

Mark Scheme (Results)

Summer 2019

Pearson Edexcel International Advanced Level In Further Pure Mathematics F1 (WFM01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019 Publications Code WFM01_01_1906_MS All the material in this publication is copyright © Pearson Education Ltd 2019

General Marking Guidance

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for `knowing a method and attempting to apply it', unless otherwise indicated.
- **A** marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- o.e. or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao), unless shown, for example, as A1ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles)

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^2 + bx + c) = (x + p)(x + q)$, where |pq| = |c|, leading to x = ...

 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

2. Formula

Attempt to use the correct formula (with values for *a*, *b* and *c*).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = ...$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. ($x^n \rightarrow x^{n+1}$)

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Summer 2019 WFM01/01 Further Pure Mathematics F1 Mark Scheme

Question Number	Scheme				Notes		Marks
1.	$f(x) = 5 + 4x^2 - \frac{4}{3}x^3 - \frac{7}{2x};$	x > 0					
	At least one of either $5+4x^2$ $f'(x) = 8x = 4x^2 + 7x^{-2}$ $4x^3 = x + 2x^2 + 7x^{-2}$		ither $5 + 4x^2 \rightarrow \pm Ax$	M1			
(a)	1(x) = 8x - 4x + -x		or -	$-\frac{1}{3}x^{2} \rightarrow$	$\Rightarrow \pm Bx^- \text{ or } -\frac{1}{2x} \Rightarrow$	$\pm Cx^{-}; A, B, C \neq 0$	
		Correct	differenti	ation, w	hich can be un-sin	mplified or simplified	A1 (2)
	Either $f(0.5) = -\frac{7}{6}$ or awrt -1.17 or truncated -1.1		7 or truncated -1.16	D1			
(0)	1(0.5) =, 1(0.5) = 17 6	or a co	orrect num	nerical	expression for eit	or $f'(0.5) = 17$ her $f(0.5)$ or $f'(0.5)$	БI
					Can be impl	ied by later working	
	$\left\{\alpha \simeq 0.5 - \frac{f(0.5)}{f'(0.5)}\right\} \Longrightarrow \alpha \simeq 0$	$0.5 - \frac{-\frac{7}{6}}{17}$		١	Valid attempt at Note their values of their values of their values of their values of the their values of the their values of the	ewton-Raphson using of $f(0.5)$ and $f'(0.5)$	M1
	$\left\{ \alpha = 0.56862745 \text{ or } \frac{29}{51} \right\} =$	$\Rightarrow \alpha = 0.569$	(3 dp)	Co	orrect $f'(x)$ and G (Ignore any s	0.569 on first iteration subsequent iterations)	A1 cso cao
	Correct differentiation followed by 0.569 (with no working seen) score			ing seen) scores f	ull marks in part (b)	(3)	
(c) Way 1	$f(3) = \frac{23}{6} = 3.833333$ $f(3.5) = -\frac{25}{6} = -4.166666$			Attempts to evaluate both $f(3)$ and $f(3.5)$			
Way I			and either $f(3) = \frac{2}{6}$ or awrt 4 of truncated 3			M1	
				or $1(3.3) = -\frac{1}{6}$ or $4 = -4$			
	Sign change {positive, negative} {and $f(x)$ is continuous} therefore a root { β } exists in the interval {[3, 3,5]}		the	Both values correct awrt (or truncated) to 1sf, sign change and conclusion.		A1	
							(2)
(d) War 1	$\frac{\beta-3}{\beta-3} = \frac{3.5-\beta}{\beta}$	$\frac{\beta-3}{\beta-3}$		3"	A correct linear	interpolation method.	
way 1	"3.8333" "4.1666" or $\frac{\beta - 3}{"3.8333"} = \frac{3.5}{"4.166"}$	$3.5 - \beta$ - 3 - "3.8333"	"4.1666	5"	Do not allow this or three negative either fraction This	mark if a total of one lengths are used or if is the wrong way up. mark may be implied.	M1
	• $\beta = \left((3)("4.1666") + (3)("4.1666") + (3)("4.1666") + (3)("4.1666") + (3)("4)("4)("4)("4)("4)("4)("4)("4)("4)("4$	(3.5)("3.833 + "3.8333"	<u>33")</u>)=	(12.5	$\frac{+13.4166}{8}$	dependent on the	
	• $\beta = 3 + \left(\frac{"3.8333.}{"4.1666" + "3}\right)$	<u>"</u>)(0	(0.5) or β	3 = 3 + ($\left(\frac{\frac{23}{6}}{8}\right)(0.5)$	Rearranges to give $\beta = \dots$	dM1
	• $\beta = 3 + \left(\frac{"-3.833}{"-4.1666"+1}\right)$	33" "–3.8333"	-)(0.5)				
	$\left\{ \beta = 3.239583 \text{ or } 3\frac{23}{96} \text{ or } \right\}$	$\frac{311}{96} \bigg\} \Rightarrow \beta$	= 3.24 (2	2dp)	(Ignore any	awrt 3.24 subsequent iterations)	A1
							(3)
							10

Question Number		Scheme	Notes	Marks		
1. (d)		r = 0.5 - r				
Way 2	"3.83	$\frac{1}{33} = \frac{0.5 \ x}{4.1666}$				
	()) 5)("3 8333 ")				
	$x = \frac{100}{1383}$	(33)(3.0555) = 0.239583	Finds a using a correct method of			
	5.05	55 T 7.1000	similar triangles and applies	M1 dM1		
	$\Rightarrow \beta = 3$	3 + 0.239583	" $3 + \text{their } x$ "			
	$\begin{cases} \beta = 3.23 \end{cases}$	39583 or $3\frac{23}{96}$ or $\frac{311}{96}$ $\Rightarrow \beta = 3.24$ (2dp)	awrt 3.24	A1		
				(3)		
1. (d)	0.5	x = -x x				
Way 3	"3.83	$\overline{333}^{=} = \overline{4.1666}^{=}$				
	(0).5)("4.1666")				
	$x = \frac{1}{3.83}$	$\frac{1}{33" + "4.1666"} = 0.260416$	Finds wasing a segment mothod of			
			similar triangles and applies	M1 dM1		
	$\Rightarrow \beta = 3$	3.5 – 0.260416	" $3.5 - \text{their } x$ "			
	,	23 311)				
	$\begin{cases} \beta = 3.23 \end{cases}$	39583 or $3\frac{-}{96}$ or $\frac{-}{96}$ $\Rightarrow \beta = 3.24$ (2dp)	awrt 3.24	A1		
				(3)		
	Question 1 Notes					
1. (b)	Note	ote Give full marks in part (b) for correct differentiation in (a) followed by the correct answer				
		in (b) with <u>no</u> working.		_		
	M1	This mark can be implied by applying at least one correct <i>value</i> of either $f(0.5)$ or their				
		f'(0.5) (where f'(0.5) is found using their f'(x)) to 1 significant figure in $0.5 - \frac{f(0.5)}{f'(0.5)}$.				
		t (0.5)				
		So just writing $0.5 - \frac{\Gamma(0.5)}{\Gamma(0.5)}$ with an incorrect	ft answer on their $f'(0.5)$ scores BOM	10A0.		
		I (0.5)				
	Note	Note Give B1M1A0 for a correct $f'(x)$ in (a) followed by only $\alpha \simeq 0.5 - \frac{f(0.5)}{f'(0.5)} = \frac{29}{51}$ in (b)				
	Note	Differentiating INCORRECTLY to give $f'(x)$	$= 8x - 4x^{2} + 14x^{-2}$ leads to			
	1,000	$-\frac{7}{2}$ 02				
		$\alpha \simeq 0.5 - \frac{6}{59} = \frac{92}{177} = 0.5197740113 = 0.520$	0 (3 dp)			
		This response should be given B1 M1 A0				
	Note	Differentiating INCORRECTLY to give $f'(x)$	$= 8x - 4x^{2} + 14x^{-2}$ and			
	$\alpha \simeq 0.5 - \frac{f(0.5)}{f'(0.5)} = 0.520$ or truncated 0.52 or 0.519 or awrt 0.520 is B1 M1 A0					
(c)	Note	Way 1: correct solution only				
		Required to state both values for $f(3)$ and $f(3.5)$	5) correct awrt (or truncated) to 1sf a	long with		
		a reason and a conclusion. Reference to chang	e of sign or e.g. $f(3) \times f(3.5) < 0$ or	-		
		f(3) > 0 > f(3.5) or a diagram or < 0 and > 0 o	or one positive, one negative are suffi	cient		
		reasons. There must be a conclusion, e.g. $\{x \text{ or }\}$	$\beta \in [3, 3.5]$ or $\{x \text{ or }\}\beta \in (3, 3.5)$ or	root lies		
		between 3 and 3.5. Ignore the presence or absen	ce of any reference to continuity.			
	Note	A minimal acceptable reason and conclusion is "	'change of sign, so $\beta \in [3, 3.5]$ "			
		or "change of sign, so root is between 3 and 3.5"	' or "change of sign, so root"			

		Question 1 Notes Continued					
1. (c)	Note	<u>Way 2</u>					
		The root of $f(x) = 0$ is 3.27491258, so they can choose x_1 which is less than 3.27491258					
		and choose x_2 which is greater than 3.27491258 with both x_1 and x_2 lying in the interval					
		[3, 3.5].					
		M1: Finds $f(x_1)$ and $f(x_2)$ with one of these values correct awrt (or truncated) to 1sf					
		A1: Both values correct awrt (or truncated) to 1sf, sign change and conclusion.					
	Note	Helpful Table					
		$\frac{\lambda}{2}$ I(x)					
		<u> </u>					
		3.1 2.38903440					
		3.3 -0.41660606					
		3.4 -2.19474509					
		3.5 -4.166666666					
1. (d)	Note	Condone writing the symbol α in place of β in part (d)					
		$\beta - 3$ "3.833"					
	Note	$\frac{1}{3.5-\beta} = \frac{1}{ -4.1666 }$ is a valid method for the first M mark					
		$f(2) = \beta - 3 = f(1,2) = \beta - 3 = f(3) = \beta - 3$					
	Note	Give 1 st M1 for either $\frac{\Gamma(5)}{f(3.5)} = \frac{p-5}{3.5-\beta}$ or $\frac{\Gamma(1.2)}{ f(1.3) } = \frac{p-5}{3.5-\beta}$ or $\frac{ \Gamma(5) }{ f(3.5) } = \frac{p-5}{3.5-\beta}$					
		$\frac{-f(3.5) - 3.5 - \beta}{3.5 - \beta} = \frac{ f(1.5) - 5.5 - \beta}{ f(3.5) + 3.5f(3)} = 3.24$ Give M0 dM0 for $\frac{3 f(3.5) + 3.5f(3)}{ f(3.5) + f(3)} = \frac{3("-4.166") + 3.5("3.8333")}{("-4.166") + ("3.8333")}$ Give M1 dM1 for the correct statement $\beta = \frac{3.5 + 3k}{3.5 + 3k}$					
	Note						
	Note						
	11010						
	Noto						
	Note	Give M1 dM1 for the correct statement $\beta = \frac{k+1}{k+1}$, where k is defined as $k = \frac{ f(3.5) }{f(3)} = \frac{4.1666}{3.8333} = 1.086957$					
	Note	Give M1 dM1 for the correct statement $\beta = \frac{c+1}{c+1}$,					
		f(3) 3.8333 0.02					
		where c is defined as $c = \frac{1}{ f(3.5) } = \frac{1}{4.1666} = 0.92$					
		$\beta - 3$ "3.8333"					
	Note	$\frac{1}{3.5-\beta} = \frac{1}{4.1666} \Rightarrow \beta = 3.24$ with no intermediate working is M1 dM1 A1					
		$\beta = 3$ $\beta = \beta$					
	Note	$\frac{\beta}{3.8333} = \frac{5.5 \ \beta}{-4.1666} \Rightarrow \beta = -2.75 \text{ is M0 dM0 A0}$					
		$\beta - 3$ $35 - \beta$					
	Note	$\frac{\rho}{-3.8333} = \frac{3.5 \ \rho}{-4.1666} \Rightarrow \beta = 3.24 \text{ is M1 dM1 A1}$					
	Note	$\frac{\beta - 5}{2 \pi - 2} = \frac{4.1000}{1000} \Rightarrow \beta = 3.260416$ is M0 dM0 A0					
		$3.5 - \beta$ "3.8333"					

Question Number	Scheme		Notes	Marks
1. (d) Way 4	• $y - \frac{23}{6} = \frac{-\frac{25}{6} - \frac{23}{6}}{3.5 - 3}(x - 3) \Rightarrow 0 - \frac{23}{6} = \frac{-\frac{25}{6}}{3.5}$ • $y\frac{25}{6} = \frac{-\frac{25}{6} - \frac{23}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0\frac{25}{6} = \frac{-\frac{25}{6} - \frac{23}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6} - \frac{23}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6} - \frac{23}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6} - \frac{23}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6} - \frac{23}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6} - \frac{23}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6} - \frac{23}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6} - \frac{23}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6} - \frac{23}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6} - \frac{23}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6} - \frac{23}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6} - \frac{23}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6} - \frac{23}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6} - \frac{23}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6} - \frac{25}{6}}{3.5 - 3}(x - 3.5) = \frac{1}{2} + \frac$	$\frac{-\frac{23}{6}}{5-3}(x-3)$ $=\frac{-\frac{25}{6}-\frac{23}{6}}{3.5-3}(x-3.5)$	Complete method of finding a line joining the points (3, f(3)), (3.5, f(3.5)) followed by setting $y = 0$	M1
	$\Rightarrow x = \dots$ or $\beta = \dots$	depende Rearrar	ent on the previous M mark ages to give $x =$ or $\beta =$	dM1
	$\left\{ x \text{ or } \beta = 3.239583 \text{ or } 3\frac{23}{96} \text{ or } \frac{311}{96} \right\} \Rightarrow \beta$	B = 3.24 (2dp)	awrt 3.24	A1
				(3)

Question Number	Scheme			Notes	Marks
2.	$\mathbf{M} = \begin{pmatrix} k - k \\ k \end{pmatrix}$	$\begin{pmatrix} -12 & 3 \\ 4 & k \end{pmatrix}$, where k is a real constant			
	$\left\{ \det(\mathbf{M}) \right\}$	$= (k-12)k - 4(3)$ and area ratio $= \frac{32}{20}$	$\frac{0}{0} = 16$		
	20(k(k –	(12) - 4(3) = 320 or $20(k(k-12) - 4($	3)) = -320	20(applied det(\mathbf{M})) = ±320, o.e. Note: Allow 320(applied det(\mathbf{M})) = ±20, o.e.	M1
	or <i>k</i> (<i>k</i> – 1	(2) - 4(3) = $\frac{320}{20}$ or $k(k-12) - 4(3) =$	$-\frac{320}{20}$	At least one correct equation in <i>k</i> that can be simplified or un-simplified	A1
	k^2	$-12k - 28 = 0, k^2 - 12k + 4 = 0$ $240k - 560 = 0, 20k^2 - 240k + 80 = 0$	ļ		
	(<i>k</i> -14)($(k+2) = 0$ or $(k-6)^2 - 36 + 4 = 0$ to give $k =$	der At least or applying	bendent on the previous M mark ne correct method (e.g. factorising, the quadratic formula, completing the square or calculator) of solving a 3TO to give $k =$	dM1
	k	$k = 14, -2, 6 + 4\sqrt{2}, 6 - 4\sqrt{2}$		least two of either $k = 14, k = -2,$ $k = 6 + 4\sqrt{2}$ or $k = 6 - 4\sqrt{2}$ All four correct values of k	A1 A1
					(5) 5
		Qu	estion 2 No	tes	
2.	Note	 Allow 1st M1 for any of 320(k(k-12)-4(3)) = 20 320(k(k-12)-4(3)) = -20 which can be simplified on up simplified. 	 k(k-12 k(k-12 	$2) - 4(3) = \frac{20}{320}$ $2) - 4(3) = -\frac{20}{320}$	
	Note	which can be simplified or un-simplified. Allow 1 st M1 for any of • $20(k(k-12) + 4(3)) = 320$ • $320(k(k-12) + 4(3)) = 20$ • $320(k(k-12) + 4(3)) = 20$ • $320(k(k-12) + 4(3)) = 20$ • or equivalent which can be simplified or un-simplified			
	Note	Give 1 st M0 for any of • $(k(k-12)-4(3)) = (20)(320)$ • $(k(k-12)+4(3)) = (20)(320)$			
	Note	Give dM1 for using a calculator to v	write down at	t least one correct root for their 3TQ	2
	Note	For the 1 st A1 mark			
		• condone truncated 11.6 or awrt 1	1.7 in place	of $k = 6 + 4\sqrt{2}$	
		• condone awrt 0.34 in place of $k = 6 - 4\sqrt{2}$			
	Note	Allow $k = 6 + \sqrt{32}$ instead of $k = 6$ for any of the final two accuracy ma	$+4\sqrt{2}$ and/ourks.	or $k = 6 - \sqrt{32}$ instead of $k = 6 - 4\sqrt{32}$	2
	Note	Allow final A1 (isw) for $k = 14, -2$	$2, 6+4\sqrt{2}, a$	wrt 11.6, $6 - 4\sqrt{2}$, awrt 0.34	
	Note	Give 2 nd A0 (i.e. the penultimate ma	rk) for findin	ng only one correct value for k as a	result of
		rejecting (or ignoring) correct values	s for <i>k</i>		
	Note	Give final A0 if any of $k = 14, -2,$	$6+4\sqrt{2}, 6-$	$4\sqrt{2}$ are rejected	
	Note	Give final A0 for extra solutions in a	addition to k	$x = 14, -2, 6 + 4\sqrt{2}, 6 - 4\sqrt{2}$	

		Question 2 Notes Continued	
2.	Note $320(k(k-12)-4(3)) = 20$ leads to $16k^2 - 192k - 193 = 0$ and $k = 12.9327, -0.9327$		
		$320(k(k-12)-4(3)) = -20$ leads to $16k^2 - 192k - 191 = 0$ and $k = 12.9236, -0.9236$	
	Note	$20(k(k-12)+4(3)) = 320$ leads to $k^2 - 12k - 4 = 0$ and $k = 12.3245, -0.3245$	
		$20(k(k-12)+4(3)) = -320$ leads to $k^2 - 12k + 28 = 0$ and $k = 8.8284, 3.1715$	
	Note	$320(k(k-12)+4(3)) = 20$ leads to $16k^2 - 192k + 191 = 0$ and $k = 10.9053, 1.0946$	
		$320(k(k-12)+4(3)) = -20$ leads to $16k^2 - 192k + 193 = 0$ and $k = 10.8925, 1.1074$	

Question Number	Scheme	Scheme Notes I			Marks	
3.	(i) $z^* - 3z = \frac{5i}{3-i}$; (ii) $w = -4 + 5i$,	(b) $\arg(w+k) =$	$\frac{\pi}{2}$, (c) w+	$ ci = 4\sqrt{5}$		
(i) Way 1	${z^* - 3z =} (a - ib) - 3(a + ib)$	Can be imp	Left lied by e.g. (or impl	hand side = $(a - 2a - 4bi)$ No lied) anywhere	(a-ib) - 3(a+ib) ite: Can be seen in their solution	B1
	= $\frac{5i}{(3-i)} \frac{(3+i)}{(3+i)}$	Mu	iltiplies nun rig	herator and de ht-hand side b	nominator of the y $3+i$ or $-3-i$	M1
	= $\frac{15i - 5}{10}$		right-hai	Applies and side $=\frac{15i}{10}$	$\frac{1}{2}i^2 = -1$ to give -5 or equivalent	A1
	So, $-2a - 4bi = -\frac{1}{2} + \frac{3}{2}i$	dej Equates	pendent on either real j	the previous parts or imagin at least one of	B and M marks ary parts to give $a = \dots$ or $b = \dots$	ddM1
	$\Rightarrow a = \frac{1}{4}, b = -\frac{3}{8} \Rightarrow z = \frac{1}{4} - \frac{3}{8}i$	$z = \frac{1}{4} - \frac{2}{8}$	$\frac{3}{8}$ i or $z = 0$	0.25–0.375i o	$\mathbf{r} z = \frac{1}{4} + \left(-\frac{3}{8}\mathbf{i}\right)$	A1
					(5)	
(1) Way 2	Left hand side = $(a-ib)-3(a+ib)$ $\int z^* - 3z = \int (a-ib) - 3(a+ib)$			D1		
Way 2	$\{2, -32, -\} (a-1b) - 5(a+1b)$	Can be imp	lied by e.g.	-2a - 4b1 NG	in their solution	ы
	$(-2a-4bi)(3-i) = \dots$		Multip	lies their $(-2a)$	-4bi) by $(3-i)$	M1
	$-6a + 2ai - 12bi - 4b = \dots$	left-hand s	side = $-6a$	Applies $+ 2ai - 12bi -$	$i^2 = -1$ to give 4b or equivalent	A1
	S_{2} ((, , , , , , ,) + (2 - , , 12); 5;	der	dependent on the previous B and M marks			
	So, $(-6a-4b) + (2a-12b)i = 5i$ gives $-6a-4b = 0$, $2a-12b = 5$	Equates bot simultaneou	h real parts usly to give	and imaginary at least one of	parts and solves $a = \dots$ or $b = \dots$	ddM1
	$\Rightarrow a = \frac{1}{4}, b = -\frac{3}{8} \Rightarrow z = \frac{1}{4} - \frac{3}{8}i$	$z = \frac{1}{4} - \frac{1}{4}$	$z = \frac{1}{4} - \frac{3}{8}i$ or $z = 0.25 - 0.375i$ or $z = \frac{60}{240} - \frac{15}{40}i$		A1	
			0		240 40	(5)
(ii)(a)	e.g. $\arg w = \pi - \tan^{-1}(\frac{5}{4})$ or $= \frac{\pi}{2} + \tan^{-1}(\frac{4}{5})$ or $= -\pi - \tan^{-1}(\frac{5}{4})$	Uses trigonom $\arg w$ is in	etry to find n the range or (-4.71	an expression (1.58, 3.14 ., -3.15) or	for arg <i>w</i> so that .) or (90°, 180°) (-270°, -180°)	M1
	$\arg w = \pi - 0.896055 = 2.245.$	537 {= 2.25 (2 0	dp)	awrt 2.25	5 or awrt – 4.04	A1
	$\sqrt{Note} = -4.0$	$\frac{1286598}{1286598} \circ \text{or} = 2$	4(2 up)	$\frac{\mathbf{OF} \text{ awrt } 0.55}{\mathbf{is} \mathbf{M1} \mathbf{A01}}$	or awrt –10.52	(2)
(b)	$\frac{1}{4 \operatorname{arg}(-4+5\mathbf{i}+k) - \pi} \xrightarrow{\pi} - 4 \pm k = 0$	$\rightarrow k - 4$	2J1.J401	10 1011 740 }	$l_r = \Lambda$	(2) B1
(0)	$\lim_{k \to \infty} (-\tau + S_1 + K) - \frac{1}{2} \rightarrow -4 + K - 0$	→ j n - +			$\kappa = 4$	(1)
(c)		Squares and a	adds the rea	l and imaginar	y parts of $w + ci$	
	$ -4+5i+ci = 4\sqrt{5}$	1	and sets e	equal to either	$(4\sqrt{5})^2$ or $4\sqrt{5}$	M1
	$\Rightarrow \left -4 + (5+c)\right = 4\sqrt{5}$			$(-4)^2 + (5+a)^2$	$(2)^2 = (4\sqrt{5})^2$ o.e.	A1
	$\Rightarrow (-4)^2 + (5+c)^2 = (4\sqrt{5})^2$	Allow the	equivalent 1	result $\sqrt{(-4)^2}$	$+(5+c)^2 = 4\sqrt{5}$	
	$16 + (5+c)^2 = 80 \implies (5+c)^2 = 0$ or $16 + (5+c)^2 = 80 \implies c^2 + 10c - = (c+13)(c-1)$	$54 \Rightarrow c = \dots$ 39 = 0 $-3) = 0 \Rightarrow c = \dots$	depend Solves the	dent on the pi eir quadratic ir	revious M mark to c to give $c =$	dM1
	<i>c</i> = -13, 3				c = -13, 3	A1
						(4)
						12

		Question 3 Notes
3. (i)	Note	Allow alternative ways of defining z. E.g. $z = x + iy$ and $z^* = x - iy$ with $x \equiv a$ and $y \equiv b$
	Note	Give final A0 for defining $z = a + ib$, finding $a = \frac{1}{4}$, $b = -\frac{3}{8}$ but not stating $z = \frac{1}{4} - \frac{3}{8}i$
	Note	<u>Alternative</u> : Some may define $z = x - iy$ and $z^* = x + iy$
		This gives $\{z^* - 3z = \}$ $(x + iy) - 3(x - iy) = -2x + 4yi$
		So, $-2x + 4yi = -\frac{1}{2} + \frac{3}{2}i \implies x = \frac{1}{4}, y = \frac{3}{8} \implies z = \frac{1}{4} - \frac{3}{8}i$
(ii) (a)	Note	Allow M1 (implied) for awrt 2.2, awrt -3.8, truncated -4.0, awrt 129°, truncated 128°
		or awrt -231°
(ii) (c)	Note	$ -4 + (5+c)\mathbf{i} = 4\sqrt{5} \implies (-4)^2 - (5+c)^2 = (4\sqrt{5})^2$ unless recovered is 1 st M0
	Note	$ -4 + (5+c)i = 4\sqrt{5} \implies -16 + (5+c)^2 = (4\sqrt{5})^2$ unless recovered is 1 st M0
	Note	$\left -4+5i+ci\right =4\sqrt{5} \Rightarrow (-4)^{2}+(5)^{2}+c^{2}=(4\sqrt{5})^{2}$ unless recovered is 1 st M0
	Note	If a 3TQ is formed in c then a correct method (e.g. factorising, applying the quadratic formula, completing the square or calculator) of solving a 3TQ is required to give $c =$
	Note	Give dM1 for using a calculator to write down at least one correct root for their 3TQ
	Note	Having achieved a correct $16+25+10c+c^2 = 80$ give final dM1 A1 marks for writing down $c = -13$, 3 from no working.
	Note	Give final A0 for either
		• $c = -13, 3 \Longrightarrow c = 3$
		• $c = -13, 3 \Longrightarrow c = -13$
		• $c = 3, c = -13$ (reject)
		• $c = 3$ (reject), $c = -13$

Question Number	Scheme	Notes			.S
4. (a) Wav 1	$\sum_{k=1}^{3k} (4r+1) = 4 \cdot \frac{1}{2} (3k)(3k+1) + 3k$	Either	$\sum_{r=1}^{3k} 4r \to 4.\frac{1}{2}(3k)(3k+1) \text{ or } \sum_{r=1}^{3k} 1 \to 3k$	M1	
t tugʻ 1	r=1	Corr	rect expression, simplified or un-simplified	A1	
	$= 6k(3k+1) + 3k = 18k^2 + 9k$				
	$= 9k(2k+1) \{p=9\}$		Obtains $9k(2k+1)$ with no errors	A1 c	50
					(3)
(a) Way 2	$\sum_{r=1}^{k} (4r+1) = 4 \cdot \frac{1}{2} (k)(k+1) + k$	Bot	h $\sum_{r=1}^{k} 4r \to 4.\frac{1}{2}(k)(k+1)$ and $\sum_{r=1}^{k} 1 \to k$	M1	
	$= 2k(k+1) + k = 2k^2 + 3k$				
	$\sum_{r=1}^{3k} (4r+1) = 2(3k)(3k+1) + 3k = 2(3k)^2$	+3(3k)	Correct expression, simplified or un-simplified	A1	
	$=18k^{2}+9k$				
	$= 9k(2k+1) \{p=9\}$		Obtains $9k(2k+1)$ with no errors	A1 c	50 (3)
(b) Way 1	$\sum_{r=1}^{k} 2r^2 = \sum_{r=1}^{3k} (4r+1)$				
	$2.\frac{1}{6}k(k+1)(2k+1) = 9k(2k+1)$	Se	ets $\lambda k(k+1)(2k+1)$ equal to "9" $k(2k+1)$ or their answer from part (a), $\lambda \neq 0$, to give an equation in k only	M1	
			dependent on the previous M mark		
	$\frac{1}{3}(k+1) = 9 \Longrightarrow k = 26$	Cancels out two terms or factorises out two terms and solves a linear equation in k to give $k =$			
			k = 26 only	A1	
		~			(3)
(b)	$2^{1}k(k+1)(2k+1) = 0k(2k+1)$	Se	ets $\lambda k(k+1)(2k+1)$ equal to "9" $k(2k+1)$	MI	
Way 2	$\frac{2k(k+1)(2k+1)}{6} = 9k(2k+1)$		or their answer from part (a), $\lambda \neq 0$, to give an equation in k only	IVI I	
	$21^3 \cdot 21^2 \cdot 1 = 541^2 \cdot 271$		dependent on the previous M mark		
	$2\kappa + 5\kappa + \kappa = 54\kappa + 2/\kappa$	Cance	els out or factorises k and a correct method		
	$2k^{2} - 51k^{2} - 26k = 0$	(e.g. f	actorising, applying the quadratic formula,	dM1	
	$k(2k^2 - 51k - 26) = 0$		of solving a 3TQ to give $k =$		
	$(2k+1)(k-26) = 0 \Longrightarrow k = 26$		k = 26 only	A1	
					(3)
(b) Way 3	$2 \cdot \frac{1}{6}k(k+1)(2k+1) = 9k(2k+1)$	Se	ets $\lambda k(k+1)(2k+1)$ equal to "9" $k(2k+1)$ or their answer from part (a), $\lambda \neq 0$, to give an equation in k only	M1	
	k(k+1)(2k+1) = 27k(2k+1)		dependent on the previous M mark		
	$k(k+1) - 27k = 0 \implies k^2 - 26k = 0$	Cancel and	s out two terms or factorises out two terms solves a linear equation in k to give $k =$	dM1	
	$k(k-26) \Longrightarrow k = 26$		$\tilde{k} = 26$ only	A1	
					(3)
					6

	Question 4 Notes				
4. (a)	Note	Give M1A1 for $\sum_{r=1}^{3n} (4r+1) = 4 \cdot \frac{1}{2} (3n)(3n+1) + 3n$			
	Note	Give M1A1A0 for $\sum_{r=1}^{3n} (4r+1) = 4 \cdot \frac{1}{2} (3n)(3n+1) + 3n = 18n^2 + 9n = 9n(2n+1)$			
	without reference to $\sum_{r=1}^{3k} (4r+1) = 9k(2k+1)$				
Note Give M1A1A1 for $\sum_{r=1}^{3n} (4r+1) = 4 \cdot \frac{1}{2} (3n)(3n+1) + 3n = 18n^2 + 9n = 9n(2n+1) \Rightarrow \sum_{r=1}^{3k} (4r+1) = 9k$					
	Note	Way 2: Give M1 for $\sum_{r=1}^{n} (4r+1) = 4 \cdot \frac{1}{2}(n)(n+1) + n$			
	Note	Give final A0 for cancelling down their final answer $9k(2k+1)$ in part (a)			
E.g. $\sum_{r=1}^{3k} (4r+1) = 4 \cdot \frac{1}{2} (3k)(3k+1) + 3k = 18k^2 + 9k = 9k(2k+1) = k(2k+1)$					
	Note	Give M0 A0 A0 for writing e.g. $k = 1 \Rightarrow \sum_{1}^{3(1)} (4r+1) = p(1)((2(1)+1)) \Rightarrow 5+9+13 = 3p \Rightarrow p = 9$ with no evidence of applying $\sum_{r=1}^{3k} 4r \rightarrow 4 \cdot \frac{1}{2}(3k)(3k+1)$ or $\sum_{r=1}^{3k} 1 \rightarrow 3k$			
	Note	You can give M1 1 st A1 marks in part (a) for work recovered for $\sum_{r=1}^{3k} (4r+1) = 4 \cdot \frac{1}{2} (3k)(3k+1) + 3k \text{ in part (b)}$			
(b)	Note	Condone giving 1 st M1 for setting $\lambda k(k+1)(2k+1)$ equal to "9" $k(k+1)$ {slip}			
	Note	Give A0 for giving more than one value of <i>k</i> as their final answer.			
	Note	Where applicable, for A1,			
		• $k = 0$ and/or $k = -\frac{1}{2}$ needs to be rejected leaving $k = 26$ as their final answer.			
		• $k = 26$ needs to be indicated as their final answer.			
	Note	Way 2: Using fractions gives • $\frac{2}{3}k^3 + k^2 + \frac{1}{3}k = 18k^2 + 9k \implies \frac{2}{3}k^3 - 17k^2 - \frac{26}{3}k = 0 \implies \frac{2}{3}k^2 - 17k - \frac{26}{3} = 0$ $\implies k = \frac{17 \pm \sqrt{(-17)^2 - 4(\frac{2}{3})(-\frac{26}{3})}}{2(\frac{2}{3})} = \frac{17 \pm \sqrt{\frac{2809}{9}}}{\frac{4}{3}} = \frac{17 \pm \frac{53}{3}}{\frac{4}{3}} \implies k = 26$			
	Note	Way 3: E.g. Give dM0 for $k^2 + k - 27k = 0$ leading directly to $k = \frac{-1 \pm \sqrt{(1)^2 - 4(1)(-27)}}{2(1)}$			

Question Number	Scheme	Notes	Marks
5.	$\mathbf{A} = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} 2\sqrt{3} & -7 \\ -4 & 5\sqrt{3} \end{pmatrix}$		
(a)	Rotation	Rotation or rotate (condone turn)	B1
	60 degrees {anti-clockwise}	60 degrees or $\frac{\pi}{3}$ or 300 degrees clockwise or $\frac{5\pi}{3}$ clockwise	B1 o.e.
	about (0, 0)	This mark is dependent on at least one of the previous B marks being given. about (0, 0) or about <i>O</i> or about the origin	dB1
	Note: Give 2 nd B0 for	60 degrees clockwise o.e.	(3)
(b)	$\{\mathbf{A}^6 = \} \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}$	Correct matrix	B1
			(1)
(c) Way 1	$\mathbf{B}^{-1} = \frac{1}{2} \begin{pmatrix} 5\sqrt{3} & 7\\ 4 & 2\sqrt{3} \end{pmatrix}$	Correct matrix for \mathbf{B}^{-1} , which can be simplified or un-simplified	B1
	$\{\mathbf{C} = \mathbf{B}^{-1}\mathbf{A}\} = \frac{1}{2} \begin{pmatrix} 5\sqrt{3} & 7\\ 4 & 2\sqrt{3} \end{pmatrix} \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2}\\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} = \dots$	Applies (their \mathbf{B}^{-1}) A , where (their \mathbf{B}^{-1}) \neq B , and finds at least one element (or at least one element calculation) of their matrix C Note: Allow one slip in copying down A	M1
	$= \frac{1}{2} \begin{pmatrix} 6\sqrt{3} & -4 \\ 5 & -\sqrt{3} \end{pmatrix} \text{ or } = \begin{pmatrix} 3\sqrt{3} & -2 \\ \frac{5}{2} & -\frac{1}{2}\sqrt{3} \end{pmatrix}$	dependent on the previous B1M1 marks At least 2 elements in C are correct All elements in C are correct	A1
			(4)
(c) Way 2	$\{\mathbf{B}\mathbf{C} = \mathbf{A} \Longrightarrow\}$ $\begin{pmatrix} 2\sqrt{3} & -7 \\ -4 & 5\sqrt{3} \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$	Correct statement using 2×2 matrices. All 3 matrices must contain four elements. Can be implied by the 4 correct equations that are below.	B1
	$2\sqrt{3}a - 7c = \frac{1}{2}, \ 2\sqrt{3}b - 7d = -\frac{\sqrt{3}}{2}$ $-4a + 5\sqrt{3}c = \frac{\sqrt{3}}{2}, \ -4b + 5\sqrt{3}d = \frac{1}{2}$ and finds at least one of either <i>a</i> , <i>b</i> , <i>c</i> or <i>d</i>	Applies $\mathbf{BC} = \mathbf{A}$ and attempts to solve simultaneous equations in <i>a</i> and <i>c</i> or b and <i>d</i> and finds at least one of either <i>a</i> , <i>b</i> , <i>c</i> or <i>d</i>	M1
	$= \frac{1}{2} \begin{pmatrix} 6\sqrt{3} & -4 \\ 5 & -\sqrt{3} \end{pmatrix} \text{ or } = \begin{pmatrix} 3\sqrt{3} & -2 \\ \frac{5}{2} & -\frac{1}{2}\sqrt{3} \end{pmatrix}$	dependent on the previous B1M1 marks At least 2 elements in C are correct	A1
	or $a = 3\sqrt{3}, b = -2, c = \frac{5}{2}, d = -\frac{1}{2}\sqrt{3}$	All elements in C are correct	A1
			(4)
			8

		Question 5 Notes	
5. (a)	Note	Writing "60 degrees" by itself implies by convention "60 degrees anti-clockwise". So,	
		• "Rotation 60 degrees about O" is B1 B1 B1	
		• "Rotation 60 degrees clockwise about O" is B1 B0 B1	
	Note	Writing down "60 degrees anti-clockwise about O" with no reference to "rotation" or "turn"	
		is B0 B1 B1	
	Note	"original point" is not acceptable in place of the word "origin".	
	Note	Give B0 B0 for a combination of 2 or more transformations.	
(b)	Note	Give B0 for writing down I without reference to $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	
	Note	Allow B1 for writing down \mathbf{I}_2 without reference to $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	
(c)	Note	Allow B1 for $\frac{1}{(2\sqrt{3})(5\sqrt{3}) - (-7)(-4)} \begin{pmatrix} 5\sqrt{3} & 7\\ 4 & 2\sqrt{3} \end{pmatrix}$ or $\frac{1}{30 - 28} \begin{pmatrix} 5\sqrt{3} & 7\\ 4 & 2\sqrt{3} \end{pmatrix}$	
	Note	Allow B1 for $\begin{pmatrix} 5\sqrt{3} & 7\\ 4 & 2\sqrt{3} \end{pmatrix} \frac{1}{(2\sqrt{3})(5\sqrt{3}) - (-7)(-4)}$ or $\begin{pmatrix} 5\sqrt{3} & 7\\ 4 & 2\sqrt{3} \end{pmatrix} \frac{1}{30 - 28}$	
	Note	You can ignore previous working prior to their finding $\mathbf{B}^{-1}\mathbf{A}$ (i.e. you can ignore an incorrect statement such as $\mathbf{A} = \mathbf{CB}$)	

Question Number	Scheme	Notes			Marks	
6.	$2x^2 +$	x+4	= 0 has roots α ,	, β		
(a)	$\alpha + \beta = -\frac{1}{2}, \ \alpha\beta = 2$			Bo	th $\alpha + \beta = -\frac{1}{2}$ and $\alpha\beta = 2$	B1
						(1)
(b)(i)	$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \dots$		Use	e of a c M	correct identity for $\alpha^2 + \beta^2$ ay be implied by their work	M1
	$=\left(-\frac{1}{2}\right)^2 - 2(2) = -\frac{15}{4}$		$-\frac{15}{4}$ or -3.7	75 or –	$-3\frac{3}{4}$ from correct working	A1 cso
(ii)	$\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta) = \dots$				2 2	
	or = $(\alpha + \beta)((\alpha + \beta)^2 - 3\alpha\beta) =$		Use	e of a c	correct identity for $\alpha^3 + \beta^3$	M1
	or = $(\alpha + \beta)(\alpha^2 + \beta^2 - \alpha\beta) =$			М	ay be implied by their work	
	$= \left(-\frac{1}{2}\right)^{3} - 3(2)\left(-\frac{1}{2}\right) = \frac{23}{8}$ or $= \left(-\frac{1}{2}\right)\left(\left(-\frac{1}{2}\right)^{2} - 3(2)\right) = \frac{23}{8}$ or $= \left(-\frac{1}{2}\right)\left(-\frac{15}{4} - 2\right) = \frac{23}{8}$	$\frac{23}{8}$ or 2.5	875 or	$2\frac{7}{8}$ from correct working	A1 cso	
(a)		3 0 1	23		1 1	(4)
	$\sum = \alpha^{3} + \frac{1}{\beta} + \beta^{3} + \frac{1}{\alpha}$ $= \alpha^{3} + \beta^{3} + \frac{\alpha + \beta}{\alpha \beta}$ $= \frac{\alpha}{\beta}$ $e.g. = \frac{23}{8} + \frac{\left(-\frac{1}{2}\right)}{2} = \frac{21}{8} \text{or} = \frac{1}{8}$	$\frac{\beta+1}{\beta}$ $\frac{\beta(\alpha^3+1)}{\beta}$ $=\frac{2(\frac{23}{8})}{\beta}$	$\frac{\alpha + \frac{\alpha \beta + 1}{\alpha}}{\alpha \beta}$ $\frac{\alpha + \beta^{3} + (\alpha + \beta)}{\alpha \beta}$ $\frac{\alpha + \beta^{3} + (\alpha + \beta)}{\alpha \beta}$	a	Simplifies $\frac{1}{\beta} + \frac{1}{\alpha}$ to give $\frac{\alpha + \beta}{\alpha\beta}$ (can be implied) and uses at least two of their $\alpha^3 + \beta^3$, $\alpha + \beta$ or $\alpha\beta$ in an attempt to find a herical value for the sum of $\left(\alpha^3 + \frac{1}{\beta}\right)$ and $\left(\beta^3 + \frac{1}{\alpha}\right)$	M1
	$\mathbf{\Pi} = \left(\alpha^3 + \frac{1}{\beta}\right) \left(\beta^3 + \frac{1}{\alpha}\right) \qquad \mathbf{\Pi} =$ $= (\alpha\beta)^3 + \alpha^2 + \beta^2 + \frac{1}{\alpha\beta} =$ $=$ $\mathbf{e.g.} = (2)^3 + \left(-\frac{15}{4}\right) + \frac{1}{2} = \frac{19}{4} \mathbf{o}$	$\frac{\left(\frac{\alpha^{3}\mu}{\beta}\right)}{\left(\alpha\beta\right)^{2}}$ $\mathbf{r} = -$	$\frac{\beta+1}{\beta}\left(\frac{\alpha\beta^{3}+1}{\alpha}\right)$ $\frac{\alpha\beta^{4}+\alpha^{3}\beta+\alpha\beta^{3}+1}{\alpha\beta}$ $\frac{\alpha\beta^{4}+\alpha\beta(\alpha^{2}+\beta^{2})}{\alpha\beta}$ $\frac{\alpha\beta}{(2)^{4}+2(-\frac{15}{4})+1}$ 2	+1	Expands $\left(\alpha^{3} + \frac{1}{\beta}\right)\left(\beta^{3} + \frac{1}{\alpha}\right) \text{ to}$ give 4 terms and uses at least one of their $\alpha\beta$ or $\alpha^{2} + \beta^{2}$ in an attempt to find a numerical value for the product	M1
	21 19		Applies $x^2 - (x^2 - x^2)$	(sum) <i>x</i>	+ product (can be implied),	
	$x^2 - \frac{21}{8}x + \frac{15}{4} = 0$		for their numeri Note: '	ical val "=0 " :	ues of the sum and product. is not required for this mark	M1
	$8x^2 - 21x + 38 = 0$		Any intege	er multi	<i>iple</i> of $8x^2 - 21x + 38 = 0$, including the "=0"	A1 cso
						(4)
		1				9

		Question 6 Notes
6. (b)(i)	Note	Writing a correct $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$ without attempting to substitute at least one
		of either their $\alpha + \beta$ or their $\alpha\beta$ into $(\alpha + \beta)^2 - 2\alpha\beta$ is M0
	Note	An incorrect $\alpha + \beta = \frac{1}{2}$, $\alpha\beta = 2$ from (a) leading to $\alpha^2 + \beta^2 = \left(\frac{1}{2}\right)^2 - 2(2) = -\frac{15}{4}$ is M1 A0
	Note	Give M1 A1 for writing down $\alpha^2 + \beta^2 = -\frac{15}{4}$, if they give $\alpha + \beta = -\frac{1}{2}$, $\alpha\beta = 2$ in (a)
(b)(ii)	Note	Allow M1 A1 for $\alpha^3 + \beta^3 = (\alpha^2 + \beta^2)(\alpha + \beta) - \alpha\beta(\alpha + \beta) = \left(-\frac{15}{4}\right)\left(-\frac{1}{2}\right) - (2)\left(-\frac{1}{2}\right) = \frac{23}{8}$
	Note	E.g. writing a correct $\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$ without attempting to substitute at
		least one of either their $\alpha + \beta$ or their $\alpha\beta$ into $(\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$ is M0
	Note	E.g. writing a correct $\alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 + \beta^2 - \alpha\beta)$ without attempting to substitute at
		least one of either their $\alpha + \beta$, their $\alpha^2 + \beta^2$ or their $\alpha\beta$ into $(\alpha + \beta)(\alpha^2 + \beta^2 - \alpha\beta)$ is M0
	Note	Give M1 A1 for writing down $\alpha^3 + \beta^3 = \frac{23}{8}$, if they give $\alpha + \beta = -\frac{1}{2}$, $\alpha\beta = 2$ in (a)
(b)	ALT	They can use the equation $2x^2 + x + 4 = 0$ with roots α , β to give
		$\begin{cases} 2\alpha^2 + \alpha + 4 = 0\\ 2\beta^2 + \beta + 4 = 0 \end{cases} \implies 2\alpha^2 + 2\beta^2 + \alpha + \beta + 8 = 0$
		So, $\alpha^2 + \beta^2 = \frac{1}{2}(-(\alpha + \beta) - 8)) = \frac{1}{2}\left(-\frac{1}{2} - 8\right) = \frac{1}{2}\left(\frac{1}{2} - 8\right) = -\frac{15}{4}$
		$\begin{cases} 2\alpha^3 + \alpha^2 + 4\alpha = 0\\ 2\beta^3 + \beta^2 + 4\beta = 0 \end{cases} \Rightarrow 2\alpha^3 + 2\beta^3 + \alpha^2 + \beta^2 + 4\alpha + 4\beta = 0$
		So, $\alpha^3 + \beta^3 = \frac{1}{2}(-(\alpha^2 + \beta^2) - 4(\alpha + \beta))) = \frac{1}{2}\left(-\frac{15}{4} - 4\left(-\frac{1}{2}\right)\right) = \frac{1}{2}\left(\frac{15}{4} + 2\right) = \frac{23}{8}$
(a)	Note	Give B0 for α , $\beta = \frac{-1 + \sqrt{31}i}{4}$, $\frac{-1 - \sqrt{31}i}{4}$ and then stating that $\alpha + \beta = -\frac{1}{2}$, $\alpha\beta = 2$
	Note	Give B0 for $\alpha + \beta = \frac{-1 + \sqrt{31}i}{4} + \frac{-1 - \sqrt{31}i}{4} = -\frac{1}{2}$ and $\alpha\beta = \left(\frac{-1 + \sqrt{31}i}{4}\right)\left(\frac{-1 - \sqrt{31}i}{4}\right) = 2$
(b)(i)	Note	Give M0 A0 for $\alpha^2 + \beta^2 = \left(\frac{-1 + \sqrt{31}i}{4}\right)^2 + \left(\frac{-1 - \sqrt{31}i}{4}\right)^2 = -\frac{15}{4}$
(b)(ii)	Note	Give M0 A0 for $\alpha^3 + \beta^3 = \left(\frac{-1 + \sqrt{31}i}{4}\right)^3 + \left(\frac{-1 - \sqrt{31}i}{4}\right)^3 = \frac{23}{8}$
(b)	Note	Using $\frac{-1+\sqrt{31}i}{4}$, $\frac{-1-\sqrt{31}i}{4}$ to find $\alpha + \beta = -\frac{1}{2}$, $\alpha\beta = 2$ followed by
		• $\alpha^2 + \beta^2 == \left(-\frac{1}{2}\right)^2 - 2(2) = -\frac{15}{4}$, scores M1 A0 in (b)(i)
		• e.g. $\alpha^3 + \beta^3 = \left(-\frac{1}{2}\right)^3 - 3(2)\left(-\frac{1}{2}\right) = \frac{23}{8}$, scores M1 A1 in (b)(ii)
(c)	Note	A correct method leading to $p=8$, $q=-21$, $r=38$ without writing a final answer of
		$8x^2 - 21x + 38 = 0$ is final M1 A0

		Question 6 Notes Continued
6. (c)	Note	Using $\frac{-1+\sqrt{31}i}{4}$, $\frac{-1-\sqrt{31}i}{4}$ explicitly to find the sum and product of $\alpha^3 + \frac{1}{\beta}$ and $\beta^3 + \frac{1}{\alpha}$
		• i.e. $\operatorname{sum} = \left(\frac{-1+\sqrt{31}i}{4}\right)^3 + \frac{1}{\left(\frac{-1-\sqrt{31}i}{4}\right)} + \left(\frac{-1-\sqrt{31}i}{4}\right)^3 + \frac{1}{\left(\frac{-1+\sqrt{31}i}{4}\right)} = \frac{21}{8}$
		• ie. product = $\left(\left(\frac{-1+\sqrt{31}i}{4}\right)^3 + \frac{1}{\left(\frac{-1-\sqrt{31}i}{4}\right)}\right) \left(\left(\frac{-1-\sqrt{31}i}{4}\right)^3 + \frac{1}{\left(\frac{-1+\sqrt{31}i}{4}\right)}\right) = \frac{19}{4}$
		• $x^2 - \frac{21}{8}x + \frac{19}{4} = 0 \implies 8x^2 - 21x + 38 = 0$
		scores M0 M0 M1 A0 in part (c).
	Note	Using $\frac{-1+\sqrt{31}i}{4}$, $\frac{-1-\sqrt{31}i}{4}$ to find $\alpha + \beta = -\frac{1}{2}$, $\alpha\beta = 2$
		and applying $\alpha + \beta = -\frac{1}{2}$, $\alpha\beta = 2$ can potentially score full marks in (c). E.g.
		• $\operatorname{sum} = \alpha^3 + \beta^3 + \frac{\alpha + \beta}{\alpha \beta} = \frac{23}{8} + \frac{\left(-\frac{1}{2}\right)}{2} = \frac{21}{8}$
		• product = $(\alpha\beta)^3 + \alpha^2 + \beta^2 + \frac{1}{\alpha\beta} = (2)^3 + \left(-\frac{15}{4}\right) + \frac{1}{2} = \frac{19}{4}$
		• $x^2 - \frac{21}{8}x + \frac{19}{4} = 0 \implies 8x^2 - 21x + 38 = 0$
	Note	Give final M0 for $\sum = \frac{21}{8}$, $\Pi = \frac{19}{4}$ leading to $x^2 - \frac{21}{8} + \frac{19}{4} = 0$ (without recovery)
	Note	Allow final M1 for $\sum = \frac{21}{8}$, $\prod = \frac{19}{4}$ with $x^2 - (\text{sum})x + (\text{product})$ leading to
		$x^2 - \frac{21}{8} + \frac{19}{4} = 0$
	Note	An alternative method uses a correct $\left(x - \alpha^3 - \frac{1}{\beta}\right)\left(x - \beta^3 - \frac{1}{\alpha}\right) = 0$
	Note	Allow 1 st M1 and/or 2 nd M1 for using an incorrect $\left(x - \alpha^3 + \frac{1}{\beta}\right)\left(x - \beta^3 + \frac{1}{\alpha}\right) = 0$
	Note	Give final M0 for an incorrect $\left(x - \alpha^3 + \frac{1}{\beta}\right)\left(x - \beta^3 + \frac{1}{\alpha}\right) = 0$ unless recovered
	Note	When expanding $\left(\alpha^3 + \frac{1}{\beta}\right)\left(\beta^3 + \frac{1}{\alpha}\right)$ to give $(\alpha\beta)^3 + \alpha^2 + \beta^2 + \frac{1}{\alpha\beta}$, some will write $\frac{\alpha + \beta}{\alpha\beta}$
		in place of $\frac{1}{\alpha\beta}$
		So, allow 2 nd M1 for expanding $\left(\alpha^3 + \frac{1}{\beta}\right)\left(\beta^3 + \frac{1}{\alpha}\right)$ to give $(\alpha\beta)^3 + \alpha^2 + \beta^2 + \frac{\alpha + \beta}{\alpha\beta}$ and
		using at least one of their $\alpha\beta$ or $\alpha^2 + \beta^2$ in an attempt to find a numerical value for the product.

Question Number		Scheme Notes			Marks
7.	$f(z) = z^4$	$-6z^3 + az^2 - 44z + b; a, b$ as	re real constants. $z = -1 - 3i$ is given.		
(a)	-1 + 3i			-1+3i	B1
					(1)
(b)			Attempt to expand $(z \pm (-1-3i))(z)$	\pm "(-1+3i)")	
			or any valid method to establish a que	idratic factor	
		$z^2 + 2z + 10$	e.g. $z = -1 \pm 31 \Rightarrow z + 1 = \pm 31 \Rightarrow z^2$	+2z+1=-9	M1
		2, 122, 110	or sum of roots $= -2$, product	of roots $= 10$	
			to give $z^2 \pm (\text{their sum})z \pm (t$	heir product)	
				$\frac{z^2 + 2z + 10}{z^2 + 10}$	A1
			Attempts to find the other qu	adratic factor	
			$z^2 + k z + z$	$k - value \neq 0$	
	(6())	(2 + 2 + 10)(2 + 0 + 10)	z + kz +, e.g. factorising/equating coeffici	ents to obtain	M1
	$\{I(z) = \}$	(z + 2z + 10)(z - 8z + 18)	$f(z) = (z^2 + 2z + 10)$	$(z^2 \pm kz \pm c)$.	
			$k = \text{value} \neq k$	$\begin{array}{c} (c, c) = c \\ (c, c) = c $	
			$z^2 - 8z + 18$ seen in	their working	Al
	$\int z^2 - 8z$	$18-0 \rightarrow 1$		ulen working	
	12 02	$\frac{10-0}{10} \xrightarrow{2} 1000$	dependent on only the press	ious M monk	
	• z =	$\frac{-8\pm\sqrt{(-8)^2-4(1)(18)}}{2(1)}$	Correct method of applying the quad	lratic formula	
		2(1)	or completing the square for solving	dM1	
	• $(z-4)$	$z^2 - 16 + 18 = 0 \Longrightarrow z = \dots$	on their 2 nd qu		
	$\{z = \}$ 4	$\pm \sqrt{2}i$	$4+\sqrt{2}i$	and $4 - \sqrt{2}i$	A1
					(6)
			Ougstion 7 Notes		7
7 (a)	Noto	Cive D1 for either $4 + \sqrt{2}i$			
7. (a)	Note	Give B1 for either $4 + \sqrt{21}$ of The values of the constants i	$r = 4 - \sqrt{21}$	nd avaliaitly	
(6)	Note	The values of the constants, i Vou can assume $x = z$ for a	e. $u = 12$, $b = 180$ do not have to be four	nu explicitly.	
	Note	Tou can assume $x = 2$ for so			
	Note	Give final dM1A1 for $z^2 - 8$.	$z+18=0 \Rightarrow z=4+\sqrt{21}, 4-\sqrt{21}$ with	no intermediate	2
		working.	H 4H ² H DH H CH 1		
	Note	They must be solving a $31Q$	$A^{*}z^{*} + B^{*}z + C^{*}$ where alway $\neq 0$ for the final dM1 mark		
	Noto	$\begin{array}{c} A, D, C & are an numerical velocity \\ Special Cases If the sin 2nd and \\ \end{array}$	φ advatic factor $z^2 + "D" = + "C"$ con be	actorized then	
	HOLE	give Special Case 3 rd dM1 for	r correct factorisation leading to $z =$		
		Otherwise give 3 rd dM0 for a	applying a method of factorisation to solution to sol	ve their 3TO	
	Note	Reminder: Method mark f	or solving a 3TO	ve men 51Q.	
	1,000	Formula: $Az^2 + Bz + C = 0^{-1}$	\Rightarrow Attempt to use the correct formula (w	ith values for A	(A B C)
		1011101110101112 + Dz + C = 0 =	\rightarrow ratempt to use the context formula (w		1, D, C)
		Completing the Square: z^2	$E + Bz + C = 0 \Rightarrow \left(z \pm \frac{B}{2}\right) \pm q \pm C = 0, q$	$q \neq 0$, leading t	z =
	Note:	Comparing coefficients: f($(z) = (z^2 + 2z + 10)(z^2 + \alpha z + \beta) \equiv z^4 - 6$	$5z^3 + az^2 - 44z$	<u>+</u> <i>b</i>
		$z^3: \alpha + 2 = -6 \Longrightarrow \alpha = -8; z$	$:2\beta + 10\alpha = -44 \Rightarrow 2\beta - 80 = -44 \Rightarrow \beta$	8=18	
		vielding 2 nd quadratic factor =	$= z^2 - 8z + 18$		
		Also constant: $10R = h \rightarrow h$	$= 180: \ z^2: \beta + 2\alpha + 10 = a \implies a = 18 - 1$	6+10=12	
		1 150, constant. $10p = b \rightarrow b$	100, $\zeta \cdot p + 2u + 10 = u \rightarrow u = 10 = 1$	0 1 10 - 12	

		Question 7 Notes Continued				
7. (b)	Note:	Long division:				
		$z^2 - 8z + 18$				
		$z^{2} + 2z + 10 \overline{z^{4} - 6z^{3} + az^{2} - 44z + b}$				
		$\frac{z^4+2z^3+10z^2}{2z^2+10z^2}$				
		$-8z^3 + (a-10)z^2 - 44z$				
		$\frac{-8z^3}{-16z^2} - \frac{80z}{-80z}$				
		$(a+6)z^2+36z+b$				
		$18z^2 + 36z + 180$				
		0				
		Also, note $a = 12, b = 180$				
	Note Ignore errors in long division for the 2 nd A1 mark and/or the 3 rd A1 mark.					
	Note Ignore errors in stating $a = 12$, $b = 180$ for the 2 nd A1 mark and/or the 3 rd A1 mark.					
	Note	The solutions $4 \pm \sqrt{2}i$ need to follow on from a correct $z^2 - 8z + 18$ in order to gain the final				
		A mark.				
	Note	Give final A0 for writing $\frac{8 \pm 2\sqrt{2}i}{2}$ followed by either $4 \pm 2\sqrt{2}i$ or $8 \pm \sqrt{2}i$				

Question Number	Scheme			Notes		Mark	S
8.	$f(n) = 3^{4n-2} + 2^{6n-3}$ is divisible by 17						
Way 1	$f(1) = 3^2 + 2^3 = 17$ {is divisible by 17}			f(1) = 17 is	the minimum	B1	
	$f(k+1) - f(k) = 3^{4(k+1)-2} + 2^{6(k+1)-3} - (3^{4k-1})^{-3}$	$(2^{2}+2^{6k-3})$		Attempts f	(k+1)-f(k)	M1	
	$f(k+1) - f(k) = 80(3^{4k-2}) + 63(2^{6k-3})$						
	$=80(3^{4k-2}+2^{6k-3})-17(2^{6k-3})$	80	(3^{4k-2})	$+2^{6k-3}$) or $80f(k)$;	$-17(2^{6k-3})$	Δ1.	A 1
	or = $63(3^{4k-2} + 2^{6k-3}) + 17(3^{4k-2})$	63	$8(3^{4k-2})$	$+2^{6k-3}$) or $63f(k)$;	$+17(3^{4k-2})$	AI;	AI
	$f(k+1) = 80(3^{4k-2} + 2^{6k-3}) - 17(2^{6k-3}) + f$	(k) or		dependent on at lea	st one of the		
	$f(k+1) = 63(3^{4k-2} + 2^{6k-3}) + 17(3^{4k-2}) + f$	(k) or	1	previous A marks	being gained	dM1	
	$f(k+1) = 80f(k) - 17(2^{6k-3}) + f(k)$ or		Makes	f(k+1) the subject a	and expresses 4^{k-2} , 2^{6k-3}	uwii	
	$f(k+1) = 63f(k) + 17(3^{4k-2}) + f(k)$	1	t in tei	rms of $f(k)$ and/or (3)	$(+2^{-1})$		
	If the result is true for $n = k$, then it is true	the for $n = k$	+1.	As the result has been	shown to be	A1 c	80
	true for $n=1$, then the	e result is t	rue fo	$r all n (\in \mathbb{Z}^+)$		111 0	30
	2 2						(6)
Way 2	$f(1) = 3^2 + 2^3 = 17$ {is divisible by 17}			f(1) = 17/1s	the minimum	B1	
	$f(k+1) = 3^{4(k+1)-2} + 2^{6(k+1)-3}$			Atte	mpts $f(k+1)$	M1	
	$f(k+1) = 81(3^{4k-2}) + 64(2^{6k-3})$		44.2	61-2	6h 2		[
	$=81(3^{4k-2}+2^{6k-3})-17(2^{6k-3})$	81	$\frac{l(3^{4k-2})}{4k-2}$	$(k+2^{0k-3})$ or $81f(k);$	$-17(2^{0k-3})$	A1;	A1
	or = $64(3^{4k-2} + 2^{6k-3}) + 17(3^{4k-2})$	64	$+(3^{4\kappa-2})$	$(+2^{6k-3})$ or $64f(k)$;	$+17(3^{4\kappa-2})$		
	$f(k+1) = 81(3^{4k-2} + 2^{0k-3}) - 17(2^{0k-3}) \text{ or}$			dependent on at lea	st one of the		
	$f(k+1) = 64(3^{4\kappa-2} + 2^{9\kappa-3}) + 17(3^{4\kappa-2}) \text{ or}$			Makes $f(k+1)$ the subject and expresses			
	$f(k+1) = 81f(k) - 17(2^{0k-3})$ or	i	t in te	in terms of $f(k)$ and/or $(3^{4k-2} + 2^{6k-3})$			
	$f(k+1) = 64f(k) + 17(3^{m-2})$ If the result is true for $n - k$, then it is true	$\frac{1}{10}$ for $n = k$. 1	Λ_{α} the result has been	shown to be		
	If the result is $\frac{1}{1}$ the for $n = k$, then it is $\frac{1}{1}$	$\frac{101}{n} = k$	+1. 1	As the result has been (-77^+)	snown to be	A1 cs	80
	$\underline{\text{uue for } n=1}$, then the		rue lo	$\frac{1}{2} \prod_{n=1}^{\infty} (\in \mathbb{Z})$			(6)
Wav 3	General Method: U	Using f(k⊣	+1) − <i>n</i>	$mf(k), m \in \mathbb{Z}$			(0)
2	$f(1) = 3^2 + 2^3 = 17$ {is divisible by 17}			f(1) = 17 is the minimum			
	$f(k+1) - mf(k) = 3^{4(k+1)-2} + 2^{6(k+1)-3} - m(2)$	$3^{4k-2} + 2^{6k-2}$	· ³)	Attempts f(k	(k+1) - mf(k)	M1	
	$f(k+1) - mf(k) = (81 - m)(3^{4k-2}) + (64 - m)(3^$	$m)(2^{6k-3})$					
	$=(81-m)(3^{4k-2}+2^{6k-3})-17(2^{6k-3})$ or	(81-m)(2)	3^{4k-2} +	$+2^{6k-3}$) or $(81-m)f(k)$); $-17(2^{6k-3})$	A 1.	A 1
	$=(64-m)(3^{4k-2}+2^{6k-3})+17(3^{4k-2})$	(64 - m)(3)	$4^{k-2} +$	2^{6k-3}) or $(64-m)f(k)$);+17(3^{4k-2})	AI;	AI
						1	
	$f(k+1) = (81-m)(3^{4k-2}+2^{6k-3}) - 17(2^{6k-3})$	$^{3})+mf(k)$	or	dependent on at l	east one of the		
	$f(k+1) = (81-m)(3^{4k-2} + 2^{6k-3}) - 17(2^{6k-3})$ $f(k+1) = (64-m)(3^{4k-2} + 2^{6k-3}) + 17(3^{4k-3})$	$(k)^{-2} + mf(k)$ $(k)^{-2} + mf(k)$	or or	dependent on at le previous A mark Makes $f(k+1)$	east one of the s being gained the subject and	1) (1
	$f(k+1) = (81-m)(3^{4k-2} + 2^{6k-3}) - 17(2^{6k-3})$ $f(k+1) = (64-m)(3^{4k-2} + 2^{6k-3}) + 17(3^{4k-3})$ $f(k+1) = (81-m)f(k) - 17(2^{6k-3}) + mf(k)$	$(k)^{3} + mf(k)$ $(k)^{-2} + mf(k)$ or	or or	dependent on at le previous A mark Makes $f(k+1)$ expresses it in	east one of the s being gained the subject and a terms of $f(k)$	dM	1
	$f(k+1) = (81-m)(3^{4k-2} + 2^{6k-3}) - 17(2^{6k-3})$ $f(k+1) = (64-m)(3^{4k-2} + 2^{6k-3}) + 17(3^{4k-3})$ $f(k+1) = (81-m)f(k) - 17(2^{6k-3}) + mf(k)$ $f(k+1) = (64-m)f(k) + 17(3^{4k-2}) + mf(k)$	$(k)^{-2} + mf(k)$ or	or or	dependent on at le previous A mark Makes $f(k+1)$ expresses it in and/or	east one of the s being gained the subject and a terms of $f(k)$ $(3^{4k-2} + 2^{6k-3})$	dM	1
	$f(k+1) = (81-m)(3^{4k-2} + 2^{6k-3}) - 17(2^{6k-3})$ $f(k+1) = (64-m)(3^{4k-2} + 2^{6k-3}) + 17(3^{4k-3})$ $f(k+1) = (81-m)f(k) - 17(2^{6k-3}) + mf(k)$ $f(k+1) = (64-m)f(k) + 17(3^{4k-2}) + mf(k)$ If the result is true for $n = k$, then it is true	m^{3}) + mf(k) m^{-2}) + mf(k) or) mue for $n = k$	or or $k+1$.	dependent on at la previous A mark Makes $f(k+1)$ expresses it in and/or As the result has been	east one of the s being gained the subject and a terms of $f(k)$ $(3^{4k-2} + 2^{6k-3})$ a shown to be	dM	1
	$f(k+1) = (81-m)(3^{4k-2} + 2^{6k-3}) - 17(2^{6k-3})$ $f(k+1) = (64-m)(3^{4k-2} + 2^{6k-3}) + 17(3^{4k-3})$ $f(k+1) = (81-m)f(k) - 17(2^{6k-3}) + mf(k)$ $f(k+1) = (64-m)f(k) + 17(3^{4k-2}) + mf(k)$ If the result is true for $n = k$, then it is true for $n = 1$, then the for $n = 1$.	$(k)^{-3} + mf(k)$ $(k)^{-2} + mf(k)$ or $(k)^{-2} + mf(k)$ ue for $n = k$ he result is	or or k+1. true for	dependent on at le previous A mark Makes $f(k+1)$ expresses it in and/or As the result has been or all $n \ (\in \mathbb{Z}^+)$	east one of the s being gained the subject and a terms of $f(k)$ $(3^{4k-2} + 2^{6k-3})$ a shown to be	dM A1	1 cso
	$f(k+1) = (81-m)(3^{4k-2} + 2^{6k-3}) - 17(2^{6k-3})$ $f(k+1) = (64-m)(3^{4k-2} + 2^{6k-3}) + 17(3^{4k-3})$ $f(k+1) = (81-m)f(k) - 17(2^{6k-3}) + mf(k)$ $f(k+1) = (64-m)f(k) + 17(3^{4k-2}) + mf(k)$ If the result is true for $n = k$, then it is true for $n = 1$, then the for $n = 1$.	m^{3}) + mf(k) m^{-2}) + mf(k) or m^{2} or m^{2} or	or or k+1. true for	dependent on at la previous A mark Makes $f(k+1)$ expresses it in and/or As the result has been or all $n \ (\in \mathbb{Z}^+)$	east one of the s being gained the subject and a terms of $f(k)$ $(3^{4k-2} + 2^{6k-3})$ a shown to be	dM A1	1 cso (6)

Question Number	Scheme		Notes	Marks	
8.	$f(n) = 3^{4n-2} + 2^{6n-3}$ is divisible by 17				
Way 4	General Method: Using f(k +	-1) – <i>n</i>	$\operatorname{af}(k), m \in \mathbb{Z}$		
	$f(1) = 3^2 + 2^3 = 17$ {is divisible by 17}		f(1) = 17 is the minimum	B1	
	$f(k+1) - mf(k) = 3^{4(k+1)-2} + 2^{6(k+1)-3} - m(3^{4k-2} + 2^{6k-3})$	3)	Attempts $f(k+1) - mf(k)$	M1	
	$f(k+1) - mf(k) = (81 - m)(3^{4k-2}) + (64 - m)(2^{6k-3})$				
	F g $m = 47 \implies f(k+1) = 47f(k) = 34(3^{4k-2}) + 17(2^{6k-3})$ $m = 47 \text{ and } 34(3^{4k-2})$				
	E.g. $m = 47 \implies 1(k+1) - 4/1(k) = 54(5) + 1/(2)$)	$m = 47$ and $17(2^{6k-3})$	A1	
	$f(k+1) = 34(3^{4k-2}) + 17(2^{6k-3}) + 47f(k)$		dependent on at least one of the previous A marks being gained Makes $f(k+1)$ the subject and expresses it in terms of $f(k)$	dM1	
	If the result is true for $n = k$, then it is true for $n = k$	+1. 4	As the result has been shown to be		
	true for $n = 1$, then the result is t	rue foi	r all $n \ (\in \mathbb{Z}^+)$	A1 cso	
	In Way 4 there are many	altern	atives.		
	See below for examples of alternatives where $m = 30$ and $m = 13$				
W 4 1	$f(t+1) = 91(2^{4k-2}) + 64(2^{6k-3})$	using	1 (K + 1) <i>m</i> 1 (K), <i>m</i> ⊂ <i>u</i>		
way 4.1	$\frac{1(k+1) = 81(5) + 64(2)}{20(2^{4k-2}) + 20(2^{6k-3}) + 51(2^{4k-2}) + 24(2^{6k-3})}$	3			
	= 30(3) + 30(2) + 51(3) + 34(2))	$m = 20$ and $51(2^{4k-2})$	A 1	
	$= 30(3^{4k-2} + 2^{6k-3}) + 51(3^{4k-2}) + 34(2^{6k-3})$		m = 30 and $31(5)$		
			dependent on at least one of the	AI	
			previous A marks being gained		
	$f(k+1) = 30(3^{4k-2} + 2^{0k-3}) + 51(3^{4k-2}) + 34(2^{0k-3})$		Makes $f(k+1)$ the subject and	dM1	
	or $f(k+1) = 30f(k) + 51(3^{4k-2}) + 34(2^{6k-3})$		expresses it in terms of $f(k)$		
			and/or $(3^{4k-2} + 2^{6k-3})$		
Way 4.2	$f(k+1) = 81(3^{4k-2}) + 64(2^{6k-3})$				
	$= 13(3^{4k-2}) + 13(2^{6k-3}) + 68(3^{4k-2}) + 51(2^{6k-3})$	3)			
	$-13(3^{4k-2}+2^{6k-3})+68(3^{4k-2})+51(2^{6k-3})$		$m = 13$ and $68(3^{4k-2})$	A1	
	$-15(5 \pm 2) \pm 00(5) \pm 51(2)$		$m = 13$ and $51(2^{6k-3})$	A1	
			dependent on at least one of the previous A marks being gained		
	$f(k+1) = 13(3^{4k-2} + 2^{6k-3}) + 68(3^{4k-2}) + 51(2^{6k-3})$		Makes $f(k+1)$ the subject and	dM1	
	or $f(k+1) = 13f(k) + 68(3^{4k-2}) + 51(2^{6k-3})$		expresses it in terms of $f(k)$		
			and/or $(3^{4k-2} + 2^{6k-3})$		

	Question 8 Notes							
	Note	$f(n) = 3^{4n-2} + 2^{6n-3}$ can be written	n as $f(n)$	$=3^{4n-2}+8^{2n-1}$				
Way 5	f(n) = 3	$4^{n-2} + 2^{6n-3} = 3^{4n-2} + 8^{2n-1}$						
	$f(1) = 3^2$	$^{2} + 8^{1} = 17 $ {is divisible by 17}		f(1) = 17 is	the minimum	B1		
	f(k+1)	$-f(k) = 3^{4(k+1)-2} + 8^{2(k+1)-1} - (3^{4k-2} - 1)^{4k-2}$	$+8^{2k-1}$)	Attempts f	(k+1)-f(k)	M1		
-	f(k+1)	$-f(k) = 80(3^{4k-2}) + 63(8^{2k-1})$						
-	= 80	$9(3^{4k-2}+8^{2k-1})-17(8^{2k-1})$	80	$9(3^{4k-2}+8^{2k-1})$ or $80f(k);$	$-17(8^{2k-1})$	A1:	A1	
_	or = 63	$(3^{4k-2} + 8^{2k-1}) + 17(3^{4k-2})$	63	$8(3^{4k-2}+8^{2k-1})$ or $63f(k)$;	$+17(3^{4k-2})$,		
	f(k+1)	$=80(3^{4k-2}+8^{2k-1})-17(8^{2k-1})+f(k)$) or	dependent on at lea	ast one of the			
	f(k+1) =	$= 63(3^{4k-2} + 8^{2k-1}) + 17(3^{4k-2}) + f(k)$) or	previous A marks Makes $f(k+1)$ the subject	being gained	dM1		
	f(k+1)	$=80f(k) - 17(8^{2k-1}) + f(k)$ or		Makes $I(k+1)$ the subject and expresses				
	f(k+1)	$= 63f(k) + 17(3^{4k-2}) + f(k)$	1	t in terms of $I(k)$ and/or (.	3 +8)			
	If the re	sult is true for $n = k$, then it is true	of for $n = k$	+1. As the result has been	shown to be	A1 c	20	
		true for $n=1$, then the number of $n=1$, then the number of $n=1$.	result is t	rue for all n ($\in \mathbb{Z}^+$)		ALC	AI CSO	
							(6)	
	Note	Some students may set $f(k) = 17M$	and so	may prove the following ge	neral results			
		• {f(k+1) = 81f(k) - 17(2 ^{6k})	$(k-3) \} \Longrightarrow f$	$F(k+1) = 1377M - 17(2^{6k-3})$) or $= 17(3^4 M$	$l - 2^{6k}$	-3)	
		• { $f(k+1) = 64f(k) + 17(3^4)$	$(k-2) \} \Rightarrow$	$f(k+1) = 1088M + 17(3^{4k-1})$	²) or $= 17(2^6)$	$M + 3^{4}$	$^{4k-2})$	
	Note	Final A1 mark is dependent on a	all previo	us marks being scored in	Q8			
	Note	Final A1: There must be a correct	final exp	ression for $f(k+1)$ and a c	orrect conclusion	ion.		
		The conclusion must convey the ic	leas of al	four underlined points eith	her at the end o	of their		
-	Noto	solution or as a narrative in their s	olution.	11 positivo volvos of "				
-	Note	Allow as part of their conclusion "	true for a	Il values of n"				
-	Note	Allow as part of their conclusion "	true for a	$\frac{11 \text{ values of } n}{11 n \in \mathbb{N}}$				
-	Note	Referring to <i>n</i> as a real number in t	their cond	clusion (e.g. true for all $n \in$	\mathbb{R}) is final AC)		
-	Note	Condone $n \in \mathbb{Z}^*$ as part of their co	onclusion	for the final A1 mark				
	Note	Allow $f(k+1) = 3^4 f(k) - 17(2^{6k-3})$) as a cor	rect alternative to $f(k+1) =$	$=81f(k) - 17(2^{\circ})$	$^{6k-3})$		
-	Note	Allow $f(k+1) = 2^6 f(k) + 17(3^{4k-2})$) as a cor	rect alternative to $f(k+1) =$	$= 64f(k) + 17(3^{\circ})$	^{4k-2})		

Question Number	Scheme Not					Notes	Mark	KS	
9.	$C: y^2 = 4ax; \ P(ap^2,$	2ap)	lies on	C; circle	$(x-10a)^2$	$x^{2} + y^{2} = \frac{9}{4}a^{2}$			
(a)	$y = 2\sqrt{a} x^{\frac{1}{2}} \implies \frac{dy}{dx} = \sqrt{a} x^{-\frac{1}{2}} = \frac{\sqrt{a}}{\sqrt{x}}$						$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm k x^{-\frac{1}{2}}; k \neq 0$		
	2y-	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4$	a				$ky\frac{\mathrm{d}y}{\mathrm{d}x} = c; k, c \neq 0$	M1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} = 2a \left(\frac{1}{2ap}\right)$					their $\frac{\mathrm{d}y}{\mathrm{d}t} \times \frac{1}{\mathrm{their}}$	$\frac{\mathrm{d}x}{\mathrm{d}t}$; Condone $t \equiv p$		
	{At $P, x = ap^2, y = 2$	$2ap \Rightarrow$	\Rightarrow } $\frac{\mathrm{d}y}{\mathrm{d}x} =$	$=\frac{1}{p}$	Cor	rect calculus wo	rk leading to $m_T = \frac{1}{p}$	A1	
	So, at P , $m_N = -p$	where m is found			Applie using calcu	is $m_N = \frac{-1}{m_T}$, to f lus. Can be imp	find m_N in terms of p , lied by later working.	M1	
	either	2		or		Correct straig equation	ght line method for an on of a normal, where	M1	
	y - 2ap = -p(x - a)	(p^2)	<i>y</i> -	-0 = -p(x - 10a)	$m_N \ (\neq m_T)$ is	found using calculus.		
	$0 - 2ap = -p(10a - a)$ $\implies p = -p(10a - a)$	$up^2)$ $ \Rightarrow z$	$\begin{vmatrix} 2ap - \\ x = \dots & 0 \end{vmatrix}$	-0 = -p(x) r y =	$ap^2 - 10a$)	dependent on the previous M mark Complete method to find		dM1	
	or 2 <i>ap</i> -0	= - p(x-10a	$x \Rightarrow x =$	••	either the	x or y coordinate of P		
	either $x = 8a$	y = 4	$\sqrt{2}a$ o	or	Either $x = 8a$ or $y = 4\sqrt{2}a$ or $y = awrt 5.66a$			A1	
	P(8a,	$\frac{4\sqrt{2}a}{\sqrt{2}}$) 	T-4 T	P(8a,	$4\sqrt{2}a$) or both	$x = 8a$ and $y = 4\sqrt{2}a$	A1	
(b)	Note: $p = 2$	$\frac{12 \text{ or}}{12}$	-√8.1 -	Note: Ign	ore the addi	$\frac{1}{1}$	$(8a, -4\sqrt{2}a)$		(7)
Way 1	Area $SBP = \frac{1}{2}(10a - \frac{1}{2})$	<i>a</i>)(4√	2a)			$\frac{1}{2}(10a -$	(their y_p from (a))	M1	
	$= 18\sqrt{2}a^2$						$18\sqrt{2}a^2$	A1	(2)
(c)	$PB = \sqrt{(10a - "8a")^2}$	+("4,	$\overline{(2a'')^2}$	$\{-6a\}$		Comple	te Pythagoras method	M1	(2)
Way 1	$I D = \sqrt{10u} 0u$	1 (4	y2u)	(- 0 <i>u</i>)		f dependent on t	or finding length <i>PB</i>		
	PR = 6a - 1.5a					F	PR ="their 6a"-1.5a	dM1	
	PR = 4.5a				PR = 4.5a			A1	
	$n = 2\sqrt{2} \implies l \cdot n =$	n. []r	+ 20./2						(3)
Way 2	$p = 2\sqrt{2} \implies l: y = -2\sqrt{2}x + 20\sqrt{2}a$ $(x - 10a)^{2} + (-2\sqrt{2}x + 20\sqrt{2}a)^{2} = \frac{9}{4}a^{2}$			Substitutes their equation of l into the circle equation followed by a correct method for solving their 2TO to give			M1		
	$\Rightarrow 9(2x-21a)(2x-1)$	(9a) =	$0 \Rightarrow x =$	=					
	$\Rightarrow R(9.5a, \sqrt{2}a)$								
	$PR = \sqrt{(9.5a - 8a)^2} + $	$-(\sqrt{2}a)$	$-4\sqrt{2}$	$\overline{2}a)^2$	Co: finding th	dependent on t mplete applied P e distance betwe	he previous M mark ythagoras method for en their P and their R	dM1	
	PR = 4.5a						PR = 4.5a	A1	
									(3)

		12
Scheme	Notes	Marks
Area $SBP = \frac{1}{2} \begin{vmatrix} a & 10a & "8a" & a \\ 0 & 0 & "4\sqrt{2}a" & 0 \end{vmatrix}$ = $\frac{1}{2} \begin{vmatrix} 0 - 0 + 40\sqrt{2}a^2 - 0 + 0 - 4\sqrt{2}a^2 \end{vmatrix}$	Complete applied method for finding area <i>SBP</i> using $S(a, 0)$, $B(10a, 0)$ and their <i>P</i> from (a)	M1

Question Number **9.** (b)

Way 2

	$= \frac{1}{2} \left 0 - 0 + 40\sqrt{2} a^2 - 0 + 0 - 4\sqrt{2} a^2 \right ^2$			and their <i>P</i> from (a)			
		$=18\sqrt{2}a^2$		$18\sqrt{2}a^2$	A1		
					(2)		
9. (c) Way 3	$x_{R} = 10a - 1.5 \cos\left(\tan^{-1}\left(\frac{"4\sqrt{2} a"}{10a - "8a"}\right)\right)$ $y_{R} = 1.5 \sin\left(\tan^{-1}\left(\frac{"4\sqrt{2} a"}{10a - "8a"}\right)\right)$			es their <i>P</i> from (a) in a correct method for writing down either x_R or y_R	M1		
	$\Rightarrow R(9.5)$	$a,\sqrt{2}a$					
	$PR = \sqrt{(9.5a - 8a)^2 + (\sqrt{2}a - 4\sqrt{2}a)^2}$			dependent on the previous M mark Complete applied Pythagoras method for g the distance between their <i>P</i> and their <i>R</i>	dM1		
	PR = 4.5	a		PR = 4.5a	A1		
					(3)		
			Question	$\frac{4a}{4a}$	<u> </u>		
9. (a)	Note	Allow 1 st M1 1 st A1 (sufficient us	se of cal	culus) for $\{m_T =\} \frac{m_T}{2y}$ which leads to $\{m_T\}$	$=$ $\frac{1}{p}$		
	Note	Allow 1 st M1 1 st A1 (sufficient us	se of cal	culus) for $\{m_T =\} \sqrt{\frac{a}{x}}$ which leads to $\{m_T\}$	$=$ $\frac{1}{p}$		
	Note	Give 3 rd M1 for either					
		• $2ap = "(-p)"(ap^2) + c \Rightarrow y =$	"(-p)"x	c + their c or			
		• $0 = "(-p)"(10a) + c \Rightarrow y = "(-a)$	(-p)''x + (-p)	their <i>c</i>			
	Note	Writing coordinates the wrong wa	ay arour	nd			
		E.g. finding $x = 8a$, $y = 4\sqrt{2}a$ for	ollowed	by $(4\sqrt{2}a, 8a)$ is final A0			
	Note	Give final A0 for (8 <i>a</i> , 5.65685	a) with	but reference to $y = 4\sqrt{2}a$ or $2\sqrt{8}a$			
	Note	Accept $y_p = 2\sqrt{8}a$ written in pla	ace of y	$_{P} = 4\sqrt{2}a$ for the final A1 A1 marks			
	Note	Special Case					
		If they write down either $\frac{dy}{dx} = \frac{1}{p}$	If they write down either $\frac{dy}{dx} = \frac{1}{p}$, $m_T = \frac{1}{p}$ or $m_N = -p$ with no evidence of using calculus				
		then they can gain any of or all the final 4 marks in part (a).					
	ALT	Alternative Method for the 3 rd	M mark	and 4 th M mark			
		$\{B(10a, 0), P(ap^2, 2ap) \Longrightarrow\}$ $m_{BP} = \frac{2ap - 0}{ap^2 - 10a} = -p$		Finds gradient of <i>BP</i> and sets the result equal to the gradient of their normal	3 rd M1		
		$\Rightarrow p = \Rightarrow x = \text{ or } y =$		dependent on the previous M mark Complete method to find either the x or y coordinate of P	4 th M1		

		Question 9 Notes Continued
9. (b)	Note	Give A0 25.4558 a^2 without reference to $18\sqrt{2}a^2$
	Note	Condone one slip of either writing 9 for $10a - a$ or writing " $4\sqrt{2}$ " instead of " $4\sqrt{2}a$ "
		for the M mark in (b)
(c)	Note	Way 2: For reference,
		$(x-10a)^{2} + (-2\sqrt{2}x + 20\sqrt{2}a)^{2} = \frac{9}{4}a^{2}$
		$x^{2} - 20ax + 100a^{2} + 8x^{2} - 160ax + 800a^{2} = \frac{9}{4}a^{2}$
		$9x^2 - 180ax + 900a^2 = \frac{9}{4}a^2$
		$9x^2 - 180ax + \frac{3591}{4}a^2 = 0 \text{or} 9x^2 - 180ax + 897.75a^2 = 0$
		or $x^2 - 20ax + 99.75a^2 = 0$ or $4x^2 - 80ax + 399a^2 = 0$
		$x = \frac{180a \pm \sqrt{(180a)^2 - 4(9)(\frac{3591}{4})a^2}}{180a \pm 9a} = \frac{180a \pm 9a}{180a \pm 9a}$
		2(9) 2(9)
		$x = \frac{189a}{18}, \frac{171a}{18} = 10.5a, 9.5a$
	Note	The method $PB = \sqrt{(10a - "8a")^2 + ("4\sqrt{2}a")^2}$ needs to be referred to in part (c) or the
		result of $PB = \sqrt{(10a - "8a")^2 + ("4\sqrt{2}a")^2}$ needs to be used in part (c) to gain the M
		mark in part (c)

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom