

Mark Scheme (Results)

Summer 2018

Pearson Edexcel International A Level In Mathematics Statistics S3 (WST03/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018
Publications Code WST03_01_1806_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

June 2018 WST03/01 Statistics 3 Mark Scheme

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

June 2018 IAL - WST03/01 Statistics 3

Question					Sche	me						Marks
Number	F 4 11	1 4	D	<u> </u>		1	r	C	7.7	7		TVICINS
1. (a)	Footballe Rank x	r A	<i>B</i> 2	<i>C</i> 3	$\frac{D}{4}$	<i>E</i> 5	<i>F</i> 6	<i>G</i> 7	H 8	<i>I</i> 9		
	Rank y	6	9	8	2	5	4	7	3	1		
	Rank <i>y</i>	9	8	7	6	5	4	3	2	1		M1
	Rank y	4	1	2	8	5	6	3	7	9		
										M1 A1		
	$r_{\rm S} = 1 - \frac{60}{900}$	(196) $(9^2 - 1)$;=	- 0.633	33333.	or	$-\frac{19}{30}$						dM1; A1
(b)	$H_0: \rho_s = 0$). Η ₁ : ρ	< 0									[5] B1
	Critical Va			or - 0.6	or C	R: r. s	<-0.60					B1
									ect H ₀			M1
	Since $r_S = -0.6333$ lies in the CR (or $-0.6333 < -0.6$), reject H ₀ Either conclude that • Russell's claim is true • Footballers with lower BMI are slower Conclusion in context										A1	
												[4]
(c)	Both Critic								Ho (or a	ccent F	I ₀)	M1
	does not lie in the CR /Result is not significant/Do not reject H ₀ (or accept H ₀) Conclude that there is no negative correlation oe Context not required here.									A1		
(d)	The relationship (between BMI and time taken to complete the obstacle course) is non-linear oe							[2] B1				
	10 HOM MICAL OC									[1] 12		
	44554			1 0		_	<u>iestion</u>			/ 11		
1. (a)	1 st M1	-				-					reverse rankings)	
		2nd M1 For finding the difference between each of the ranks and evaluating $\mathring{a} d^2$										
		1 st A1 $\mathring{a} d^2 = 196$ or from reverse rankings $\mathring{a} d^2 = 9 + 1 + 1 + 16 + 0 + 0 + 16 + 1 + 0 = 0$								= 44		
	3 rd dM1 is dependent on 1 st M1 for use of $1 - \frac{6("196")}{9(9^2 - 1)}$ with their \mathring{a} d^2 .											
	2 nd A1	awrt - 0.	.633 or	$-\frac{19}{30}$	or fro	m revei	se ranl	$\frac{1}{3}$	9			
(b)	1st B1 Both hypotheses stated in terms of Γ or ρ_s .											
	Note One tail H_1 must be compatible with their ranking. 2 nd B1 Critical value of ± 0.6											
	M1	For a cor	rect sta	itement	relatin	g their	$r_{S}\left(\left r_{S} \right \right)$	<1) w	ith the	ir c.v. v	where their c.v. < 1	
	For a correct statement relating their $r_S \left(\left r_S \right < 1 \right)$ with their c.v. where their c.v. < 1 For a contextualised comment which is rejecting H ₀ , which must mention either "ne correlation", "BMI" and "time" or "lower BMI are slower" o.e.								<u>gative</u>			
	Note Follow through their r_S with their c.v. (provided their c.v. <1)											
(c)	M1	Allow ± Use of -	0.5822	I	gnore l	nypothe				•		

Question Number				Scheme				Marks	
2. (a)	$\hat{p} = \frac{7(3) + 12}{12}$	8(5) +	9(18) + 10((28) +11(17 17 + 4) or 1	$\left\{ \frac{7}{2}, \frac{12}{4} \right\} = \frac{7}{9}$	$\left. \frac{(38)}{(00)} \right\} = 0.82(*)$	Answer is given. See notes.	M1 A1cso	
	12	(3 1 3 1	10 1 20 1	17 1 1) 01 1	2(13)	00)		[2]	
(b)	$r = 75^{-12}C_{0}(0.82)^{9}(0.18)^{3} = 16.1296941$ (formula)								
					+ 18.26 + 6.93)	,		M1	
	`						16.12		
	r = 16.129	0941	; $S = 0.87$.	••		<i>r</i> = awrt	16.13; $s = awrt 0.87$	A1; A1	
(c)	H ₀ : Binomial distribution is a suitable (or good) model (or fit) H ₁ : Binomial distribution is not a suitable model					[3] B1			
	TII. Dilloin			Comb	Comb	$(O - E)^2$	O^2		
	#	O_i	E_{i}	O_i	E_i	$\frac{(O_i - E_i)^2}{E_i}$	$\frac{O_i^2}{E_i}$		
	≤ 6	0	0.87	·	,	L _i	L_i		
	7	3	2.80	8	11.64	1.1383	5.4983		
	8	5	7.97						
	9	18	16.13	18	16.13	0.2168	20.0868	M1	
	10	28	22.04	28	22.04	1.6117	35.5717	M1	
	11 12	17 4	18.26 6.93	17 4	18.26 6.93	0.0869 1.2388	15.8269 2.3088	IVII	
	12	4	0.93	4	Totals	4.2925	79.2925		
	$X^2 = awrt$	4.3			1 0 0 0 1			A1	
	v = 5 - 1 - 1 = 3								
	$\chi_3^2(0.10) = 6.251 \Rightarrow \text{CR}: \ X^2 \geqslant 6.251$							B1 ft B1 ft	
	[does not lie in the CR/not significant/Do not reject H ₀ /Accept H ₀]								
	Binomial distribution is a suitable A correct conclusion (context not required here) which								
	model. is based on <i>their</i> X^2 -value and <i>their</i> χ^2 -critical value.								
					Question	2 Notes		[7] 12	
2. (a)	M1	At lea	ast 2 non ze	ero products			sion for their method		
	A1 cso				ith no incorrect				
(b)	M1	For a	ny correct i	method (or	a correct expres	ssion) for finding ei	ther r or s .		
	A1; A1	r = a	wrt 16.13;	s = awrt 0.8	37				
(c)	1st B1					inomial at least once			
	1st 3.71	Inclusion of 0.82 for p in hypotheses is B0 but condone in conclusion. For an attempt to pool 8, 7 and \leq 6 germinating seeds ONLY.							
	1 st M1					correct expressions			
	2 nd M1	l l	•	r truncated		correct expressions	s/ values		
	1st A1	awrt 4	4.3						
	2 nd B1ft	For th	neir evaluat	ed <i>n</i> - 1 -	1. i.e. realising	that they must sub	tract 2 from their <i>n</i> .		
	3rd B1ft	For a	correct ft f	for their χ_k^2	(0.10), from the	eir degrees of freed	om		
	Note	For 0	.10 signific	eance: $\chi_6^2 =$	$= 10.645 \chi_5^2 =$	9.236 $\chi_4^2 = 7.779$	$y = \chi_2^2 = 4.605$		
	Final A1				od mark only.				
	**					which is accepting			
	Note			*	I	ney are stated the wi			
	Note Note				ore A0. E.g. 12, 0.82) in cor	significant, do not r	ејест по .		
	Note	Cond	one menuo	imig or D(12, 0.02) III COL	iciusiuii.			

Question Number		Scheme		Marks	
3. (a)	$\left\{\hat{m}_{x} = \overline{x} = \right.$	$=\frac{92.0}{20} \Rightarrow \overline{x} = 4.6 \text{ (cm)}$	4.6	B1	
		$s_x^2 = \frac{433.4974 - 20(4.6)^2}{20 - 1} = 0.541968 \text{ (cm)}^2$	Applies $\frac{\text{å } x^2 - 20(\text{their } \overline{x})^2}{20 - 1}$	M1	
		20 - 1	awrt <u>0.542</u>	A1	
				[3]	
(b)	Combine	d Sample: Mean = $\frac{92.0 + 142.5}{20 + 30} = 4.69$	4.69 Can be implied.	B1	
	, 433.	4974 + 689.5078 - 50(4.69) ²		M1;	
	$S^2 = \frac{1}{1000}$	$\frac{4974 + 689.5078 - 50(4.69)^2}{20 + 30 - 1}; = 0.4734734694$	awrt 0.473 or 0.4735 (can be implied)	A1	
			For use of $s/\sqrt{50}$	M1;	
	$\frac{3}{\sqrt{n}} = \frac{\sqrt{6}}{100}$	$\frac{0.4734734694}{\sqrt{50}}$; = 0.09731119868	awrt 0.0973	A1	
		·		[5]	
(c)	$H_0: \mathcal{M} = 4$	$4.5 ext{ } H_1: m > 4.5$	Correct hypotheses	B1	
		7011 4.5	their 4.69 - 4.5		
	$z = \frac{4.6}{}$	59"-4.5 0.71; = 1.892257583 ±	$\frac{\text{their } 4.69 - 4.5}{0.71} \text{ or equivalent.}$	M1;	
	$\frac{0.71}{\sqrt{50}}$				
		V30	awrt 1.89	A1	
	One taile	d c.v. $Z = 1.6449$ or CR: $Z \ge 1.6449$	Critical value of 1.6449	D.1	
	or p-valu	$e = awrt \ 0.029 \ or \ awrt \ 0.029 < 0.05$	or a correct probability comparison.	B1	
	[in the CI	R/significant/Reject $H_0/0.029 < 0.05$]	Comparison		
			A correct conclusion which is		
	Conclude		rejecting H ₀ in context		
		is evidence to support the farmer's claim	and is based on <i>their z</i> -value and <i>their</i> critical value,	A1	
	• that t	he mean width of duck eggs is greater than 4.5 cm.	where $ c.v. > 1$.		
			I !	[5]	
				13	
		Question 3 Notes	\		
3. (a)	M1	Also allow M1 for applying $\frac{20}{(20-1)} \left(\frac{\sum x^2}{20} - \text{(their } \overline{x} \right) \right)$	$)^2$		
(b)	1st M1	Also allow 1 st M1 for applying $\frac{50}{(50-1)} \left(\frac{\sum x^2 + \sum y^2}{20+30} \right)$	- $\left(\text{their } \overline{x}_{\text{comb}}\right)^2$		
	Note	Award B1M1A1M1A1 for awrt 0.0973 which follows	s from no working.		
(c)	1 st M1	Condone use of 4.6 for this M1 mark.			
	2 nd A1	Conclusion must refer to either "farmer's claim" oe or	r "mean width" and "eggs".		

Question Number					Scheme		Marks		
4. (a)	 H₀: Mean number of reported first-aid incidents per 1000 employees is the same at each warehouse. H₁: Mean number of reported first-aid incidents per 1000 employees is not the same. 								
	Warehous								
	A	(2)(11 12		19		expected values (expected number of incidents). Can be implied by at least one			
	В	(1)(11) 12	4)	9.5		correct E_i .			
	С	(3.8)(1 12	14)	36.1					
	D	(3)(11- 12	4)	28.5		All expected frequencies are correct.	A1		
	E	(2.2)(1 12	14)	20.9					
	Observed	Expected	<u>(O – </u>	$\frac{(E)^2}{E}$	$\frac{O^2}{E}$				
	15	19	0.8421		11.8421	Dependent upon previous M1 At least 3 correct terms for			
	10	9.5	0.0263	3	10.5263	$\frac{(O-E)^2}{E}$ or $\frac{O^2}{E}$	dM1		
	40	36.1	0.4213		44.3213	E E Accept 2 sf accuracy			
	26	28.5	0.2193		23.7193	for the dM1 mark.			
	23	20.9 Totals	0.2110 1.7200		25.3110 115.72				
	\						A1		
	$X^2 = \sum \frac{(O-E)^2}{E}$ or $\sum \frac{O^2}{E} - 114 = \text{awrt } 1.72$ awrt $\underline{1.72}$								
	$n = 5 - 1 = 4 > \chi_4^2(0.05) = 9.488 \Rightarrow CR: X^2 \ge 9.488$ 9.488								
			ant/Do	not Rej	ect H ₀ /Accep	t H ₀]			
	Conclude eith	ner: ig <u>er's claim</u> i	s siinno	rted		A correct conclusion in context			
		he <mark>mean</mark> num			l first-aid	which is based on <i>their</i> X^2 value	A1 ft		
	incidents per 1000 employees is the same at each warehouse. and their χ^2 -critical value.								
	eacii	warenouse.					[7]		
(b)	Select every				Y '•		B1		
	{having chos			/}			dB1		
	selecting a random number.								
					Question	4 Notes			

(a) **SC 1**

Expected values of 9.5 used

Expected values of 7.5 used							
Observed	Expected	$\frac{(O-E)^2}{E}$					
7.5	9.5	0.4210					
10	9.5	0.0263					
10.5	9.5	0.1108					
8.6	9.5	0.0730					
10.4	9.5	0.0959					
	Totals	0.727					

Can score B1M1A0M1A0B1A1ft (5 out of 7)

SC 2

Expected values of 9.43... used

Observed	Expected	$\frac{(O-E)^2}{E}$	$\frac{O^2}{E}$
7.5	9.43	0.3948	5.965
10	9.43	0.0345	10.6050
10.5	9.43	0.1275	11.7507
8.6	9.43	0.0617	7.9655
10.4	9.43	0.1114	11.5910
	Totals	0.729	47.877

Can score B1M1A0M1A0B1A0 (4 out of 7)

(b) Use of 3800 in part (b) is B0B0

Question Number		Scheme		Marks
5.	95% CI f	for m is (30.612, 31.788); c % CI for	<i>m</i> is (30.66, 31.74)	
(a)	2(1.96)S	- = 31.788 - 30.612 {= 1.176}	$\frac{2"z"S}{\sqrt{25}} = 31.788 - 30.612$	M1 oe
	723		1.96	B1
	$\left\{ \Rightarrow S = \cdot \right\}$	$\frac{(1.176)(5)}{2(1.96)} \Rightarrow S = 1.5$	S = 1.5	A1
				[3]
(b)	$\frac{2z(1.5)}{\sqrt{25}} =$	= 31.74 - 30.66 {= 1.08}	$\frac{2z("1.5")}{\sqrt{25}} = 31.74 - 30.66$	M1 oe
		$\frac{(3)(5)}{(.5")} \to z = 1.8$	z = 1.8	A1ft
	$\left[\frac{c}{100} = \right]$	2(0.9641) – 1	2F(their "1.8") - 1 oe	M1
	$\triangleright c = 92$	2.8 (3sf)	awrt <u>92.8</u>	A1
				[4]
			4. FNI 4	7
			nestion 5 Notes	
5. (a)	M1	Also allow M1 (oe) for 31.2 + $\frac{\text{Their}}{\sqrt{2}}$	$\frac{5z"S}{25} = 31.778$, where $31.2 = \frac{30.612 + 31.778}{2}$	
(b)	1 st M1	Also allow M1 (oe) for $31.2 + \frac{z(\text{the})}{2}$	$\frac{\text{ir "1.5"}}{\sqrt{25}} = 31.74$, where $31.2 = \frac{30.66 + 31.74}{2}$	
	1 st A1ft 2 nd M1	For a correct (ft) expression using the awrt 0.928 implies this mark		
	Note	Use of 1.6449 gives $\sigma = 1.787$ and	d leads to $z = 1.51$ and $c = 86.9$ (3sf) (M1A1)	ftM1A0)

Question Number	Scheme		Mark	cs
6.	Y has a continuous uniform distribution $[a-3, a+6]$			
(a)	$E(Y) = \frac{a+6+a-3}{2} \left\{ = \frac{(2a+3)}{2} \text{ or } a+\frac{3}{2} \right\}$		M1	
	Var(Y) = $\frac{(a+6-a+3)^2}{12} \left\{ = \frac{81}{12} \text{ or } \frac{27}{4} \text{ or } 6.75 \right\}$	May be implied	M1	
	$\overline{Y} \sim N \left(a + \frac{3}{2} , \frac{9}{80} ight)$	$N\left(a+\frac{3}{2},\frac{9}{80}\right)$	A1	
				[3]
(b)	$13.4 - 2.3263\sqrt{\frac{9}{80}} < m < 13.4 + 2.3263\sqrt{\frac{9}{80}}$	$13.4 \pm "z" \text{(their } SE_{\overline{Y}})$	M1	
(0)	$13.4 - 2.3263\sqrt{\frac{80}{80}} < 111 < 13.4 + 2.3263\sqrt{\frac{80}{80}}$	2.3263	B1	
	$13.4 - 2.3263\sqrt{\frac{9}{80}} < a + \frac{3}{2} < 13.4 + 2.3263\sqrt{\frac{9}{80}}$			
	$13.4 - 2.3263\sqrt{\frac{9}{80}} + 4.5 < a + 6 < 13.4 + 2.3263\sqrt{\frac{9}{80}} + 4.5$	$13.4 \pm "z" (\text{their } SE_{\bar{y}}) + 4.5$	M1	
	17.11973576 < <i>a</i> + 6 < 18.68026474	awrt (17.1, 18.7)	A1	
				[4]
	Alternative Method for part (b)			
(b)	$13.4 - 2.3263\sqrt{\frac{9}{80}} < m < 13.4 + 2.3263\sqrt{\frac{9}{80}}$	$13.4 \pm "z" \text{(their } SE_{\overline{Y}})$	M1	
(0)	$ 13.4 - 2.3263\sqrt{\frac{80}{80}} < < 13.4 + 2.3263\sqrt{\frac{80}{80}} $	2.3263	B1	
	11.11973526 < <i>a</i> < 12.68026474			
	11.11973526 + 6 < <i>a</i> + 6 < 12.68026474 + 6	$.4 \pm "z" (\text{their } SE_{\bar{y}}) - 1.5 + 6$	M1	
	17.11973576 < <i>a</i> + 6 < 18.68026474	awrt (17.1, 18.7)	A1	
				[4]
				7
	Question 6 Notes			
(b)	1 st M1 The inequalities may be seen separately. For only consider (usually the upper tail) allow access to 1 st M1 only (so M1B1M0A0 A second division of their <i>SE</i> by 60 is 1 st M0		val	

Question Number	Scheme	Marks					
7. (i)	$A = N(21, 2^2)$, $B = N(32, 7^2)$ and $C = N(45, 9^2)$ A, B, C are independent.						
(a)	T = A + B + C						
	$E(T) = 21 + 32 + 45$ or $Var(T) = 2^2 + 7^2 + 9^2$ A fully correct method of finding $E(T)$ or $Var(T)$	M1					
	E(T) = 98 and $Var(T) = 134$ Both $E(T) = 98$ and $Var(T) = 134$	A1					
	{So T ~ N(98,134)}						
	$\{P(T > 90) = \}$ $P\left(Z > \frac{90 - 98}{\sqrt{134}}\right)$ Standardising (\pm) with their mean and their standard deviation	M1					
	= P(Z > -0.69109)						
	= 0.7549 (or 0.75525) awrt 0.755	A1					
		[4]					
(b)	$\left\{ P(A > B) = P(A - B > 0) \right\}$						
	$E(A-B) = 21-32$ or $Var(T) = 2^2 + 7^2$ A fully correct method of finding $E(A-B)$ or $Var(A-B)$	M1					
	E(A - B) = -11 and $Var(A - B) = 53$ Both $E(A - B) = -11$ and $Var(A - B) = 53$	A1					
	{So A - B N(-11,53)}						
	$\{P(A-B>0)\} \Rightarrow P\left(Z>\frac{0-11}{\sqrt{53}}\right)$ Standardising (\pm) with their mean	M1					
	$\frac{1}{\sqrt{53}}$ and their standard deviation	IVII					
	= P(Z > 1.510966)						
	= $0.06539855\frac{1}{4}$ (or 0.0655) $\underline{0.0655}$ or awrt $\underline{0.0654}$	A1					
		[4]					
(ii)	$\left\{ P\left(X_{1} > \overline{X} + kS\right) = 0.1 \ \triangleright \ P\left(X_{1} - \overline{X} > kS\right) = 0.1 \right\}$						
	$X_{1} - \bar{X}; \left\{ = X_{1} - \frac{(X_{1} + X_{2} + X_{3} + X_{4})}{4} = \frac{3X_{1} - (X_{2} + X_{3} + X_{4})}{4} \right\}$ For attempting to find the distribution of $X_{1} - \bar{X}$	M1					
	$E(X_1 - \bar{X}) = 0$ Correct mean	A1					
	1	dM1					
	$\operatorname{Var}(X_{1} - \overline{X}) = \frac{9\sigma^{2} + 3\sigma^{2}}{4^{2}}; \implies X_{1} - \overline{X} \sim \operatorname{N}(0, 0.75\sigma^{2}) \xrightarrow{\text{Correct expression for } \operatorname{Var}(X_{1} - \overline{X})} X_{1} - \overline{X} \operatorname{N}(0, 0.75s^{2})$	A1					
	$\left\{ P\left(X_1 - \overline{X} > kS\right) = 0.1 \Rightarrow P\left(Z > \frac{kS - 0}{\sqrt{0.75S^2}}\right) = 0.1 \right\}$						
	Standardising using their $\sqrt{\operatorname{Var}(X_1 - \overline{X})}$.						
	So, $\frac{k}{\sqrt{0.75}} = 1.2816$ Note that S must cancel and equating to a z-value, $ z > 1$.	M1					
	1.2816	B1					
	$\left\{k = \sqrt{0.75} \text{ (1.2816)}\right\} \bowtie k = 1.109898157$ awrt <u>1.11</u>	A1					
		[7]					
	Question 7 Notes	15					
7. (i) (a)	$1^{\text{st}} \mathbf{M1}$ Can be implied by either a correct $\mathbf{E}(T)$ or $\mathbf{Var}(T)$						
(i) (b)	Allow equivalent method using $B - A < 0$						
(ii)	Final Dependent upon all previous M marks in (ii)						

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom