}} \sqrt{12} \sin u du$	
	$= -\int du = u(+c) = -\arccos\left(\frac{x+2}{\sqrt{12}}\right)(+c)$		
	For M1 this requires a complete me	ethod using a correct substitution and	
	including the reversal of the sub- Accept other notation for	stitution and A1 as already defined arccos e.g. arcos, cos ⁻¹ etc.	
			(4)
			[[Total 7]

Question	Scheme		Marks
Number			Martio
4(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \sinh\frac{x}{3}$	Correct expression for dy/dx seen explicitly or used	B1
	$\int \sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2} \mathrm{d}x = \int \sqrt{1 + \mathrm{si}}$	$\sinh^2\left(\frac{x}{3}\right) dx = \int \cosh\left(\frac{x}{3}\right) dx$	
	Uses the correct formula	for arc length and reaches:	M1
	$k\int \pm \cos \theta$	$sh\left(\frac{x}{3}\right)dx$	
	$=3\sinh\left(\frac{x}{3}\right)$	Correct integration	A1
	length = $\left[3\sinh\left(\frac{x}{3}\right)\right]_{-3a}^{3a} =$	$= 3(\sinh a - \sinh(-a)) = \dots$	
	0)r	
	length = $2\left[3\sinh\left(\frac{x}{3}\right)\right]_{0}^{3a}$ =	$2 \times 3(\sinh a - \sinh(0)) = \dots$	M1
	Correct use of limits – in the second	case, the lower (0) limit does not have	
	to been seen used		
	$= 6 \sinh a$	Correct expression	Al
	Do not be overly concerned if a "sinl	" becomes "sin" or there is a missing	
	dx along the way but the	linal answer must be correct.	(5)
(b)	$6\sinh a = 12 \Longrightarrow \sinh a = 2 \Longrightarrow x_a = 3a = 3a \sinh 2$		(3)
	Uses their arc length in terms of sin arsinh or ln and	$a = a_0$ of a in terms of a multiplies by 3	M1
	$=3\ln\left(2+\sqrt{5}\right)$	Correct answer including brackets and no other answers.	A1
			(2)
(c)	$y_0 = 3\cosh a = 3\sqrt{1 + \sinh^2 a} = 3\sqrt{1 + "2"^2}$		
	or		
	$y_Q = 3\cosh a = 3\cosh\left(\ln\left(2+\sqrt{5}\right)\right) = 3\left(\frac{e^{\ln\left(2+\sqrt{5}\right)}+e^{-\ln\left(2+\sqrt{5}\right)}}{2}\right) = \dots$		M1
	Use the curve equation with $x = 3a$ or $x = -3a$ and their value for a or sinh a		
	to obtain a numerical value for y_Q i.e. no e's or ln's or cosh's etc.		
	$=3\sqrt{5}$	Cao	A1
			(2)
			[Total 9]

Question Number	Scheme		Marks
5(a)	$(\mathbf{i}+2\mathbf{k})\times(2\mathbf{i}+\mathbf{j}+3\mathbf{k})=\mathbf{i}(0-2)-\mathbf{j}(3-4)+\mathbf{k}(1-0)$ Attempt the correct vector product between the direction vectors If no method is shown at least 2 "components" should be correct		M1
	$-2\mathbf{i} + \mathbf{j} + \mathbf{k}$	Any multiple of this vector	A1
			(2)
(a) Way 2	$\mathbf{n} = \begin{pmatrix} 1 \\ a \\ b \end{pmatrix} \Rightarrow \begin{pmatrix} 1 \\ a \\ b \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} = 0, \begin{pmatrix} 1 \\ a \\ b \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$ Correct method leading to v	$= 0 \Rightarrow a = -\frac{1}{2}, b = -\frac{1}{2}$ values for <i>a</i> and <i>b</i>	M1
	$-2\mathbf{i} + \mathbf{j} + \mathbf{k}$	Any multiple of this vector	A1

Useful Diagram:

(2, -4, 0)

Mark (b) and (c) together

(b)	<i>l</i> has direction $\mathbf{i} + 6\mathbf{j} - \mathbf{k}$	Any multiple of this vector	B1
	$(i+6j-k)\cdot(-2i+j+k)=-2+6-1$	Attempts scalar product between the direction of <i>l</i> and the normal to the plane.	M1
	$\sin\alpha \text{ or } \cos(90^\circ - \alpha) = \frac{-2 + 6 - 1}{\sqrt{6} \times \sqrt{38}}$ $\left(\text{NB } \sqrt{6} \times \sqrt{38} = 2\sqrt{57}\right)$	sin or $\cos \dots = \pm \left(\frac{-2+6-1}{\sqrt{6} \times \sqrt{38}}\right)$	A1
	$\alpha = (11.45=)11^{\circ}$	For 11 (degrees symbol not required). Do not isw and mark their final answer.	A1
			(4)
(b)	l has direction $\mathbf{i} + 6\mathbf{j} - \mathbf{k}$	Any multiple of this vector	B1
Way 2	$ \mathbf{i}+6\mathbf{j}-\mathbf{k} =\sqrt{1^2+1}$	$\overline{6^2+1^2}\left(=\sqrt{38}\right)$	
	Followed by a complete method to find	d the perpendicular distance from A	
	to the plane i.e. as in part (c) $\left(\frac{3}{\sqrt{6}}\right)$ or	f finds the distance from $(3, 2, -1)$ to	M1
	the intersection of the perpendicular is $\left(\frac{\sqrt{146}}{2}\right)$ and then uses correct trigonomic (would need both distances)	ometry to find the sin or cos or tan to find the required angle.	
	3	$\sqrt{146}$ 3	
	$\sin \alpha = \frac{\overline{\sqrt{6}}}{\sqrt{38}}, \cos \alpha = -\frac{\sqrt{6}}{\sqrt{38}}$	$\frac{\overline{2}}{\sqrt{38}}, \tan \alpha = \frac{\overline{\sqrt{6}}}{\frac{\sqrt{146}}{2}}$	A1
	$\alpha = (11.45=)11^{\circ}$	For 11 (degrees symbol not required). Do not isw and mark their final answer.	A1
(b)	<i>l</i> has direction $\mathbf{i} + 6\mathbf{j} - \mathbf{k}$	Any multiple of this vector	B1
Way 3	$3 \qquad (\mathbf{i}+6\mathbf{j}-\mathbf{k})\times(-2\mathbf{i}+\mathbf{j}+\mathbf{k})=7\mathbf{i}+\mathbf{j}+13\mathbf{k}$		
	Attempts vector product between the direction of l and the normal to the plane. If no method is shown at least 2 "components" should be correct		M1
	$\sin\alpha = \frac{\sqrt{169 + 49 + 1}}{\sqrt{6} \times \sqrt{38}}$	Correct value for sin	A1
	$\alpha = (11.45=)11^{\circ}$	For 11 (degrees symbol not required). Do not isw and mark their final answer.	A1

(c)	∏ has equati	on:	
Way 1	$\mathbf{r}.(-2\mathbf{i}+\mathbf{j}+\mathbf{k})=(4\mathbf{i}+2\mathbf{j}+\mathbf{k})$	$(-2\mathbf{i}+\mathbf{j}+\mathbf{k})=-5$	
	or		
	$\mathbf{r}.(-2\mathbf{i}+\mathbf{j}+\mathbf{k})=(3\mathbf{i}+2\mathbf{j}-\mathbf{k})$	$\cdot (-2\mathbf{i} + \mathbf{j} + \mathbf{k}) = -5$	M1A1
	M1: Forms scalar product of a point in the	e plane with their normal vector	
	-5 for their normal) is obtained i.e. do no	b (or the equivalent multiple of the equation of the	
	plane explicit	tly	
	$\mathbf{r}.(-2\mathbf{i}+\mathbf{j}+\mathbf{k})=(2\mathbf{i}-4\mathbf{j}).$	$(-2\mathbf{i}+\mathbf{j}+\mathbf{k})=-8$	
	$\Rightarrow d = \left \frac{-8 - (-5)}{\sqrt{2^2 + 1^2 + 1^2}} \right $	$\frac{1}{1^2} = \dots$	M1
		Correct distance in any	
	$d = \frac{\sqrt{6}}{2}$	equivalent exact form e.g. $\frac{3}{\sqrt{6}}$	A1
			(4)
(c) Way 2	Dist (2, -4, 0) to $(3, 2, -1) = \sqrt{(3-2)^2 + (2+4)^2 + 1^2} =$		M1
	$-\sqrt{38}$	Correct distance	A1
	$d = \sqrt{38} \sin \alpha = \sqrt{38} \frac{3}{\sqrt{6} \times \sqrt{38}} = \dots$	Uses correct trigonometry to find the required distance	M1
		Correct distance in any	
	$d = \frac{\sqrt{6}}{2}$	equivalent exact form e.g. $\frac{3}{\sqrt{6}}$	A1
(c)	∏ has equati	on:	
Way 3	$\mathbf{r}.(-2\mathbf{i}+\mathbf{j}+\mathbf{k})=(4\mathbf{i}+2\mathbf{j}+\mathbf{k})$	$(-2\mathbf{i}+\mathbf{j}+\mathbf{k})=-5$	
	or		
	$\mathbf{r}.(-2\mathbf{i}+\mathbf{j}+\mathbf{k})=(3\mathbf{i}+2\mathbf{j}-\mathbf{k}).(-2\mathbf{i}+\mathbf{j}+\mathbf{k})=-5$		M1A1
	M1: Forms scalar product of a point in the plane with their normal vector A1: Correct equation. Allow this mark if -5 (or the equivalent multiple of -5 for their normal) is obtained i.e. do not need to see the equation of the		
	plane explici		
	$\Rightarrow d = \left \frac{-2 \times 2 + 1(-4) + (0) + 5}{\sqrt{2^2 + 1^2 + 1^2}} \right = \dots$	Uses a correct formula for the distance. (Allow \pm their -5)	M1
	$d = \frac{\sqrt{6}}{2}$	Correct distance in any equivalent exact form e.g. $\frac{3}{\sqrt{6}}$	A1

(c)	Let <i>P</i> be $(3, 2, -1)$ so AP = i + 6 j - k		
Way 4	$(i+6j-k) \cdot (-2i+j+k)$	(x) = -2 + 6 - 1	
	M1: Forms the vector AP and calculates s	calar product with normal vector	M1A1
	A1: Correct scalar product for their no	ormal i.e. 3 or a multiple of 3	
	depending on their normal (n	nay be unsimplified)	
	$\Rightarrow d = \left \frac{-2 + 6 - 1}{\sqrt{2^2 + 1^2 + 1^2}} \right = \dots$	Uses a correct formula for the distance.	M1
	le la	Correct distance in any	
	$d = \frac{\sqrt{6}}{2}$	equivalent exact form e.g. $\frac{3}{\sqrt{6}}$	A1
(c)	∏ has equat	ion:	
Way 5	$\mathbf{r}.(-2\mathbf{i}+\mathbf{j}+\mathbf{k})=(4\mathbf{i}+2\mathbf{j}+\mathbf{k})$	$).(-2\mathbf{i}+\mathbf{j}+\mathbf{k})=-5$	
	or		
	$\mathbf{r}.(-2\mathbf{i}+\mathbf{j}+\mathbf{k})=(3\mathbf{i}+2\mathbf{j}-\mathbf{k}).(-2\mathbf{i}+\mathbf{j}+\mathbf{k})=-5$		M1A1
	M1: Forms scalar product of a point in th		
	A1: Correct equation Allow this mark if -	5 (or the equivalent multiple of	
	-5 for their hormal) is obtained i.e. do no plane explic	itly	
	$(2\mathbf{i}-4\mathbf{j})+\lambda(-2\mathbf{i}+\mathbf{j}+\mathbf{k})$), $2x - y - z = 5$	
	$\Rightarrow 4 - 4\lambda + 4 - \lambda - \lambda = 5 \Rightarrow \lambda = \frac{-1}{2}$		
	$\Rightarrow d = \frac{1}{2} \left -2\mathbf{i} + \mathbf{j} + \mathbf{k} \right = \frac{\sqrt{2^2 + 1^1 + 1^2}}{2}$		M1
	Requires a complete method: Uses the parametric form of the line through $\frac{2}{100}$		
	(-2, 4, 0) perpendicular to the plane and su	ubstitutes into the equation of the	
	plane to find the value of the parameter and uses this correctly to find the required distance		
		Correct distance in any	
	$d = \frac{\sqrt{6}}{\sqrt{6}}$	aquivalant avaat form a g	A1
	2	equivalent exact form e.g. $\overline{\sqrt{6}}$	
			[10]

Question Number	Sch	eme	Marks
6 (a) Mark (i) and (ii) together	$\begin{vmatrix} 3-5 & 0 & 1 \\ 1 & 2-5 & 2 \\ 4 & 0 & 3-5 \end{vmatrix} = -2(-3)(-2)-4(-3)=0 \Rightarrow 5 \text{ is an eigenvalue}$ This mark is for demonstrating that 5 is an eigenvalue as above and requires a conclusion . This may also be done by substituting $\lambda = 5$ into their CE to obtain 0 with a conclusion or by performing long division and obtaining a remainder of 0 with conclusion . However if the candidate forms and solves the CE and correctly obtains $\lambda = 5$ this is sufficient without a conclusion. The conclusion can be minimal e.g. "proven", "QED", tick etc.		B1 M1 on ePEN
	$\begin{vmatrix} 3-\lambda & 0 & 1 \\ 1 & 2-\lambda & 2 \\ 4 & 0 & 3-\lambda \end{vmatrix} = (3-\lambda)^{-1}$ M1: Attempts determined Whichever method is chosen e.g. row be similar to • Row 2: (2-2) • Row 3: 4(0-(2-2)) • Colum • Colum • Colum • Colum • Colum • Colum • Solve. NB Correct expanded of	$\lambda)(2-\lambda)(3-\lambda)-4(2-\lambda)$ erminant of A - λ I /column/Sarrus, the expression should the above e.g. $\lambda)\{(3-\lambda)(3-\lambda)-4\}$ $\lambda))+(3-\lambda)(3-\lambda)(2-\lambda)$ n 1 = as Row 1 n 2 = as Row 2 n 3 = as Row 3 which may be implied by an attempt to cubic is $\lambda^3 - 8\lambda^2 + 17\lambda - 10 = 0$	M1A1
	$(2-\lambda)(\lambda-5)(\lambda)$ Attempts to solve cubic – may $\lambda = 2, 1, (5)$	$(\lambda - 1) = 0 \Longrightarrow \lambda =$ 7 just be seen from calculator Other eigenvalues 2 and 1	M1 A1
(b)	$\begin{pmatrix} 3 & 0 & 1 \\ 1 & 2 & 2 \\ 4 & 0 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 5 \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ or } \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ Demonstrates the understar Either of these stat	$ \begin{pmatrix} 3-5 & 0 & 1 \\ 1 & 2-5 & 2 \\ 4 & 0 & 3-5 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} $ adding that 5 is an eigenvalue ements is sufficient	(5) M1
	3x + z = 5x $x + 2y + 2z = 5y$ $4x + 3z = 5z$	Multiplies out to obtain at least 2 correct equations	M1
	$\therefore \text{Eigenvector is} \begin{pmatrix} 3 \\ 5 \\ 6 \end{pmatrix}$	Allow any multiple of this vector e.g. $\begin{pmatrix} 1\\ 5\\ 3\\ 2 \end{pmatrix}$ will be common. Allow $x =,$ y =, and $z =$ where x, y and $zwere seen in a vector earlier and isw$	A1
			(3)

(c)	$ \begin{pmatrix} 3 & 0 & 1 \\ 1 & 2 & 2 \\ 4 & 0 & 3 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix} = \dots \text{ or } \begin{pmatrix} 3 & 0 & 1 \\ 1 & 2 & 2 \\ 4 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} = \dots $ Attempts to multiply one of the given vectors by M to find at least one image	M1 B1 on ePEN	
	$\begin{pmatrix} 3 & 0 & 1 \\ 1 & 2 & 2 \\ 4 & 0 & 3 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix} = \dots \text{ and } \begin{pmatrix} 3 & 0 & 1 \\ 1 & 2 & 2 \\ 4 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} = \dots$ Attempts to multiply both of the given vectors by M to find both images	M1	
	Note that an attempt at $\begin{pmatrix} 3 & 0 & 1 \\ 1 & 2 & 2 \\ 4 & 0 & 3 \end{pmatrix} \begin{pmatrix} 2+\mu \\ 1+2\mu \\ -3-\mu \end{pmatrix} = \dots$ scores both M's provided		
	$ \begin{pmatrix} 3 \\ -2 \\ -1 \end{pmatrix} \text{or} \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} \qquad \text{One correct} $	A1 M1 on ePEN	
	$\begin{pmatrix} 3 \\ -2 \\ -1 \end{pmatrix} \text{and} \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} \qquad \text{Both correct}$	A1	
	$\begin{pmatrix} 3+2\mu \\ -2+3\mu \\ -1+\mu \end{pmatrix}$ scores both A marks		
	$(\mathbf{r}-\mathbf{c}) \times \mathbf{d} = 0$ where $\mathbf{c} = 3\mathbf{i} - 2\mathbf{j} - \mathbf{k}$ and $\mathbf{d} = 2\mathbf{i} + 3\mathbf{j} + \mathbf{k}$ Or $(\mathbf{r} - (3\mathbf{i} - 2\mathbf{i} - \mathbf{k})) \times (2\mathbf{i} + 3\mathbf{i} + \mathbf{k}) = 0$		
	$(\mathbf{I} - (\mathbf{J} - 2\mathbf{J} - \mathbf{K})) \times (2\mathbf{I} + 3\mathbf{J} + \mathbf{K}) = 0$ Correct equation in the correct form. Follow through their vectors but they must be correctly placed and depends on both method marks.		
		[Total 13]	

Note that candidates may transform 2 points on l_1 and then use the transformed points to find the direction of l_2 . In this case the second M and the second A1 will only be scored when the direction of l_2 is found and then the final mark becomes available.

Question Number	Scheme	Marks	
7(a)	$I_n = \int \cosh^n x \mathrm{d}x = \int \cosh x \cosh^{n-1} x \mathrm{d}x$	D1	
	$(I_n =) \int \cosh x \cosh^{n-1} x dx$ seen explicitly or used	DI	
	$I_n = \pm \cosh^{n-1} x \sinh x \pm k \int \cosh^{n-2} x \sinh^2 x dx$		
	Uses parts in the correct direction to obtain an expression of the above form	MI	
	$I_n = \cosh^{n-1} x \sinh x - \int (n-1) \cosh^{n-2} x \sinh^2 x dx$ Correct expression	A1	
	$I_n = \cosh^{n-1} x \sinh x - \int (n-1) \cosh^{n-2} x (\cosh^2 x - 1) dx$ Use of $\sinh^2 x = \cosh^2 x + 1$	d M1	
	Dependent on the previous method mark		
	$I_{n} = \cosh^{n-1} x \sinh x - (n-1)I_{n} + (n-1)I_{n-2}$	ddM1	
	Sub for I_n and I_{n-2} and collect terms Dependent on both previous method marks	aami	
	$nI_n = \sinh x \cosh^{n-1} x + (n-1)I_{n-2}$ *	A1cso	
opvious el	tors such as sign errors then the infar mark should be withheld.		
obvious ei	Tors such as sign errors then the final mark should be withheld.	(6)	
(a) Way 2	$I_n = \int \cosh^n x dx = \int \cosh^2 x \cosh^{n-2} x dx$ $(I_n = \int \cosh^2 x \cosh^{n-2} x dx$	(6) B1	
(a) Way 2	$I_n = \int \cosh^n x dx = \int \cosh^2 x \cosh^{n-2} x dx$ $(I_n =) \int \cosh^2 x \cosh^{n-2} x dx \text{ seen explicitly or used}$	(6) B1	
(a) Way 2	$I_n = \int \cosh^n x dx = \int \cosh^2 x \cosh^{n-2} x dx$ $(I_n =) \int \cosh^2 x \cosh^{n-2} x dx \text{seen explicitly or used}$ $= \int (1 + \sinh^2 x) \cosh^{n-2} x dx$	(6) B1 M1	
(a) Way 2	$I_n = \int \cosh^n x dx = \int \cosh^2 x \cosh^{n-2} x dx$ $(I_n =) \int \cosh^2 x \cosh^{n-2} x dx \text{seen explicitly or used}$ $= \int (1 + \sinh^2 x) \cosh^{n-2} x dx$ Use of $\cosh^2 x = \pm \sinh^2 x \pm 1$	(6) B1 M1	
(a) Way 2	$I_n = \int \cosh^n x dx = \int \cosh^2 x \cosh^{n-2} x dx$ $(I_n =) \int \cosh^2 x \cosh^{n-2} x dx \text{seen explicitly or used}$ $= \int (1 + \sinh^2 x) \cosh^{n-2} x dx$ $\text{Use of } \cosh^2 x = \pm \sinh^2 x \pm 1$ $= \int \cosh^{n-2} x dx + \int \sinh x \sinh x \cosh^{n-2} x dx$	(6) B1 M1	
(a) Way 2	$I_n = \int \cosh^n x dx = \int \cosh^2 x \cosh^{n-2} x dx$ $(I_n =) \int \cosh^2 x \cosh^{n-2} x dx \text{seen explicitly or used}$ $= \int (1 + \sinh^2 x) \cosh^{n-2} x dx$ $\text{Use of } \cosh^2 x = \pm \sinh^2 x \pm 1$ $= \int \cosh^{n-2} x dx + \int \sinh x \sinh x \cosh^{n-2} x dx$ $= (\int \cosh^{n-2} x dx + \int \sinh x \frac{\cosh^{n-1} x}{n-1} - \int \cosh x \frac{\cosh^{n-1} x}{n-1} dx$	(6) B1 M1	
(a) Way 2	$I_n = \int \cosh^n x dx = \int \cosh^2 x \cosh^{n-2} x dx$ $(I_n =) \int \cosh^2 x \cosh^{n-2} x dx \text{seen explicitly or used}$ $= \int (1 + \sinh^2 x) \cosh^{n-2} x dx$ $Use \text{ of } \cosh^2 x = \pm \sinh^2 x \pm 1$ $= \int \cosh^{n-2} x dx + \int \sinh x \sinh x \cosh^{n-2} x dx$ $= (\int \cosh^{n-2} x dx + \int \sinh x \cosh^{n-1} x - \int \cosh x \frac{\cosh^{n-1} x}{n-1} dx$ M1: Integrates $\sinh x \sinh x \cosh^{n-2} x$ to obtain an expression of the form	(6) B1 M1 dM1A1	
(a) Way 2	$I_n = \int \cosh^n x dx = \int \cosh^2 x \cosh^{n-2} x dx$ $(I_n =) \int \cosh^2 x \cosh^{n-2} x dx \text{seen explicitly or used}$ $= \int (1 + \sinh^2 x) \cosh^{n-2} x dx$ Use of $\cosh^2 x = \pm \sinh^2 x \pm 1$ $= \int \cosh^{n-2} x dx + \int \sinh x \sinh x \cosh^{n-2} x dx$ $= (\int \cosh^{n-2} x dx + \int \sinh x \frac{\cosh^{n-1} x}{n-1} - \int \cosh x \frac{\cosh^{n-1} x}{n-1} dx$ M1: Integrates $\sinh x \sinh x \cosh^{n-2} x dx$	(6) B1 M1 dM1A1 Note that	
(a) Way 2	$I_n = \int \cosh^n x dx = \int \cosh^2 x \cosh^{n-2} x dx$ $(I_n =) \int \cosh^2 x \cosh^{n-2} x dx \text{seen explicitly or used}$ $= \int (1 + \sinh^2 x) \cosh^{n-2} x dx$ Use of $\cosh^2 x = \pm \sinh^2 x \pm 1$ $= \int \cosh^{n-2} x dx + \int \sinh x \sinh x \cosh^{n-2} x dx$ $= (\int \cosh^{n-2} x dx + \int \sinh x \frac{\cosh^{n-1} x}{n-1} - \int \cosh x \frac{\cosh^{n-1} x}{n-1} dx$ M1: Integrates $\sinh x \sinh x \cosh^{n-2} x$ to obtain an expression of the form $\pm P \sinh x \cosh^{n-1} x \pm Q \int \cosh x \cosh^{n-1} x dx$ Dependent on the previous method mark A1: For + \sinh x \frac{\cosh^{n-1} x}{n-1} - \int \cosh x \frac{\cosh^{n-1} x}{\cosh^{n-1} x} dx	(6) B1 M1 dM1A1 Note that these 2 marks are reversed for this way.	
(a) Way 2	$I_n = \int \cosh^n x dx = \int \cosh^2 x \cosh^{n-2} x dx$ $(I_n =) \int \cosh^2 x \cosh^{n-2} x dx \text{seen explicitly or used}$ $= \int (1 + \sinh^2 x) \cosh^{n-2} x dx$ Use of $\cosh^2 x = \pm \sinh^2 x \pm 1$ $= \int \cosh^{n-2} x dx + \int \sinh x \sinh x \cosh^{n-2} x dx$ $= \left(\int \cosh^{n-2} x dx + \right) \sinh x \frac{\cosh^{n-1} x}{n-1} - \int \cosh x \frac{\cosh^{n-1} x}{n-1} dx$ M1: Integrates $\sinh x \sinh x \cosh^{n-2} x$ to obtain an expression of the form $\pm P \sinh x \cosh^{n-1} x \pm Q \int \cosh x \cosh^{n-1} x dx$ Dependent on the previous method mark A1: For + $\sinh x \frac{\cosh^{n-1} x}{n-1} - \int \cosh x \frac{\cosh^{n-1} x}{n-1} dx$ Mark in the order on ePEN so that the dM1 is the A1 on ePEN and the A1 is the M2 on ePEN	(6) B1 M1 dM1A1 Note that these 2 marks are reversed for this way.	
(a) Way 2	$I_n = \int \cosh^n x dx = \int \cosh^2 x \cosh^{n-2} x dx$ $(I_n =) \int \cosh^2 x \cosh^{n-2} x dx \text{seen explicitly or used}$ $= \int (1 + \sinh^2 x) \cosh^{n-2} x dx$ Use of $\cosh^2 x = \pm \sinh^2 x \pm 1$ $= \int \cosh^{n-2} x dx + \int \sinh x \sinh x \cosh^{n-2} x dx$ $= \left(\int \cosh^{n-2} x dx + \int \sinh x \sinh x \cosh^{n-2} x dx\right)$ M1: Integrates $\sinh x \sinh x \cosh^{n-2} x$ to obtain an expression of the form $\pm P \sinh x \cosh^{n-1} x \pm Q \int \cosh x \cosh^{n-1} x dx$ Dependent on the previous method mark A1: For+ \sinh x \frac{\cosh^{n-1} x}{n-1} - \int \cosh x \frac{\cosh^{n-1} x}{n-1} dx Mark in the order on ePEN so that the dM1 is the A1 on ePEN and the A1 is the M2 on ePEN $\Rightarrow (n-1)I_n = (n-1)I_{n-2} + \sinh x \cosh^{n-1} x - I_n$	(6) B1 M1 dM1A1 Note that these 2 marks are reversed for this way.	
(a) Way 2	$I_n = \int \cosh^n x dx = \int \cosh^2 x \cosh^{n-2} x dx$ $(I_n =) \int \cosh^2 x \cosh^{n-2} x dx \text{seen explicitly or used}$ $= \int (1 + \sinh^2 x) \cosh^{n-2} x dx$ $Use \text{ of } \cosh^2 x = \pm \sinh^2 x \pm 1$ $= \int \cosh^{n-2} x dx + \int \sinh x \sinh x \cosh^{n-2} x dx$ $= \left(\int \cosh^{n-2} x dx + \int \sinh x \frac{\cosh^{n-1} x}{n-1} - \int \cosh x \frac{\cosh^{n-1} x}{n-1} dx$ M1: Integrates $\sinh x \sinh x \cosh^{n-2} x$ to obtain an expression of the form $\pm P \sinh x \cosh^{n-1} x \pm Q \int \cosh x \cosh^{n-1} x dx$ Dependent on the previous method mark A1: For + $\sinh x \frac{\cosh^{n-1} x}{n-1} - \int \cosh x \frac{\cosh^{n-1} x}{n-1} dx$ Mark in the order on ePEN so that the dM1 is the A1 on ePEN and the A1 is the M2 on ePEN $\Rightarrow (n-1)I_n = (n-1)I_{n-2} + \sinh x \cosh^{n-1} x - I_n$ Sub for I_n and I_{n-2} and collect term Dependent on both previous method marks	(6)B1M1dM1A1Note thatthese 2 marksare reversedfor this way.	

Note that part (b) can be done in reverse order, in which case the method marks are awarded the other way round e.g.

$$\left(I_0 = \int \mathrm{d}x = x\right)$$

Second M: $I_2 = \frac{1}{2} [\sinh x \cosh x + x]$ or as defined in the main scheme First M: $I_4 = \frac{1}{4} [\sinh x \cosh^3 x + 3 (\frac{1}{2} [\cosh x \sinh x + x])]$ $\int \cosh^4 x \, dx = \frac{1}{4} \cosh^3 x \sinh x + \frac{3}{8} \cosh x \sinh x + \frac{3}{8} x (+c)$ A1A1: As defined in the main scheme

Question Number	Scheme	
8(a) Way 1	$\frac{x^2}{a^2} + \frac{(mx+c)^2}{b^2} = 1 = \dots$ Eliminates <i>y</i> from the equation of the ellipse and attempts to expand $(mx+c)^2$	M1
	$\frac{x^2}{a^2} + \frac{m^2x^2 + 2cmx + c^2}{b^2} = 1$ Correct equation with the $(mx + c)^2$ expanded correctly	A1
	$4a^{4}m^{2}c^{2} = 4a^{2}(b^{2} + a^{2}m^{2})(c^{2} - b^{2})$ Uses discriminant = 0 or equivalent Dependent on the first method mark	d M1
	$a^{2}m^{2}c^{2} = b^{2}c^{2} - b^{4} + a^{2}m^{2}c^{2} - a^{2}m^{2} \times b^{2}$ $c^{2} = b^{2} + a^{2}m^{2} \text{*}$ Complete to obtain the GIVEN result with no errors seen. At least one intermediate step should be shown.	A1 cso
		(4)
(a) Way 2	$m = \frac{b\cos\theta}{-a\sin\theta} \Rightarrow y - b\sin\theta = \frac{b\cos\theta}{-a\sin\theta} (x - a\cos\theta)$ $\Rightarrow y = \frac{b\cos\theta}{-a\sin\theta} x + \frac{b}{\sin\theta} \Rightarrow m = \frac{b\cos\theta}{-a\sin\theta}, \ c = \frac{b}{\sin\theta}$ M1: Forms the equation of a general tangent and "extracts" c and m A1: Correct c and m	M1A1
	$b^{2} + a^{2}m^{2} = b^{2} + a^{2}\left(\frac{b\cos\theta}{-a\sin\theta}\right)^{2}$ Substitutes their <i>m</i> into $b^{2} + a^{2}m^{2}$ or equivalent work. Dependent on the first method mark	dM1
	$b^{2} + a^{2}m^{2} = \frac{b^{2}\cos^{2}\theta + b^{2}\sin^{2}\theta}{\sin^{2}\theta} = \frac{b^{2}}{\sin^{2}\theta} = c^{2}$ $b^{2} + a^{2}m^{2} = c^{2} *$ Completes correctly with conclusion e.g. tick, QED etc.	A1

	1		1
(b) Way 1	$x = 0 \Rightarrow y = c, y = 0 \Rightarrow x = -\frac{c}{m}$ Correct values for the interce	B1	
	Area $\triangle OAB = -\frac{c^2}{2m} \left(\text{or } \frac{c^2}{2m} \right)$	Correct expression for the area (allow + or – here)	B1
	$b^2 \pm a^2 m^2 \left(b^2 \pm a^2 m^2 \right)$	Uses $c^2 = b^2 + a^2m^2$ in the area expression to eliminate <i>c</i> .	M1
	$= -\frac{b^{2} + a^{2}m}{2m} \left(\text{or } \frac{b^{2} + a^{2}m}{2m} \right)$	Correct expression (may be unsimplified) (allow + or – here)	A1
	$\frac{dA}{dm} = \frac{b^2}{2}m^{-2} - \frac{a^2}{2} \text{ or } \frac{dA}{dm} = -\frac{2m \times 2a^2m - 2(b^2 + a^2m^2)}{4m^2}$ Differentiates wrt <i>m</i> (must be correct differentiation for their <i>A</i>). Dependent on the previous M		
	At min $m^2 = \frac{b^2}{a^2}$ $m = (\pm)\frac{b}{a}$	Equate their derivative to 0 and solves for m^2 or m . Dependent on all the previous M's	ddM1
	Min area $= -\frac{b^2 + b^2}{-\frac{2b}{a}} = ab$ (units ²)	Correct completion with no errors.	A1
	u u		(7)
			[Total 11]
(b) Way 2	$x = 0 \Rightarrow y = c, y = 0 \Rightarrow x = -\frac{c}{m}$ Correct values for the interce	or $(A \text{ is })\left(-\frac{c}{m}, 0\right)$ $(B \text{ is })(0, c)$ cepts or correct coordinates.	[Total 11] B1
(b) Way 2	$x = 0 \Rightarrow y = c, y = 0 \Rightarrow x = -\frac{c}{m}$ Correct values for the interce Area $\triangle OAB = -\frac{c^2}{2m} \left(\text{or } \frac{c^2}{2m} \right)$	or $(A \text{ is })\left(-\frac{c}{m}, 0\right)$ $(B \text{ is })(0, c)$ cepts or correct coordinates. Correct expression for the area (allow + or - here)	(7) [Total 11] B1 B1
(b) Way 2	$x = 0 \Rightarrow y = c, y = 0 \Rightarrow x = -\frac{c}{m}$ Correct values for the interce Area $\triangle OAB = -\frac{c^2}{2m} \left(\text{ or } \frac{c^2}{2m} \right)$ $b^2 + a^2 m^2 \left(-b^2 + a^2 m^2 \right)$	or $(A \text{ is })\left(-\frac{c}{m}, 0\right)$ $(B \text{ is })(0, c)$ cepts or correct coordinates. Correct expression for the area (allow + or – here) Uses $c^2 = b^2 + a^2m^2$ in the area expression to eliminate c.	(7) [Total 11] B1 B1 M1
(b) Way 2	$x = 0 \Rightarrow y = c, y = 0 \Rightarrow x = -\frac{c}{m}$ Correct values for the interce Area $\Delta OAB = -\frac{c^2}{2m} \left(\text{or } \frac{c^2}{2m} \right)$ $= -\frac{b^2 + a^2m^2}{2m} \left(\text{or } \frac{b^2 + a^2m^2}{2m} \right)$	or $(A \text{ is })\left(-\frac{c}{m}, 0\right)$ $(B \text{ is })(0, c)$ cepts or correct coordinates. Correct expression for the area (allow + or – here) Uses $c^2 = b^2 + a^2m^2$ in the area expression to eliminate c. Correct expression (may be unsimplified) (allow + or – here)	[Total 11] B1 B1 M1 A1
(b) Way 2	$x = 0 \Rightarrow y = c, y = 0 \Rightarrow x = -\frac{c}{m}$ Correct values for the interce Area $\Delta OAB = -\frac{c^2}{2m} \left(\text{ or } \frac{c^2}{2m} \right)$ $= -\frac{b^2 + a^2m^2}{2m} \left(\text{ or } \frac{b^2 + a^2m^2}{2m} \right)$ $A = -\frac{(am+b)^2 - 2amb}{2m}$	or $(A \text{ is })\left(-\frac{c}{m}, 0\right)$ $(B \text{ is })(0, c)$ cepts or correct coordinates. Correct expression for the area (allow + or – here) Uses $c^2 = b^2 + a^2m^2$ in the area expression to eliminate c. Correct expression (may be unsimplified) (allow + or – here) Correct completion of the square in the numerator. Dependent on the previous M	[Total 11] B1 B1 M1 A1 dM1
(b) Way 2	$x = 0 \Rightarrow y = c, y = 0 \Rightarrow x = -\frac{c}{m}$ Correct values for the interce Area $\Delta OAB = -\frac{c^2}{2m} \left(\text{or } \frac{c^2}{2m} \right)$ $= -\frac{b^2 + a^2m^2}{2m} \left(\text{or } \frac{b^2 + a^2m^2}{2m} \right)$ $A = -\frac{(am+b)^2 - 2amb}{2m}$ $= ab - \frac{(am+b)^2}{2m} \text{ is min}$ Correct argument for est	or $(A \text{ is })\left(-\frac{c}{m}, 0\right)$ $(B \text{ is })(0, c)$ cepts or correct coordinates. Correct expression for the area (allow + or – here) Uses $c^2 = b^2 + a^2m^2$ in the area expression to eliminate c. Correct expression (may be unsimplified) (allow + or – here) Correct completion of the square in the numerator. Dependent on the previous M imum when $am + b = 0$ tablishing the minimum	[Total 11] B1 B1 M1 A1 dM1 dM1
(b) Way 2	$x = 0 \Rightarrow y = c, y = 0 \Rightarrow x = -\frac{c}{m}$ Correct values for the interce Area $\Delta OAB = -\frac{c^2}{2m} \left(\text{or } \frac{c^2}{2m} \right)$ $= -\frac{b^2 + a^2m^2}{2m} \left(\text{or } \frac{b^2 + a^2m^2}{2m} \right)$ $A = -\frac{\left(am + b\right)^2 - 2amb}{2m}$ $= ab - \frac{\left(am + b\right)^2}{2m} \text{ is min Correct argument for ess}$ Dependent on all	or $(A \text{ is })\left(-\frac{c}{m}, 0\right)$ $(B \text{ is })(0, c)$ cepts or correct coordinates. Correct expression for the area (allow + or – here) Uses $c^2 = b^2 + a^2m^2$ in the area expression to eliminate c. Correct expression (may be unsimplified) (allow + or – here) Correct completion of the square in the numerator. Dependent on the previous M imum when $am + b = 0$ tablishing the minimum the previous M's	[Total 11] B1 B1 M1 A1 dM1 dM1

(b)	$r = 0 \Rightarrow v = \frac{ab\cos^2}{cos^2}$		
Way 3	$x = 0 \Rightarrow y = \frac{1}{a\sin\theta} + b\sin\theta \left(=\frac{1}{\sin\theta}\right)$		
	or		B1
	$y = 0 \implies y = \frac{ab\sin^2\theta}{a\cos\theta} + a\cos\theta \left(-\frac{a}{a}\right)$		
	$y = 0 \implies y = \frac{1}{b\cos\theta} + u\cos\theta \left(-\frac{1}{\cos\theta}\right)$		
	Correct value for one of the inf	tercepts or correct coordinates.	
	$x = 0 \Longrightarrow y = \frac{ab\cos^2\theta}{a\sin\theta} + b\sin\theta \left(=\frac{b}{\sin\theta}\right)$		
	ar	nd	ם 1
	$y = 0 \Longrightarrow y = \frac{ab\sin^2\theta}{b\cos\theta} + a\cos\theta \left(=\frac{a}{\cos\theta}\right)$		БІ
	Correct values for both inter	cepts or correct coordinates.	
	Area $\triangle OAB A = \frac{1}{2} \frac{a}{a} \frac{b}{b} \frac{b}{a}$	Correct method for the area using their intercepts	M1
	$2\cos\theta\sin\theta$	Correct area (may be unsimplified)	A1
	$\frac{dA}{10} = \frac{-2ab(\cos^2\theta - \sin^2\theta)}{4\cos^2\theta} = 0 \Rightarrow \theta = \frac{\pi}{4}$		
	UU 45111 UUS	$5 \theta = 4$	dM1
	Adopts a correct strategy for finding θ at the minimum Dependent on the previous M		
	ab	Uses their value for A to find the	
	$A_{\min} = \frac{1}{2\sin\frac{\pi}{4}\cos\frac{\pi}{4}}$	minimum value. Dependent on all the previous M's	ddM1
	=ab (units ²)	Cso	A1
	Alternative for	r last 3 marks:	
	Area $\triangle OAB \ A = \frac{1}{2}$	$\frac{ab}{\sin A\cos \theta} = \frac{ab}{\sin 2\theta}$	
	And the minimum will occur when sin 2θ is maximum i.e. when sin $2\theta = 1$ Score this mark for a valid argument for determining the minimum		dM1
	Dependent on t		
	$A_{\min} = \frac{ab}{1}$	the minimum. Dependent on all the previous M's	ddM1
	=ab (units ²)	Correct completion with no errors.	A1

(b) Way 4	$x = 0 \Rightarrow y = c$, $y = 0 \Rightarrow x = -\frac{c}{m}$ or Correct values for the intercep	B1	
	Area $\triangle OAB = -\frac{c^2}{2m} \left(\text{or } \frac{c^2}{2m} \right)$	Correct expression for the area (allow + or – here)	B1
	ac^{2} (ac^{2}) Uses $c^{2} = b$ expression	Uses $c^2 = b^2 + a^2m^2$ in the area expression to eliminate <i>m</i> .	M1
	$-\frac{1}{2\sqrt{c^2-b^2}}\left(-\frac{1}{2\sqrt{c^2-b^2}}\right)$	Correct expression. (allow + or – here)	A1
	$\frac{dA}{dz} = \frac{2ac \times 2\sqrt{c^2 - b^2} - 2ac^3 (c^2 - b^2)^{-\frac{1}{2}}}{4(c^2 - b^2)}$		
	$\frac{4(c - b)}{Differentiates wrt c.}$ Dependent on the previous M		dM1
	$At \min 2c^2 - 2b^2 - c^2$		
	Equate their derivative to 0 and solves to obtain c in terms of b Dependent on all the previous M's		dM1
	Min area $=\frac{2ab^2}{2\sqrt{2b^2-b^2}}=ab$ (units ²)	Correct completion with no errors.	A1

There will be other valid methods in part (b). Generally, the first 4 marks are for obtaining an expression for the area of *AOB* and then applying the result in part (a) to enable progress to be made in establishing the minimum or for using the general tangent in terms of θ to find the intercepts and hence the area of *AOB*. The final 3 marks are for selecting and implementing a correct strategy for proving that the minimum area is *ab*.

There may also be other valid methods in part (a).

If you are in any doubt whether a particular method is valid then please seek advice from your Team Leader.

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom