

Mark Scheme (Results)

January 2019

Pearson Edexcel International Advanced Level In Further Pure Mathematics F1 (WFM01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2019 Publications Code WFM01_01_1901_MS All the material in this publication is copyright © Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- **A** marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles)

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^2 + bx + c) = (x + p)(x + q)$, where |pq| = |c|, leading to $x = \dots$

 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

2. Formula

Attempt to use the correct formula (with values for *a*, *b* and *c*).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^n \rightarrow x^{n-1}$)

2. Integration

Power of at least one term increased by 1. ($x^n \rightarrow x^{n+1}$)

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

January 2019 WFM01 Further Pure Mathematics F1 Mark Scheme

Question Number	Scheme		Notes	Marks
1.	$A(12, 12)$ lies on $y^2 = 12x$. <i>l</i> passes through			
	<i>l</i> meets the directrix of the parabola at <i>B</i>			
(a)	$\{a = 3 \Rightarrow S \text{ has coordinates}\}\ (3, 0)$		Either states or uses $(3, 0)$	B1
()		Can be implied by later work		
	Way 1 Both $m_l = \frac{12}{12 - "3"}$ and either • $y = \frac{12}{12 - "3"}(x - "3")$ or • $0 = \frac{12}{12 - "3"}("3") + c \Rightarrow y = \frac{12}{12 - "3"}$ • $12 = \frac{12}{12 - "3"}(12) + c \Rightarrow y = \frac{12}{12 - "3"}$	Way 1 Correct method for finding the gradient between their S and (12, 12) and a correct method for finding the equation of <i>l</i>	M1	
	$\frac{\text{Way 2}}{\begin{cases} 3m+c=0\\ 12m+c=12 \end{cases}} \implies m = \dots, c = \dots \text{ and } y = 0$	(their m) x + their c	Way 2Uses $y = mx + c$, their Sand (12, 12) to write twolinear equations.Finds $m =, c =$ and writes $y = (\text{their } m)x + \text{their } c$	
	e.g. <i>l</i> : $y = \frac{12}{9}(x-3), y = \frac{4}{3}x-4, y-12$ 4x-3y-12=0 or $3y = 4x-1$	Any correct form for the equation of <i>l</i> which can be simplified or un-simplified Note: ignore subsequent working following on from a	Al	
	Note: At least one of either x_{a}	or v_{α} must be corr	rect in order to gain M1	(3)
		/ 5 00 0011	Either states or uses $r = -3$	
(b)	{directrix has equation} $x = -3$	or st wh	ates or uses $x = -(\text{their } a)$, $a > 0$ ere <i>a</i> is the <i>x</i> -coordinate of their <i>S</i>	M1
	$y = \frac{12}{9}(-3-3) \{=-8\}$ (and not a c		ndent on the previous M1 mark tes $x = -3$ into their equation of l utes $x = -a$, $a > 0$ where a is the of their S into their equation of l . Note: l must represent a line urve) for this mark to be awarded Note: This mark may be implied by their y-coordinate	dM1
	{coordinates of <i>B</i> are} $(-3, -8)$		(-3, -8)	A1
				(3)
				6

		Question 1 Notes				
1. (a)	Note	e Give B0 for $a = 3$ by itself without reference to $(3, 0)$				
	Note	Give B1 in part (a) for $S(3, 0)$ (and not $(3, 0)$) stated in part (b)				
(b)	Note	Give 1 st M1 for stating the x-coordinate of B as -3 or the x-coordinate of B as $-(\text{their } a)$, $a > 0$				
		where <i>a</i> is the <i>x</i> -coordinate of their <i>S</i>				
		E.g. Give 1^{st} M1 for $B(-3,)$				
	Note	Give A0 for $x = -3$, $y = -8$ without reference to $(-3, -8)$				
	Note	Give A0 for $x = -3$, $y = -8$ followed by $(-8, -3)$				
	Note	Give A0 if more than one set of coordinates are given for <i>B</i>				
(a), (b)	Note	Give B1 for a sketch with either 3 or (3, 0) marked on the <i>x</i> -axis				
	Note	Give 1 st M1 in part (b) for a sketch with a vertical line drawn at $x = -3$ with -3 indicated				
	Note	Give 1^{st} M1 in part (b) a statement "directrix is $x = -3$ " seen anywhere				

Question Number		Scheme			Notes	Marks
2.	$f(z) = z^3$	$-2z^{2}+16z-32$				
(a)	• {f(2) =	$= $ } 8 - 8 + 32 - 32 = 0 o	r			
	• {f(2) =	$(2)^{3} - 2(2)^{2} + 16(2)$	-32 =	0	Uses working to show that $f(2) = 0$	B1
						(1)
(b)				Us	es only $(z-2)$ to find a quadratic factor.	
	$(\mathbf{f}(\mathbf{z}) - \mathbf{z})$	$(z - 2)(z^2 + 16)$	e.g.	. using long div	vision with $(z-2)$ to get as far as $z^2 +$	M1
	$\{1(2) - \}$	(2-2)(2+10)			or factorising to give $(z-2)(z^2 +)$	1011
		No		ote: 1 st M1 can	h be given for sight of a correct $(z^2 + 16)$	
	$\{(z^2+16)\}$	$0 = 0 \Longrightarrow z = \} \pm 4i$		Correct	t method of solving their quadratic factor	M1
	$\{\mathbf{f}(z)=0$	$\Rightarrow z = $ $2, 4i, -4i$			2, 4i and – 4i	A1
				Caritaaria		(3)
(C)	In	n 🔺		• The numb	per 2 plotted correctly on the positive	
	(0,4	4).		real axis		
	(0,			• depender	nt on a correct method for solving	
				their qua	correct roots of 2, 4i, - 4i	
					It wo roots of the form $\pm \mu i$, $\mu \neq 0$ or	
				the form 2	$\ell \pm \mu i, \mu \neq 0$, are plotted correctly	
	0 Re			Satisfies at least one of the criteria	B1ft	
				Only 3 r	oots plotted, satisfying both criteria with	
	(0			some	ote: The pair of complex roots should be	
	(0, -	(0, -4)		appro	ximately symmetrical about the real axis	B1ft
					Note: Condone the labels 4i, –4i	
					marked on the y-axis	
						6
				Question	2 Notes	
2. (b)	Note	You can assume $x \equiv x$	z for s	solutions in thi	s part	
	Note	No algebraic working	leadii	ng to $z = 2, 4$	i, – 4i is M0 M0 A0	
	Note	Allow M1 M1 A1 for	(z-2)	2)(z+4i)(z-4i)(z	i) $\{=0\} \Rightarrow z = 2, 4i, -4i$	
	Note	Allow M1 M0 A0 for	(z-2	(z+41)(z-4)(z-4)	1) $\{=0\}$ by itself, but please note that you	cannot
	Nata	recover the final MIT A	$\frac{1}{2}$	$\frac{1}{(2+1)}$ (0)	$\frac{1}{2} = \frac{1}{2} $. 1
	Note	Give MI MU AU for ((z-2)	$(z + 16) \{= 0\}$	$\Rightarrow (z-2)(z+41)(z-41) = 0$ by itself, t	out please
		note that you cannot r	ecove	r the final MI	A1 marks for work seen in part (c)	
	Note	$z = \pm \sqrt{16i}$ unless recovered is 2 nd M0 1 st A0				
	Note	Give 2^{nd} M1 for $z^2 + k = 0$, $k > 0 \Rightarrow$ at least one of either $z = \sqrt{k}$ i or $z = -\sqrt{k}$ i				
		So, e.g. give 2^{nu} M1 for $z^2 + 16 = 0 \Rightarrow z = 4i$				
	Note	Give 2^{nd} M0 for $z^2 + k = 0$, $k > 0 \Rightarrow z = \pm ki$				
	Note	Give 2^{nd} M0 for $z^2 + k = 0$, $k > 0 \Rightarrow z = \pm k$ or $z = \pm \sqrt{k}$				
	Note	Give 2^{nd} M1 for $z^2 - z^2$	k=0,	$k > 0 \Longrightarrow$ both	$z = \sqrt{k}$ and $z = -\sqrt{k}$	
	Note	Special Case: If their	r quad	<i>lratic</i> factor z^2	+" <i>a</i> " <i>z</i> + " <i>b</i> " can be factorised then	
		give Special Case 2 nd	IVII 10	or correct facto	risation leading to $Z = \dots$	
		Otherwise, give 2 nd M0 for applying a method of factorisation to solve their 3TQ.				

		Question 2 Notes Continued				
2. (b)	Note	Note <u>Reminder</u> : Method Mark for solving a 3TQ, " $az^2 + bz + c = 0$ "				
		Formula: Attempt to use the correct formula (with values for a, b and c)				
		Completing the square: $\left(z \pm \frac{b}{2}\right)^2 \pm q \pm c = 0, q \neq 0$, leading to $z =$				
	Note	Send to review solutions involving α , β , γ roots. E.g. $-2 = -(\alpha + \beta + \gamma)$				
(c)	Note	Drawing the lines $z = 2$, $z = 4i$, $z = -4i$ instead of plotting the points $(2, 0)$, $(0, 4)$ and				
		(0, -4) is B0 B0				
	Note	Indication of coordinates includes stating e.g. $z_1 = 2$, $z_2 = 4i$, $z_3 = -4i$ and plotting z_1 , z_2 and				
		z_3 in their relevant positions on an Argand diagram				
(b), (c)	Note	You cannot recover work for part (b) in part (c)				

Question Number		Scheme		Notes	Marks
3. (a)	$\sum_{r=1}^{n} (2r+5)$	$(5)^2 = 4\sum_{r=1}^n r^2 + 20\sum_{r=1}^n r + \sum_{r=1}^n 25$			
	(1		Attem $\sum_{r=1}^{n} r^{2}$	pts to expand $(2r+5)^2$ and attempts to substitute at least one formula for either r or $\sum_{r=1}^{n} r$ into their resulting expression	M1 (B1 on ePEN)
	$=4\left(\frac{1}{6}n(n)\right)$	$(n+1)(2n+1) + 20\left(\frac{1}{2}n(n+1)\right) + 2$	25 <i>n</i> w	$4\left(\frac{1}{6}n(n+1)(2n+1)\right) + 20\left(\frac{1}{2}n(n+1)\right)$ thich can be simplified or un-simplified	A1 (M1 on ePEN)
				Use of $\sum_{r=1}^{n} 1 = n$	B1
	$=\frac{1}{3}n(2(n$	(n+1)(2n+1) + 30(n+1) + 75	$\alpha n(n +$	Obtains an expression of the form +1)(2n+1) + $\beta n(n+1) + \lambda n$; $\alpha, \beta, \lambda \neq 0$ and attempts to factorise out at least <i>n</i>	M1
	$=\frac{1}{3}n(4n^2)$	+6n+2+30n+30+75)			
	$=\frac{n}{3}(4n^2-$	+ 36 <i>n</i> + 107)			
	$=\frac{n}{3}\left[(2n+\frac{n}{3}\right]$	$(+9)^{2} + 26$ $\left[\text{or } \frac{n}{3} \left[(-2n-9)^{2} + \frac{n}{3} \right] \right]$	+ 26]}	Correct completion Note: $a = 2$, $b = 9$ and $c = 26$ or $a = -2$, $b = -9$ and $c = 26$	A1
			l		(5)
(b)	$\begin{cases} \frac{100}{2}(2r+$	$(-5)^2 = $	Subst	itutes $n = 100$ into their expression for	
	$ \begin{bmatrix} r = 0 \\ = \frac{100}{100} \begin{bmatrix} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$	$(100) + 9)^2 + 26 + (5)^2$	··· 1 · 11· (5) ²	$\sum_{r=1}^{\infty} (2r+5)^2$ which is in terms of n ,	M1
	3 [(-)		and adds (5)	or 23 or $(2(0)+3)$ o.e. to the result	
	$\begin{cases} = \frac{100}{3} (4) \end{cases}$	3707) + 25 = 1456925		Obtains 1456925	A1
					(2)
			Question	3 Notes	7
3 (a)	Note	Applying e.g. $n = 1$, $n = 2$ and	$\frac{1}{1} n = 3$ to the r	printed equation without applying the sta	ndard
J. (a)	nou	formulae to give $a = 2, b = 9$ a	and $c = 26$ is N	40 A0 B0 M0 A0	
	Alt 1	Alt Method 1 (Award the fir	rst three marl	ks using the main scheme)	
		Using $\frac{4}{2}n^3 + 12n^2 + \frac{107}{2}n \equiv \frac{a^2}{2}n^3 + \frac{2ab}{2}n^2 + \frac{b^2 + c}{2}n$ o.e.			
	M1	Equating coefficients to find at least two of $a = \dots, b = \dots$ or $c = \dots$ and at least one of			
		either $a = 2$, $b = 9$ or $c = 26$ or $a = -2$, $b = -9$ and $c = 26$			
	A1	Finds $a = 2, b = 9$ and $c = 26$ or $a = -2, b = -9$ and $c = 26$			
	Note	Allow final M1A1 for $\frac{4}{3}n^3 + 12n^2 + \frac{107}{3}n \rightarrow \frac{n}{3}\left[(2n+9)^2 + 26\right]$ with no incorrect working.			
	Note	A correct proof of $\sum_{r=1}^{n} (2r+5)$	$(2n)^2 = \frac{n}{3} \left[(2n+9)^2 \right]$	$(9)^2 + 26$ followed by stating an incorrect	et
		e.g. $a = 9, b = 2$ and $c = 26$ is	s M1 A1 B1 N	11 A1 (ignore subsequent working)	

		Question 3 Notes Continued						
3. (b)	Note	te Allow M1 for $\frac{100}{3}(4(100)^2 + 36(100) + 107) + (5)^2$ and A1 for obtaining 1456925						
	Note	Allow M1 for $4\left(\frac{1}{6}(100)(101)(201)\right) + 20\left(\frac{1}{2}(100)(101)\right) + 25(100) + (5)^2$						
		$\{= 1353400 + 101000 + 2500 + 25\}$ and A1 for obtaining 1456925						
	Note	dependent on obtaining 1 st M1, 1 st A1 and B1 in part (a)						
		Allow M1 A1 for 1456900 + 25 = 1456925						
	Note	Give M0 A0 for writing down 1456925 by itself with no supporting working						
	Note	Give M0 A0 for listing individual terms						
		i.e $\sum_{r=0}^{100} (2r+5)^2 = 5^2 + 7^2 + 9^2 + 11^2 + + 205^2 = 1456925$, by itself is M0 A0						
	Note	Give M0 A0 for applying						
		$\left \frac{100}{3} \left[(2(100) + 9)^2 + 26 \right] + \frac{(-1)}{3} \left[(2((-1)) + 9)^2 + 26 \right] = 1456900 - 25 = 1456925$						

Question Number		Scheme			Notes			Marks		
4.	Given $f(x)$	(z) = 2x	$\frac{7}{x^2} - \frac{7}{x^2} + 16$, x	≠0; Root	ts α, β	: −2≤0	$\alpha \leq -1$ as	nd $0.6 \le \beta \le 0.7$		
(a)	f(-1.5) =							Attempts to e	evaluate $f(-1.5)$	M1
Way 1	f(-1.75) =) =			dep Evalua	endent on the properties $f(-1.75)$ (and	revious M mark nd not $f(-1.25)$)	dM1		
		dependent on the 2 Both			the 2 p	orevious	marks			
	f(-2) = -	1.75	or $f(-1) = 7$	• f(or	$(-2) \cos f(-1) =$	rect or o = 7	correct av	wrt (or truncated)) to 1sf	
	f(-1.5) =	6.138	8 or $\frac{221}{36}$	and • f(-1.5) ar	nd f(-1	.75) cor	rect or correct aw	vrt (or truncated)	
			20	to	1 SI and	$a \text{ the } column{1}{c}$	$\frac{1}{10}$ m $-2 \le 1$	rval stated	2 < r < -1.75 or	A1
	f(-1.75) -	- 2 00	55 or $\frac{671}{}$		_2<	$\alpha < -1$	75 or -22	$\leq \chi \leq -1.75$ of $-2 < \alpha < -1.75$ or	2 < x < -1.75 or $r [-2 -1.75]$ or	
	1(-1.73)-	- 2.99	$\frac{1}{224}$		(-2 -	1 75) e	auivalen	t in words Cond	1 = 2, = 1.75 = 0	
	•	· • •	2 1 7 5 1	Alloy	va mix	ture of '	"ends"	Do not allow ince	orrect statements	
	so interval	1s [2, -1.75]		such	as –1.7	$5 < \alpha < -$	-2 or $(-1.75, -2)$	2) or $-1.75 - 2$	
								unless the	ey are recovered.	
		NT .				Igr	nore the s	subsequent iterati	ion of $f(-1.875)$	
		Not In fl	e that some ca his case the M	ndidates o marks cou	only ind	licate th	ie sign o defined	f f and not its va	llue. ork	(3)
(a)		Com	mon approac	n in the fo	rm of a	table (use the i	nark scheme ab	ove)	
Way 2	a		f(a)			f	(b)	$\frac{a+b}{2}$	$f\left(\frac{a+b}{2}\right)$	
	-2		-1.75		1		7	-1.5	6 1388	
	-2		-1.75	-1.	.5	6.13	, 388	-1.75	2.9955	
			so interval is –	$2 \le \alpha \le -1$	1.75 wo	ould sco	re full m	arks in part (a)		
							- 3	7	- 3	
(b)	f'(x) = 6x	$z^{2} + 14$	x^{-3}	At least	t least one of either $2x^3 \rightarrow \pm Ax^2$ or $-\frac{1}{x^2} \rightarrow \pm Bx^3$; $A, B \neq 0$				M1	
				Correc	Correct differentiation which can be simplified or un-simplified				A1	
	ſ	0.0		0	deper		endent on the p	revious M mark		
	$\beta \approx 0.65$	$5 - \frac{f(0)}{c'(0)}$	$\left \frac{\beta(65)}{\beta(5)}\right \Rightarrow \beta \simeq 0$	$0.65 - \frac{-0.5}{5}$.018/9/	0710	<u> </u>	alid attempt at I	Newton-Raphson	dM1
	l	1 (0.65)]	3	53.51360719			f(0.65) and $f'(0.65)$		
							dep	endent on all 3	previous marks	A1
	$\{\beta = 0.650\}$	035120	$523\} \Rightarrow \beta = 0$).6504 (4	dp)			0.6504 on th	neir first iteration	cso
	Correct	diffor	antiation follo	vad by a d	orract	onewor	(of 0.650	Ignore any subse	equent iterations)	
	Correct		Correct answ	er with no	<u>o</u> worki	ng scor	es no ma	arks in part (b)	a ko in part (D)	(4)
						0				7
	 				Que	estion 4	Notes			
4. (a)	Note	Give	2 nd M0 and A0	for evalua	ating bo	th f(-1	.25) and	f(-1.75)		
	Note	Do n	ot allow "interv	al=f(-2)	to f(-1	.75)" u	nless rec	overed.		
	Note	A me	thod of evaluat	$\inf_{n \in \mathbb{N}} f(-1.3)$	5) follo	wed by	f(-1.75) with <i>no eviden</i>	ce of evaluating	
		at lea	st one of either	f(-2) or	$\frac{f(-1)}{2}$	15 M1 d	IM1 A0.			
	Note	Do n	ot confuse the	-1.75 in f	(-2) =	-1.75	with the	-1.75 in $(-2, -1.75)$	1.75)	

		Question 4 Notes Continued						
4. (b)	dM1	This mark can be implied by applying at least one correct <i>value</i> of either $f(0.65)$ or their $f'(0.65)$ (where $f'(0.65)$ is found using their $f'(x)$) to 1 significant figure in $0.65 - \frac{f(0.65)}{f'(0.65)}$.						
		So just $0.65 - \frac{f(0.65)}{f'(0.65)}$ with an incorrect answer and no other evidence scores final dM0A0.						
	Note	If you see $0.65 - \frac{f(0.65)}{f'(0.65)} = 0.6504$ with no algebraic differentiation, then send the response to						
		review.						
	Note	You can imply the M1 A1 marks for algebraic differentiation for either						
		• $f'(0.65) = 6(0.65)^2 + 14(0.65)^{-3}$						
		• f'(0.65) applied correctly in $\beta \approx 0.65 - \frac{2(0.65)^3 - \frac{7}{(0.65)^2} + 16}{6(0.65)^2 + 14(0.65)^{-3}}$						
	Note	Differentiating INCORRECTLY to give $f'(x) = 6x^2 - 14x^{-3}$ leads to						
		$\beta \simeq 0.65 - \frac{-0.01879733728}{-48.44360719} = 0.6496119749 = 0.6496 \ (4 \ dp)$						
		This response should be awarded M1 A0 dM1 A0						
	Note	Differentiating INCORRECTLY to give $6x^2 - 14x^{-3}$ and						
		$\beta \simeq 0.65 - \frac{f(0.65)}{f'(0.65)} = 0.6496$ is M1 A0 dM1 A0						

Question Number	Scheme	Notes	Marks			
5.	$H: xy = 16; P\left(4p, \frac{4}{p}\right), p \neq 0$, lies on H .					
	Tangent to <i>H</i> at	P passes	<i>p</i>) through the po	int (7,1)		
(a)	$v = \frac{16}{10} = 16x^{-1} \Rightarrow \frac{dy}{10} = -16x^{-2}$ or	<u> </u>		$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm k x^{-2} ; k \neq 0$		
	x dx	x^2		dx Uses implicit differentiation	-	
	$xy = 16 \implies x \frac{dy}{dx} + y = 0$ to give $\pm x \frac{dy}{dx} = 0$				M1	
	$x = 4t, y = \frac{4}{t} \implies \frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = -\left($	$\left(\frac{4}{t^2}\right)\left(\frac{1}{4}\right)$	thei	$\operatorname{ir} \frac{\mathrm{d}y}{\mathrm{d}t} \times \frac{1}{\operatorname{their} \frac{\mathrm{d}y}{\mathrm{d}t}}; \mathbf{Condone} \ t \equiv p$		
	So at <i>P</i> , $m_T = -\frac{1}{p^2}$		Correct calc	ulus work leading to $m_T = -\frac{1}{p^2}$	A1	
				Correct straight line method for an equation of the tangent where		
	• $y - \frac{4}{p} = -\frac{1}{p^2}(x - 4p)$ or			$m_T \left(\neq \frac{-1}{\text{their } m_T} \text{ or } \neq \frac{1}{\text{their } m_T} \right)$	M1	
	$\bullet \frac{4}{2} = -\frac{1}{2}(4p) + c \implies y = -\frac{1}{2}x + t$	heir c		is found by using calculus.	1011	
	$p p^2$ p^2 p^2		N	Note: m_T must be a function of p Note: Condone (slip) of using		
				$m_T = -(\text{their } m_T)$		
	Correct algebra leading to $x + p^2 y = 8$	p *		Correct solution only	A1 *	
		~			(4)	
		Su	ibstitutes $x = 7$, $y = 1$ into the given equation or		
(b)	$\{(7,1) \Longrightarrow\} 7+p^2 = 8p$	Ν	Note: Condone	e substituting $x = 1$, $y = 7$ into the	M1	
		g	iven equation of	or their answer to part (a) for M1		
	$\{ \Rightarrow p^2 - 8p + 7 = 0 \}$					
	$(p-7)(p-1) = 0 \Rightarrow p = \dots$		depe Correct meth quadratic form	and end on the previous M mark and (e.g. factorising, applying the nula or completing the square) of solving a 3TQ to find $p =$	dM1	
	$\{p=1 \Rightarrow\} x=4, y=4$		dependent on	substituing $x = 7$, $y = 1$ into the		
	$\{p=7 \Rightarrow\} x=28, y=\frac{4}{7} \text{ or awrt } 0.57$	7 0	given equa Obtains at least	tion or their answer to part (a) one correct set of corresponding values for $x =$ and $y =$	A1	
	{So <i>P</i> can be} (4, 4), $(28, \frac{4}{7})$		Bot	h correct sets of coordinates of B	A1	
					(4)	
					8	

	Question 5 Notes						
5. (a)	Note	Allow $yp^2 + x = 8p$ or $8p = x + p^2y$ or $8p = p^2y + x$ for the final A1					
(b)	Note	Do not confuse (7, 1) or $x = 7$, $y = 1$ with $p = 7, 1$					
	Note	A decimal answer of e.g. $(4, 4), (28, 0.57)$ (without a correct exact answer) is $2^{nd} A0$					
	Note	Imply the dM1 mark for <i>writing down the correct</i> roots for <i>their</i> quadratic equation					
		E.g. $7 + p^2 = 8p$ or $p^2 - 8p + 7 = 0 \rightarrow p = 7, 1$					
	Note	E.g. give dM0 for $7 + p^2 = 8p$ or $p^2 - 8p + 7 = 0 \rightarrow p = -7, -1$ [incorrect solution]					
		with NO INTERMEDIATE working.					
	Note	Give M1 dM1 A1 for either					
		• $7 + p^2 = 8p \rightarrow x = 4, y = 4 \text{ or } (4, 4)$					
		• $7 + p^2 = 8p \rightarrow x = 28, y = \frac{4}{7}$ or awrt 0.57 or $\left(28, \frac{4}{7}\right)$ or $\left(28, \text{awrt } 0.57\right)$					
		with NO INTERMEDIATE working.					
	Note	Give M1 dM1 A1 A1 for					
		• $7 + p^2 = 8p \rightarrow (4, 4), \left(28, \frac{4}{7}\right)$					
		with NO INTERMEDIATE working.					
	Note	Give M0 dM0 A0 A0 for writing down $(4, 4), (28, \frac{4}{7})$ with no prior working.					
	Note Only a maximum of M1 dM1 A0 A0 can be scored for						
		substituting for $x = 1$, $y = 7$ (and not $x = 7$, $y = 1$) into $x + p^2 y = 8p$					
		Note: $x = 1, y = 7 \Rightarrow 1 + 7p^2 = 8p \Rightarrow (7p-1)(p-1) \Rightarrow p = \frac{1}{7}, 1 \Rightarrow (\frac{4}{7}, 28), (4, 4)$					
	Note	Alt 1 Method					
		• $x = 7, y = 1 \Longrightarrow 7 + p^2 = 8p \Longrightarrow (p-1)(p-7) \Longrightarrow p = 1, 7$					
		• $p=1 \Rightarrow x+(1)y=8(1)$ and $x+\frac{16}{x}=8 \Rightarrow x^2-8x+16=0 \Rightarrow (x-4)(x-4)=0$					
		\Rightarrow x = 4, y = 4 \Rightarrow (4, 4)					
		• $p = 7 \implies x + 49y = 56$ and $x + 49\left(\frac{16}{x}\right) = 56 \implies x^2 - 56x + 784 = 0 \implies (x - 28)(x - 28) = 0$					
		$\Rightarrow x = 28, \ y = \frac{4}{7} \Rightarrow \left(28, \frac{4}{7}\right)$					
	Note	Incorrect method of substituting $xy = 16$ and (7, 1) into $x + p^2y = 8p$					
		Give M0 dM0 A0 A0 for $\frac{2}{10}$					
		• $x + p^{-1}\left(\frac{10}{x}\right) = 8p$ and $x = 7 \Rightarrow 7 + \frac{10}{7}p^{-1} = 8p \Rightarrow 16p^{-1} - 56p + 49 = 0 \Rightarrow (4p - 7)(4p - 7) = 0$					
		$\Rightarrow p = \frac{7}{4} \Rightarrow x = 7, \ y = \frac{16}{7} \Rightarrow \left(7, \frac{16}{7}\right)$					
		• $\frac{16}{y} + p^2 y = 8p$ and $y = 1 \Rightarrow 16 + p^2 = 8p \Rightarrow p^2 - 8p + 16 = 0 \Rightarrow (p-4)(p-4) = 0$					
		$\Rightarrow p = 4 \Rightarrow x = 16, y = 1 \Rightarrow (16, 1)$					
	Note	Give M1 dM0 A0 A0 for					
		• $x = 7, y = 1$ into $x + p^2 y = 8p \Rightarrow 7 + p^2 = 8 \Rightarrow (p+1)(p-1) \Rightarrow p = 1, -1 \Rightarrow (4, 4), (-4, -4)$					

Question Number		Scheme Notes		Marks		
6.		$12x^{2}$	$x^2 - 3x + 4 = 0$ has roots α , β			
(a)	$\alpha + \beta = \frac{2}{1}$	$\frac{3}{2} \text{ or } \frac{1}{4}, \ \alpha \beta = \frac{4}{12} \text{ or } \frac{1}{3}$	Both $\alpha + \beta = \frac{3}{12}$ or $\frac{1}{4}$ and $\alpha\beta = \frac{4}{12}$ or $\frac{1}{3}$, seen or implied	B1		
	$\frac{2}{\alpha} + \frac{2}{\beta} =$	$=\frac{2\beta+2\alpha}{\alpha\beta}$	States or uses $\frac{2}{\alpha} + \frac{2}{\beta} = \frac{2\beta + 2\alpha}{\alpha\beta}$ or $\frac{2(\alpha + \beta)}{\alpha\beta}$	M1		
		$2(\frac{3}{12})$ 3	dependent on BOTH previous marks being awarded	A1		
	=	$\frac{1}{\left(\frac{4}{12}\right)} = \frac{1}{2}$	$\frac{3}{2}$ or $\frac{6}{4}$ or 1.5 from correct working	cso cao		
				(3)		
(b)	Sum = $\frac{2}{-}$	$\frac{2}{\beta} - \beta + \frac{2}{\beta} - \alpha$	Uses at least one of their $\frac{2}{\alpha} + \frac{2}{\beta}$ or their $(\alpha + \beta)$ in an			
	$\operatorname{Sum} = \frac{-\beta}{\alpha} + \frac{-\beta}{\beta} - \alpha$		attempt to find a numerical value for the sum of	M1		
	$=\frac{2}{\alpha}$	$+\frac{2}{\beta}-(\alpha+\beta)$	$\left(\frac{2}{\alpha}-\beta\right)$ and $\left(\frac{2}{\beta}-\alpha\right)$			
	$=\frac{3}{2}$	$-\frac{1}{4} = \frac{5}{4}$	Correct sum of $\frac{5}{4}$ or $\frac{15}{12}$ or 1.25 which can be implied	A1		
	D	(2)(2)	Expands $\left(\frac{2}{\alpha} - \beta\right) \left(\frac{2}{\beta} - \alpha\right)$ to give $\frac{P}{\alpha\beta} + Q + R\alpha\beta$;			
	Product =	$=\left(\frac{\alpha}{\alpha}-\beta\right)\left(\frac{\beta}{\beta}-\alpha\right)$	$P, Q, R \neq 0$ and uses their $\alpha\beta$ at least once in an	N/1		
	_	$=\frac{4}{2}-2-2+\alpha\beta$	attempt to find a numerical value for the product of	IVI I		
	-	$\alpha\beta = \frac{4}{2} - 2 - 2 + \frac{1}{2} = \frac{25}{2}$	$\left(\frac{2}{\alpha}-\beta\right)$ and $\left(\frac{2}{\beta}-\alpha\right)$			
		$\left(\frac{1}{3}\right)$ 2 2 3 3	Correct product of $\frac{25}{3}$ or $8\frac{1}{3}$ or 8.3 or $\frac{100}{12}$	A1		
	2 5	25	Applies $x^2 - (sum)x + product$ (can be implied),			
	$x^2 - \frac{1}{4}x - 1$	$+\frac{1}{3}=0$	where sum and product are numerical values. Note: $=0$ is not required for this mark	M1		
	$12x^2 - 15$	5x + 100 = 0	Any integer multiple of $12x^2 - 15x + 100 = 0$,	A1 cso		
			including the "=0"	(0)		
				(6)		
			Question 6 Notes	· · · · ·		
6. (a)	Note	Writing down α , $\beta = \frac{3}{2}$	$\frac{1}{24} + \sqrt{183}i$, $\frac{3 - \sqrt{183}i}{24}$ and then stating $\alpha + \beta = \frac{1}{4}$, $\alpha\beta = \frac{1}{3}$ or	applying		
		$\alpha + \beta = \frac{3 + \sqrt{183}i}{24} + \frac{3 - \sqrt{183}i}{24} = \frac{1}{4} \text{ and } \alpha\beta = \left(\frac{3 + \sqrt{183}i}{24}\right)\left(\frac{3 - \sqrt{183}i}{24}\right) = \frac{1}{3} \text{ scores B0}$				
	Note	Those candidates who then apply $\alpha + \beta = \frac{4}{5}$, $\alpha\beta = \frac{3}{5}$, having written down/applied				
		$\alpha, \beta = \frac{3 + \sqrt{183}i}{24}, \frac{3 - \sqrt{183}i}{24}$, can only score the M mark in part (a) for $\frac{2}{\alpha} + \frac{2}{\beta} = \frac{2\beta + 2\alpha}{\alpha\beta}$				
		Give B0 M0 A0 for $\frac{2}{1}$ +	$+\frac{2}{R} = \frac{2}{(2 - \sqrt{122})} + \frac{2}{(2 - \sqrt{122})} = \frac{3}{2}$			
	Note	α	$P \qquad \left(\frac{3+\sqrt{1831}}{24}\right) \left(\frac{3-\sqrt{1831}}{24}\right) \qquad 2$			

		Question 6 N	Notes Continued					
6. (a)	Note	Give B0 M1 A0 for $\frac{2}{\alpha} + \frac{2}{\beta} = \frac{2\beta + 2\alpha}{\alpha\beta}$	$\overline{\frac{2\left(\frac{3-\sqrt{183}\mathrm{i}}{24}\right)+2\left(\frac{3+\sqrt{183}\mathrm{i}}{24}\right)}{\left(\frac{3+\sqrt{183}\mathrm{i}}{24}\right)\left(\frac{3-\sqrt{183}\mathrm{i}}{24}\right)}=\frac{3}{2}$					
	Note	Allow B1 for both $S = \frac{1}{4}$ and $P = \frac{1}{3}$ or for both $\sum = \frac{1}{4}$ and $\prod = \frac{1}{3}$						
(b)	Note	A correct method leading to $a = 12, b = -15, c = 100$ without writing a final answer of						
		$2x^2 - 15x + 100 = 0$ is final M1A0						
	Note	Using $\frac{3+\sqrt{183}i}{24}, \frac{3-\sqrt{183}i}{24}$ explicitly t	Using $\frac{3+\sqrt{183}i}{24}$, $\frac{3-\sqrt{183}i}{24}$ explicitly to find the sum and product of $\left(\frac{2}{\alpha}-\beta\right)$ and $\left(\frac{2}{\beta}-\alpha\right)$					
		to give $x^2 - \frac{5}{4}x + \frac{25}{3} = 0 \implies 12x^2 - 15x + 100 = 0$ scores M0 A0 M0 A0 M1A0 in part (b)						
	Note	Using $\frac{3 + \sqrt{183}i}{24}$, $\frac{3 - \sqrt{183}i}{24}$ to find $\alpha + \frac{1}{24}$	Using $\frac{3+\sqrt{183}i}{24}$, $\frac{3-\sqrt{183}i}{24}$ to find $\alpha + \beta = \frac{1}{4}$, $\alpha\beta = \frac{1}{3}$, $\frac{2}{\alpha} + \frac{2}{\beta} = \frac{3}{2}$ and applying					
		$\left\{\alpha + \beta = \frac{1}{4}, \right\} \alpha \beta = \frac{1}{3}, \frac{2}{\alpha} + \frac{2}{\beta} = \frac{3}{2} \operatorname{can} \beta$	potentially score full marks in part (b).					
		E.g. Score M1 A1 M1 A1 M1 A1 tor 2 2 2 2	2 3 1 5					
		• Sum = $\frac{2}{\alpha} - \beta + \frac{2}{\beta} - \alpha = \frac{2}{\alpha}$	$+\frac{2}{\beta} - (\alpha + \beta) = \frac{3}{2} - \frac{1}{4} = \frac{3}{4}$					
		• Product = $\left(\frac{2}{\alpha} - \beta\right)\left(\frac{2}{\beta} - \alpha\right) = \frac{1}{\alpha}$	• Product = $\left(\frac{2}{\alpha} - \beta\right)\left(\frac{2}{\beta} - \alpha\right) = \frac{4}{\alpha\beta} - 2 - 2 + \alpha\beta = \frac{4}{\left(\frac{1}{3}\right)} - 2 - 2 + \frac{1}{3} = \frac{25}{3}$					
		• $x^2 - \frac{5}{4}x + \frac{25}{3} = 0 \implies 12x^2 - 15x$	$\mathfrak{r}+100=0$					
	Note	Alternative method for finding the sun	<u>1</u>					
		Sum = $\frac{2}{\alpha} - \beta + \frac{2}{\alpha} - \alpha = \frac{2\beta - \alpha\beta^2 + 2}{\alpha}$	$\frac{\alpha - \alpha^2 \beta}{\alpha} = \frac{2(\alpha + \beta) - \alpha \beta(\beta + \alpha)}{\alpha}$					
		$\begin{array}{cccc} \alpha & \beta & \alpha\beta \\ 2(1)-(1)(1) & 1-1 & 5 & 15 \end{array}$	αβ					
		$= \frac{2(\frac{1}{4})^{-}(\frac{1}{3})(\frac{1}{4})}{(\frac{1}{3})} = \frac{\frac{1}{2} - \frac{1}{12}}{\frac{1}{3}} = \frac{\frac{1}{12}}{\frac{1}{3}} = \frac{1}{12}$	$=\frac{5}{4}$					
	Note	Alternative method for finding the pro	duct					
			Expands $\left(\frac{2}{\alpha} - \beta\right) \left(\frac{2}{\beta} - \alpha\right)$ to give					
		Product = $\left(\frac{2}{\alpha} - \beta\right)\left(\frac{2}{\beta} - \alpha\right)$	$\frac{(\alpha\beta-2)^2}{\alpha\beta}$ and uses their $\alpha\beta$ at least once in M1					
		$=\frac{(\alpha\beta-2)^2}{(\frac{1}{3})^2}=\frac{((\frac{1}{3})-2)^2}{(\frac{1}{3})^2}$	an attempt to find a numerical value for the					
		$=\frac{\alpha\beta}{\frac{25}{9}}=\frac{25}{2}$	product of $\left(\frac{2}{\alpha} - \beta\right)$ and $\left(\frac{2}{\beta} - \alpha\right)$					
		$(\frac{1}{3})$ 3	Correct product of $\frac{25}{3}$ or $8\frac{1}{3}$ or 8.3 A1					

Question Number	Scheme				Notes	Marks
7.	$\mathbf{P} = \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}; \text{ (a) } \mathbf{P}^3 = 8\mathbf{I}; \text{ (c) } \mathbf{P}^{35} = 2^k \begin{pmatrix} -1 & a \\ b & -1 \end{pmatrix}$					
(a)	$\left\{\mathbf{P}^{2}=\right\}\begin{pmatrix}-1&-\sqrt{3}\\\sqrt{3}&-1\end{pmatrix}\begin{pmatrix}-1&-\sqrt{3}\\\sqrt{3}&-1\end{pmatrix}=\begin{pmatrix}-\\-2\end{pmatrix}$	$ \begin{array}{ccc} 2 & 2\sqrt{3} \\ \sqrt{3} & -2 \end{array} $		(w) at	Finds \mathbf{P}^2 hich can be un-simplified) with least 3 correct elements for \mathbf{P}^2	M1
	$ \{\mathbf{P}^{3} = \} \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} = \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix} = 8\mathbf{I} * $ or $\{\mathbf{P}^{3} = \} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix} = \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix} = 8\mathbf{I} * $			dependent on the previous M markMultiplies P^2 by P or multiplies P by P^2 to give a 2×2 matrix of 4 elements for P^3 with at least 2 correct elementsCorrect proof with no errors		dM1 A1 *
						(3)
(b)	Enlargement		1 . /	Enl	largement or enlarge or dilation	MI
	Centre $(0, 0)$ with scale factor 2		about ((0,0)) or about O or about the origin	A1
	Dotation				d scale or factor or times and 2	M1
	Kotation			К	$\frac{1}{2\pi}$	IVII
	120 degrees (anticlockwise) about (0, 0) or			Both 120 degrees or $\frac{2\pi}{3}$ or 240 degrees clockwise or $\frac{4\pi}{3}$ clockwise		
		and	d about ((0, 0) or about O or about the origin		
						(4)
(c)	$P^{35} = (P^3)^{11} \times P^2$ or $P^{35} = 1$	$\mathbf{P}^{33} \times \mathbf{P}^{2}$				
Way 1	$= (8\mathbf{I})^{11} \times \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix} = (2)$	$(2I)^{33} \times \begin{pmatrix} -2 \\ -2 \end{pmatrix}$	$\times \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix} $ ((8I) ¹¹ or (8) ¹¹)×(their P ²) or ((2I) ³³ or (2) ³³)×(their P ²)		M1	
	$=2^{34}\begin{pmatrix}-1&\sqrt{3}\\-\sqrt{3}&-1\end{pmatrix}$			Correct answer Note: $k = 34, a = \sqrt{3}, b = -\sqrt{3}$		A1
						(2)
(c)	$\mathbf{P}^{35} = (\mathbf{P}^3)^{12} \times \mathbf{P}^{-1}$ or $\mathbf{P}^{35} = \mathbf{P}^{36} \times \mathbf{P}^{-1}$					
Way 2	$= (8\mathbf{I})^{12} \times \frac{1}{(-1)(-1) - (-\sqrt{3})(\sqrt{3})} \begin{pmatrix} -\\ -\sqrt{3} \end{pmatrix}$	$\begin{bmatrix} 1 & \sqrt{3} \\ \sqrt{3} & -1 \end{bmatrix}$	((81)	$((8\mathbf{I})^{12} \text{ or } (8)^{12}) \times \frac{1}{\text{their det}(\mathbf{P})} \begin{pmatrix} -1 & \sqrt{3} \\ -\sqrt{3} & -1 \end{pmatrix}$		
	or = $(2\mathbf{I})^{36} \times \frac{1}{(-1)(-1) - (-\sqrt{3})(\sqrt{3})} \begin{pmatrix} -1 & \sqrt{3} \\ -\sqrt{3} & -1 \end{pmatrix}$ ((21) ³⁶ or (2) ³⁶) $\times \frac{1}{\text{their det}(\mathbf{P})} \begin{pmatrix} -1 \\ -\sqrt{3} \\ where their det(\mathbf{P}) \end{pmatrix}$			$\frac{1}{(2)^{36}} \times \frac{1}{\text{their det}(\mathbf{P})} \begin{pmatrix} -1 & \sqrt{3} \\ -\sqrt{3} & -1 \end{pmatrix}$ where their det $(\mathbf{P}) > 1$	M1	
	$\left\{ = \left(2^{36}\right) \left(\frac{1}{4}\right) \left(\begin{array}{cc} -1 & \sqrt{3} \\ -\sqrt{3} & -1 \end{array}\right) \right\} = 2^{34} \left(\begin{array}{cc} -1 & \sqrt{3} \\ -\sqrt{3} & -1 \end{array}\right)$			Correct answer Note: $k = 34, a = \sqrt{3}, b = -\sqrt{3}$		A1
						(2)
1						9

	Question 7 Notes				
7. (a)	Note	Proof must contain the final steps of $= \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix}$ and $= 8I$ or $= \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix}$ and $= RHS$			
	Note	Other acceptable proofs for M1 dM1 A1 include			
		• $\mathbf{P}^{3} = \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \text{ or } \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}^{3}$			
		$= \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} = \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix} = 8\mathbf{I} *$			
		• $\mathbf{P}^{3} = \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \text{ or } \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}^{3}$			
		$= \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix} = \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix} = 8\mathbf{I} *$			
		• $\mathbf{P}^3 = \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} = \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix} = 8\mathbf{I} *$			
		• $\mathbf{P}^3 = \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix} = \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix} = 8\mathbf{I} *$			
(b)	Note	"original point" is not acceptable in place of the word "origin".			
	Note	"expand" is 1 st M0			
	Note	"enlarge x by 2 and no change in y" is 1^{st} M0 1^{st} A0			
	Note	Writing "120 degrees" by itself implies by convention "120 degrees anti-clockwise". So			
		• "Rotation 120 degrees about O " is 2^{nd} M1 2^{nd} A1			
	Note	Writing down "centre $(0, 0)$ with scale factor 2" with no reference to "enlargement"			
	TUL	or "enlarge" or "dilation" is 1 st M0 1 st A0			
	Note	Writing down "120 degrees anti-clockwise about <i>Q</i> " with no reference to "rotation" or "turn"			
	1.000	is 2 nd M0 2 nd A0			
	Note	Give 1 st M1 1 st A0 for writing "stretch parallel to <i>x</i> -axis and <i>y</i> -axis"			
	Note	Give 1 st M1 1 st A0 for writing "stretch scale factor 2 parallel to <i>x</i> -axis and stretch scale factor 2 parallel to <i>y</i> -axis {with centre $(0, 0)$ }"			
	Note	If a candidate would score M1 A1 M1 A1 in part (b) and there is an error in their solution			
		(e.g. a third transformation given) then give M1 A1 M1 A0			
(c)	Note	$8^{11} = 2^{33} = 8589934592$			
	Note	$8^{12} = 2^{36} = 68719476736$			
	Note	(their \mathbf{P}^2) must be a genuine attempt at \mathbf{P}^2 or must be for (their \mathbf{P}^2) seen in part (a)			
	Note	Allow M1 A1 for writing $\mathbf{P}^{35} = 2^{34} \begin{pmatrix} -1 & \sqrt{3} \\ -\sqrt{3} & -1 \end{pmatrix}$			
	Note	Stating $k = 34$, $a = \sqrt{3}$, $b = -\sqrt{3}$ from no working is M1 A1			
	Note	Give M0 A0 for $\mathbf{P}^4 = 2^3 \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \Rightarrow \mathbf{P}^{35} = 2^{34} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}$			

		Question 7 Notes Continued		
7. (c)	Note	Writing down $(8\mathbf{I})^{11} \times \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}$ or $(2\mathbf{I})^{33} \times \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}$		
		or $(8\mathbf{I})^{11} \times \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}^2$ or $(2\mathbf{I})^{33} \times \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}^2$		
		with no attempt to evaluate $\begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}$ is M0		
	Note	Allow M1 for applying $\mathbf{P}^{35} = (\mathbf{P}^3)^{11} \times \mathbf{P}^2$ or $\mathbf{P}^{35} = \mathbf{P}^{33} \times \mathbf{P}^2$		
		E.g. Allow M1 for $\begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix}^{11} \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix}$ or $\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}^{33} \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix}$		
		or $\binom{8^{11}}{0} \binom{-2}{8^{11}} \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix}$ or $\binom{2^{33}}{0} \binom{-2}{2\sqrt{3}} \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix}$		
		or $(8)^{11} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix}$ or $(2)^{33} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix}$		
	Note	Allow M1 for (2) ³⁵ $\begin{pmatrix} \cos 240 & -\sin 240 \\ \sin 240 & \cos 240 \end{pmatrix}$ or (2) ³⁵ $\begin{pmatrix} \cos 4200 & -\sin 4200 \\ \sin 4200 & \cos 4200 \end{pmatrix}$		
		or $(2)^{35} \begin{pmatrix} -0.5 & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -0.5 \end{pmatrix}$ or equivalent in radians		
	Note	Give M0 for $\mathbf{P}^{35} = (\mathbf{P}^3)^{11} \times \mathbf{P}^2$ by itself		
	Note	Give M0 for $\mathbf{P}^{35} = \mathbf{P}^{33} \times \mathbf{P}^2$ by itself		

Question Number	Scheme	Notes		
8.	(i) $\begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}^n = \begin{pmatrix} 1+4n & -8n \\ 2n & 1-4n \end{pmatrix}$	$ \begin{array}{c} 5 & -8 \\ 2 & -3 \end{array}^{n} = \begin{pmatrix} 1+4n & -8n \\ 2n & 1-4n \end{pmatrix} \\ \end{array} $ (ii) $u_{1} = 8, u_{2} = 40, u_{n+2} = 8u_{n+1} - 12u_{n} \Longrightarrow u_{n} = 6^{n} + 2^{n} \\ \end{array} $		
(i)	$n = 1, \text{ LHS} = \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix},$ $\text{RHS} = \begin{pmatrix} 1+4(1) & -8(1) \\ 2(1) & 1-4(1) \end{pmatrix} =$	$\begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}$	Shows or states that either LHS = RHS = $\begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}$ or LHS = $\begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}$, RHS = $\begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}$	B1
	(Assume the result is true for $n = k$)			
	$ \begin{pmatrix} 5 & -8\\ 2 & -3 \end{pmatrix}^{k+1} = \begin{pmatrix} 1+4k & -8k\\ 2k & 1-4k \end{pmatrix} \begin{pmatrix} 5\\ 2 \\ 0 \\ 0 \\ 2 \\ -2 \end{pmatrix}^{k+1} $ or $ = \begin{pmatrix} 5 & -8\\ 2 & -2 \\ 2 & -2 \end{pmatrix}^{k+1} $	$ \begin{pmatrix} -8 \\ -3 \end{pmatrix} $ $ \begin{pmatrix} 3 \\ 3 \end{pmatrix} \begin{pmatrix} 1+4k & -8 \\ 2k & 1- \end{pmatrix} $	$ \begin{array}{c} \text{States intention to multiply} \\ \begin{pmatrix} 1+4k & -8k \\ 2k & 1-4k \end{pmatrix} \text{by} \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix} \text{ (either way round)} \end{array} $	M1
	$= \begin{pmatrix} 5+20k-16k & -8-32k+24k \\ 10k+2-8k & -16k-3+12k \end{pmatrix}$ or $= \begin{pmatrix} 5+20k-16k & -40k-8+\\ 2+8k-6k & -16k-3+ \end{pmatrix}$	$\begin{pmatrix} 32k\\ 12k \end{pmatrix} $ or $= \begin{pmatrix} 2\\ 2 \end{pmatrix}$	$\begin{pmatrix} dependent on the \\ previous M mark \\ Multiplies out to give a \\ correct un-simplified \\ matrix with at least 3 \\ correct elements \end{pmatrix}$	dM1
	$= \begin{pmatrix} 1+4(k+1) & -8(k+1) \\ 2(k+1) & 1-4(k+1) \end{pmatrix}$		Uses algebra to achieve this result with no errors	A1
	If the result is true for $n = k$, then it is true for $n = k + 1$. As the result has been shown to true for $n = 1$, then the result is true for all $n \in \mathbb{Z}^+$			A1 cso
				(5)
(ii)	{n=1,} $u_1 = 6^1 + 2^1 = 8;$ {n=2,} $u_2 = 6^2 + 2^2 = 40$	Shows $u_1 = 8$ or $6+2$ and	by writing an intermediate step of e.g. $6^1 + 2^1$ shows $u_2 = 40$ by writing an intermediate step of e.g. $6^2 + 2^2$ or $36 + 4$	B1
	(Assume the result is true for $n = k$	and $n = k + 1$)		
	$\{u_{k+2} = 8u_{k+1} - 12u_k \Longrightarrow \}$ $u_{k+2} = 8(6^{k+1} + 2^{k+1}) - 12(6^k + 2^k)$	Finds u_k	and $u_k = 6^k + 2^k$ into $u_{k+2} = 8u_{k+1} - 12u_k$ Condone one slip	M1
	either $\{u_{k+2}\} = 48(6^k) + 16(2^k) - 12$ $= 36(6^k) + 4(2^k)$ $= 6^2(6^k) + 2^2(2^k)$ or $\{u_{k+2}\} = 8(6^{k+1} + 2^{k+1}) - 2(6^k)$ $= 6(6^{k+1}) + 2(2^{k+1})$ or $\{u_{k+2}\} = 8(6^{k+1}) - 2(6^{k+1}) + 4$ or $\{u_{k+2}\} = 48(6^k) - 12(6^k) + 46^k$	$\frac{2(6^{k} + 2^{k})}{(2^{k+2}) - 3(2^{k+2})}$	Expresses u_{k+2} correctly in terms of only 6^k and 2^k or only 6^{k+1} and 2^{k+1} or as $8(6^{k+1}) - 2(6^{k+1}) + 4(2^{k+2}) - 3(2^{k+2})$ or as $48(6^k) - 12(6^k) + 4(2^{k+2}) - 3(2^{k+2})$	A1 (M1 on ePEN)
	$= 6^{k+2} + 2^{k+2}$		dependent on the previous A mark Uses algebra in a complete method to achieve this result with no errors	A1
	If the result is true for <i>n</i>	$k = k$ and for \overline{n}	= k + 1, then it is true for $n = k + 2$.	Δ 1
	As the result has been shown to be true for $n = 1$ and $n = 2$,			CS0
	then the result is true for all n ($\in \mathbb{Z}^+$)			(5)
				10

	Question 8 Notes						
8. (i)	Note	Final A1 is dependent on all previous marks being scored.					
		It is gained by candidates conveying the ideas of all four underlined points in part (i)					
		either at the end of their solution or as a narrative in their solution.					
	Note	"Assume for $n = k$, $\begin{pmatrix} 5 & -8 \\ 2 & -2 \end{pmatrix}^k = \begin{pmatrix} 1+4k & -8k \\ 2k & 1-4k \end{pmatrix}$ " satisfies the requirement "true for $n = k$ "					
		(2 -3) (2k - 1 - 4k)					
	Note	"For $n \in \mathbb{Z}^+$, $\begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}^n = \begin{pmatrix} 1+4n & -8n \\ 2n & 1-4n \end{pmatrix}$ " satisfies the requirement "true for all <i>n</i> "					
	Note	Give B0 for stating LHS = RHS by itself with no reference to LHS = RHS = $\begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}$					
	Note	Allow for B1 for stating either, $n = 1$, $\begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix} = \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}$ or $\begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix} = \begin{pmatrix} 1+4 & -8 \\ 2 & 1-4 \end{pmatrix}$					
	Note	E.g. $\binom{1+4k}{2k} \binom{-8k}{2}\binom{5}{2} \binom{-8}{-3} = \binom{1+4(k+1)}{2(k+1)} \binom{-8(k+1)}{1-4(k+1)}$ with no intermediate working					
		is M1 dM0 A0 A0					
	Note	E.g. Writing any of $(1 + 4k + 3k + 3k + 3k + 3k + 3k + 3k + 3k$					
		$ \bullet \begin{pmatrix} 1+4k & -8k \\ 2k & 1-4k \end{pmatrix} \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix} = \begin{pmatrix} 5+20k-16k & -8-32k+24k \\ 10k+2-8k & -16k-3+12k \end{pmatrix} = \begin{pmatrix} 1+4(k+1) & -8(k+1) \\ 2(k+1) & 1-4(k+1) \end{pmatrix} $					
		(1+4k -8k)(5 -8) - (5+4k -8-8k) - (1+4(k+1) -8(k+1))					
		$ (2k 1-4k)(2 -3)^{-}(2+2k -4k-3)^{-}(2(k+1) 1-4(k+1)) $					
		is M1 dM1 A1					
(ii)	Note	Ignore $u_3 = 8u_2 - 12u_1 = 8(40) - 12(8) = 224$ as part of their solution to (i)					
	Note	Ignore $\{n=3,\}$ $u_2 = 6^3 + 2^3 = 224$ as part of their solution to (i)					
	Note	Full marks in (i) can be obtained for an equivalent proof where $n = k \rightarrow n = k - 1$; i.e. $k \equiv k - 1$					
	Note	Final A1 is dependent on all previous marks being scored.					
		It is gained by candidates conveying the ideas of all four underlined points in part (ii)					
		either at the end of their solution or as a narrative in their solution. (A summa for $n = k + 2k + 2k + 1 + 1 + 2k + 2k$					
	Note	"Assume for $n = k$, $u_k = 6^k + 2^k$ and for $n = k + 1$, $u_{k+1} = 6^{k+1} + 2^{k+1}$ " satisfies the requirement					
		"true for $n = k$ and $n = k + 1$ "					
	Note	For $n \in \mathbb{Z}^{+}$, $u_n = 6^n + 2^n$ satisfies the requirement "true for all n "					
	Note	Writing $u_{k+2} = 8(6^{k+1} + 2^{k+1}) - 12(6^k + 2^k) = 6^{k+2} + 2^{k+2}$ with no intermediate working					
	Note	E.g. Writing either $2(6^{k+1} + 2^{k+1}) = 12(6^k + 2^k) = 48(6^k) + 16(2^k) = 12(6^k + 2^k) = 6^{k+2} + 2^{k+2}$					
		• $u_{k+2} = 8(6 + 2) - 12(6 + 2) = 48(6) + 16(2) - 12(6 + 2) = 6 + 2$ • $u_{k+2} = 8(6 + 2) - 12(6 + 2) = 48(6) + 16(2) - 12(6 + 2) = 6 + 2$					
		• $u_{k+2} = 8(6 + 2) - 12(6 + 2) = 36(6) + 4(2) = 6 + 2$ • $u_{k+2} = 8(6 + 2) - 12(6 + 2) = 36(6) + 4(2) = 6 + 2$					
		• $u_{k+2} = 8(6 + 2) - 12(6 + 2) = 6(6) + 2(2) = 6 + 2$ • $u_{k+2} = 8(6 + 2) - 12(6 + 2^{k}) = 8(6^{k+1} + 2^{k+1}) - 2(6^{k+1}) - 6(2^{k+1}) - $					
		• $u_{k+2} = 8(6 + 2) - 12(6 + 2) = 8(6 + 2) - 2(6) - 6(2) = 6 + 2$					
		• $u_{k+2} = 8(6^{\circ} + 2^{\circ}) - 12(6^{\circ} + 2^{\circ}) = 6(6^{\circ}) + 2(2^{\circ}) = 6^{\circ} + 2$					
		• $u_{k+2} = \delta(0 + 2) - 12(0 + 2) = \delta(0) - 2(0) + 4(2^{n+2}) - 3(2^{n+2}) = 6^{n+2} + 2^{n+2}$ • $u_{k+2} = \delta(0 + 2) - 12(6^{k} + 2^{k}) - (2(6^{k+1}) + 4(2^{k+2}) - 2(2^{k+2}) - 6^{k+2} + 2^{k+2})$					
		• $u_{k+2} = \delta(0 + 2) - 12(0 + 2) = (0)(0 + 4(2 - 1) - 3(2 - 1)) = 6^{-1} + 2^{-1}$					
	NT.a.4-	18 W1 A1 A1 Writing $u = -8(6^{k+1} + 2^{k+1}) - 12(6^k + 2^k) - (6)6^{k+1} + 2^{k+2} - 6^{k+2} + 2^{k+2}$					
	INOTE	writing $u_{k+2} = 0(0 + 2) - 12(0 + 2) = (0)0 + 2 = 0^{-1} + 2$ with no intermediate working is M1 A0 A0 A0					
		with no intermediate working is M1 A0 A0 A0					

	Question 8 Notes Continued		
8. (ii)	Note	Note Full marks in (i) can be obtained for an equivalent proof where e.g.	
		• $n = k, n = k + 1, \rightarrow n = k - 2, n = k - 1;$ i.e. $k \equiv k - 2$	
8. (i), (ii)	Note	Note Referring to <i>n</i> as a real number their conclusion is final A0	
	Note	Note Referring to <i>n</i> as any integer in their conclusion is final A0	
	Note	Condone $n \in \mathbb{Z}^*$ as part of their conclusion for the final A1	

Question Number	Scheme		Notes		
9.	$z_1 = -1 - i, \ z_2 = 3 - 4i; \ (d) \frac{p + iq - 8z_1}{p - iq - 8z_2} = 3i$				
(a)	$z_1 - z_2 = -4 + 3i$		$z_1 - z_2 = -4 +$	3i, seen or implied	B1
	$\{z_1 - z_2 = -4 + 3i \Longrightarrow \}$		$z_1 - z_2 = \alpha$	$+\beta i; \alpha < 0, \beta > 0$	
	$\arg(z_1 - z_2) = \pi - \tan^{-1}\left(\frac{3}{4}\right)$	and uses trig arg $(z_1 - z_2)$	and uses trigonometry to find an expression for $\arg(z_1 - z_2)$ so that $\arg(z_1 - z_2)$ is in the range (1.58, 3.14) or (90°, 180°)		M1
	$\{\arg(z_1 - z_2) = \pi - 0.6435011 \Rightarrow \}$	or (-3	.15, -4.71)	or (-180°, -270°)	
	$\arg(z_1 - z_2) = 2.4980915 \{= 2.498 (3 \text{ dp})\}$)}		awrt 2.498	A1
					(3)
(b) Way 1	$\left\{\frac{z_1}{z_2}\right\} = \left\{\frac{(-1-i)(3+4i)}{(3-4i)(3+4i)}\right\}$	Mu t	ltiplies numerate by the conjugate	or and denominator of the denominator	M1
	$= \frac{-3 - 4i - 3i + 4}{9 + 16} \left\{ = \frac{1 - 7i}{25} \right\}$	Nume or denomin	rator correct (wi nator correct (wi	th $i^2 = -1$ applied) th $i^2 = -1$ applied)	A1
	$= \frac{1}{25} - \frac{7}{25}i \text{or} 0.04 - 0.28i$		$\frac{1}{25} - \frac{7}{25}$	i or 0.04 – 0.28i	A1
~ `		I			(3)
(b) Way 2	$\frac{-1-i}{3-4i} = a + ib \implies -1-i = (a+ib)(3-4i)$	Sets $\frac{z_1}{z_2} = c$	a + ib, multiplie	es both sides by z_2 ,	
	$\{\text{Real} \Rightarrow\} -1 = 3a + 4b$	attempts	to equate both th	he real part and the	M1
	{Imaginary \Rightarrow } $-1 = -4a + 3b$ $\Rightarrow a = \dots$ or $b = \dots$	imaginary part of the resulting equation and solves to give at least one of $a =$ or $b =$			
	$a = \frac{1}{25}$ or 0.04, $b = -\frac{7}{25}$ or -0.28	А	At least one of either <i>a</i> or <i>b</i> is correct		A1
	So, $\frac{z_1}{z_2} = \frac{1}{25} - \frac{7}{25}$ i or $0.04 - 0.28i$		$\frac{1}{25} - \frac{7}{25}i$ or $0.04 - 0.28i$		A1
					(3)
(c)	$\left\{ \left \frac{z_1}{z_2} \right = \right\} \sqrt{\left(\frac{1}{25}\right)^2 + \left(\frac{-7}{25}\right)^2} \left\{ \text{or} \frac{ z_1 }{ z_2 } \right\}$	$= \left\{ \begin{array}{c} \sqrt{(-1)^2 + (-1)} \\ \sqrt{(3)^2 + (-4)} \end{array} \right.$	$\overline{\frac{2}{2}}$ Finds full	$\frac{\left \frac{z_1}{z_2}\right }{\left \frac{z_2}{z_2}\right }$ by applying a Pythagoras method	M1
	$\left\{=\frac{\sqrt{50}}{25}\right\} = \frac{\sqrt{2}}{5}$			$\frac{\sqrt{2}}{5}$ or $\frac{1}{5}\sqrt{2}$	A1 cao
(1)			1 .1 .1 1	1 ((2)
(a)	$p + 1q - 8z_1 = 31(p - 1q - 8z_2)$	Multiplie	s both sides by ($p = 1q - 8z_2,$	M1
	$ \rightarrow p + iq - o(-1 - 1) = 3i(p - iq - 8(3 - 4i)) $	and substit	utes the given v	and z_1 and z_2	
	$\Rightarrow p + iq + 8 + 8i = 3pi + 3q - 72i - 96$ $\{\text{Real} \Rightarrow\} p + 8 = 3q - 96$ $the imaginary part of the imagin$		pts to equate bo ginary part of the	th the real part and e resulting equation	dM1
	{Imaginary \Rightarrow } $q+8=3p-72$	Both correct equations which can be simplified or un-simplified			A1
	$\begin{cases} p-3q=-104\\ 3p-q=80 \end{cases} \Rightarrow \begin{cases} p-3q=-104\\ 9p-3q=240 \end{cases}$	de Obtains two and	dependent on the previous M mark Obtains two equations both in terms of p and q and solves them simultaneously to give at least one of $p = \dots$ or $q = \dots$		
	$\Rightarrow p = 43, q = 49$			p = 43, q = 49	A1
					(5)
					13

	Question 9 Notes			
9. (a)	Note	Allow M1 (implied) for awrt 2.5, truncated 2.4, awrt -3.8, truncated -3.7, awrt 143°,		
		awrt -217° or truncated -216°		
	Note	Give B1 M1 A1 for writing $arg(z_1 - z_2) = awrt 2.498$ from no working.		
(b)	Note	Give 2 nd A0 for writing down $\frac{1-7i}{25}$ with no reference to $\frac{1}{25} - \frac{7}{25}i$ or $0.04 - 0.28i$		
	Note	Give M1 1 st A1 for writing down $\frac{1-7i}{25}$ from no working in (b)		
	Note	Give M1 A1 A1 for writing down $\frac{1-7i}{25} = \frac{1}{25} - \frac{7}{25}i$ or $0.04 - 0.28i$ from no working in (b)		
	Note	Give M1 A1 A1 for writing down $\frac{1}{25} - \frac{7}{25}i$ or $0.04 - 0.28i$ from no working in (b)		
	Note	Give 2^{nd} A0 for simplifying a correct $\frac{1}{25} - \frac{7}{25}i$ to give a final answer of $1 - 7i$		
(c)	Note	M1 can be implied by awrt 0.283 or truncated 0.282		
	Note	Give A0 for $\frac{\sqrt{50}}{25}$ or 0.28284 without reference to $\frac{\sqrt{2}}{5}$ or $\frac{1}{5}\sqrt{2}$		
	Note	Give M0 for $\sqrt{\left(\frac{1}{25}\right)^2 + \left(\frac{-7i}{25}\right)^2}$ unless recovered by later working		
	Note	Give M1 A1 for writing $\left \frac{z_1}{z_2}\right = \frac{\sqrt{2}}{5}$ from no working.		