

# Mark Scheme (Results)

Summer 2018

Pearson Edexcel International Advanced Subsidiary Level In Decision Mathematics D1 (WDM01) Paper 01

#### **Edexcel and BTEC Qualifications**

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

#### Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <a href="http://www.pearson.com/uk">www.pearson.com/uk</a>

Summer 2018 Publications Code WDM01\_01\_1806\_MS All the material in this publication is copyright © Pearson Education Ltd 2018

#### **General Marking Guidance**

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

## PEARSON EDEXCEL IAL MATHEMATICS

### **General Instructions for Marking**

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for `knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol  $\sqrt{}$  will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- o.e. or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- \* The answer is printed on the paper or ag- answer given
- \_ or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
  - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
  - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

| Number                                                                                                                                                                              | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Marks                                                                                                                                            |                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| <b>1.</b> (a)                                                                                                                                                                       | The list is not in alphabetical order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B1                                                                                                                                               | (1                                                                                |
|                                                                                                                                                                                     | e.g. Quick sort (see notes for alternatives)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                  |                                                                                   |
|                                                                                                                                                                                     | KNVDHLESJ<br>DEHKNVDSJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M1                                                                                                                                               |                                                                                   |
| (b)                                                                                                                                                                                 | DEHKNVLSJ<br>DEHKJLNVS<br>DEHJKLNSV<br>DEHJKLNSV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A1                                                                                                                                               |                                                                                   |
|                                                                                                                                                                                     | $D \stackrel{[I]}{=} H \stackrel{[I]}{=} K \stackrel{[I]}{=} N \stackrel{[S]}{=} V$ $(Sort Complete +) named correctly$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A1ft                                                                                                                                             |                                                                                   |
|                                                                                                                                                                                     | (Soft Complete +) <u>manied correctly</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A1                                                                                                                                               | (4)                                                                               |
|                                                                                                                                                                                     | Pivot 1 = $\begin{bmatrix} \frac{1+9}{2} \end{bmatrix}$ = 5 Kerry reject 1 – 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>M</b> 1                                                                                                                                       |                                                                                   |
| (c)                                                                                                                                                                                 | Pivot 2 = $\left[\frac{6+9}{2}\right]$ = 8 Sylvester reject 8 – 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A1                                                                                                                                               |                                                                                   |
|                                                                                                                                                                                     | Pivot 3 = $\left[\frac{6+7}{2}\right]$ = 7 Nikki reject 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A1                                                                                                                                               | (3)                                                                               |
|                                                                                                                                                                                     | Pivot $4 = 6$ Leslie – name found                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                  |                                                                                   |
| ( <b>d</b> )                                                                                                                                                                        | e.g. $\log_2 727 = 9.505$ so 10 or maximum number of items in each pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M1                                                                                                                                               |                                                                                   |
|                                                                                                                                                                                     | e.g. 727, 363, 181, 90, 45, 22, 11, 5, 2, 1 so 10 iterations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A1                                                                                                                                               | (2)                                                                               |
|                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10 mar                                                                                                                                           | ·ks                                                                               |
| -                                                                                                                                                                                   | tick sort, pivot, p, chosen (must be choosing middle left or right – <b>choosing first/</b> $I0$ ) and first pass gives $\langle p, p, \rangle p$ . So after the first pass the list should read (values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                  |                                                                                   |
| pivot is M<br>pivot), piv<br>b1A1: Fir<br>to be corre<br>b2A1: Sec<br>not need to<br>b3A1: CS<br>complete'<br>or each ite<br>c1M1: Ch                                               | <ul> <li>(u) and first pass gives <p, p,="">p. So after the first pass the list should read (values ot, (values greater than the pivot) or &gt;p, p, <p. (but="" and="" choosing="" chosen="" correct="" correctly="" ect)<="" for="" if="" its="" li="" next="" one="" only="" pass="" per="" pivot="" pivot(s)="" second="" st=""> <li>(values greater than the fourth pass of (for the fourth pass of (correct solution only – all previous marks in this part must have been awarded statement if required – this could be shown by the final list being re-written or 'so m being used as a pivot (choosing middle left is M0) + discarding/retaining half</li> </p.></p,></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | last item a<br>s less than<br>eration M<br>s does not<br>vots) – the<br>l) includin<br>orted' state<br>f the list. S                             | the<br><b>1 onl</b> :<br>need<br>ey do<br>g 'sor<br>ement                         |
| pivot is M<br>pivot), piv<br>b1A1: First<br>to be correc<br>b2A1: Sec<br>not need to<br>b3A1: CS<br>complete'<br>or each ite<br>c1M1: Ch<br>5 <sup>th</sup> value (2<br>values – in | <ul> <li>(u) and first pass gives <p, p,="">p. So after the first pass the list should read (values ot, (values greater than the pivot) or &gt;p, p, <p. (but="" and="" choosing="" chosen="" correct="" correctly="" ect)<="" for="" if="" its="" li="" next="" one="" only="" pass="" per="" pivot="" pivot(s)="" second="" st=""> <li>(values greater than the fourth pass of the fourth pass</li></p.></p,></li></ul> | last item a<br>s less than<br>eration M<br>s does not<br>(vots) – the<br>l) includin<br>orted' state<br>f the list. S<br>final 4<br>in (c) if co | the<br><b>1 onl</b><br>need<br>ey do<br>g 'sor<br>ement<br>o the<br><b>orrect</b> |

| Question<br>Number                                                                                                                                                                                                                         | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Marks                                                                                                                              |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Part (d):                                                                                                                                                                                                                                  | Part (d): Candidates who consider the maximum number of values at the start of each iteration:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                    |  |  |  |
| <ul> <li>M1 for at least 727, 363, 181, 90, or embedded in a calculation e.g. [727+1] / 2 = 364, [363 + 1] / 2 = 182, [181 + 1] / 2 = 91, [90 + 1] / 2 =</li> <li>M1 A1 727, 363, 181, 90, 45, 22, 11, 5, 2, 1 so 10 iterations</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                    |  |  |  |
| • N                                                                                                                                                                                                                                        | es who consider maximum number of values at the end of each iteration:<br>[1] for at least 363, 181, 90,<br>[1] A1 363, 181, 90, 45, 22, 11, 5, 2, 1 so 10 iterations (so 9 iterations is A0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |  |  |  |
|                                                                                                                                                                                                                                            | <b>nerical arguments</b><br>mum number of iterations is the least integer value of <i>n</i> such that)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                    |  |  |  |
| • M<br>• M<br>• M<br>• M<br>• M<br>• M<br>• $\frac{72}{2}$<br>that<br>de<br>• Ca<br>= ha<br>va                                                                                                                                             | <b>1</b> $2^n > 727$ then <b>either</b> taking logs of both sides and attempt to solve for <i>n</i> (accept $2^n$ = ting <i>n</i> = 9.5058 (answer given correct to 1 decimal place)<br><b>1 A1</b> the above with <i>n</i> = 10 (no errors if calculation seen) (allow recovery from equals)<br><b>11 only</b> for those candidates who state $2^n > 727$ and then state <i>n</i> = 10 with no working to nsidered<br><b>1</b> $\log_2 727 =$<br><b>1 A1</b> = 9.505 (answer given correctly to 1 dp) and hence 10<br>$\frac{27}{n}$ considered with <i>n</i> = 10 is <b>M1</b> showing explicitly that <i>n</i> = 10 is the first value that given 1 gets <b>A1</b> (it is not sufficient to just say that $\frac{727}{2^{10}}$ is less than 1 either $\frac{727}{1024}$ or 0.7099 cimal place) must be seen)<br>ndidates who say that halving 727 ten times gives a value less than 1 (or equal to 1) <b>M1</b> as when candidates talk about halving/dividing by 2 it is not always clear if they mean if the numbers in the list. However if the candidate explicitly shows that halving 727 ten ture less than 1 which must be given either exactly or correct to 1 decimal place (0.7099) or answer of 10 with no working <b>M0</b> | unless 2 <sup>9</sup> also<br>ves a value less<br>(correct to 1<br><b>1 only</b> . Accept<br>a half the list or<br>a times gives a |  |  |  |

| Question<br>Number                                                     | Scheme                                                          |                                        | Marks           |
|------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------|-----------------|
| Addition solutions                                                     | for (b)                                                         |                                        |                 |
| Quick sort middle l                                                    | eft:                                                            |                                        |                 |
| KNVDHLE                                                                | E S J Pivot H                                                   | M1                                     |                 |
|                                                                        | L S J Pivots D and V                                            | A1                                     |                 |
|                                                                        | J V Pivots (E) and L $\overline{\mathbf{N}}$ S V Pivots K and N | A1ft                                   |                 |
|                                                                        | S V Sort complete + named correctly                             | A1 (cso)                               |                 |
| Bubble sort left to 1                                                  | ight:                                                           |                                        |                 |
|                                                                        | -                                                               |                                        |                 |
| K N V D H L E<br>K N D H L E S                                         |                                                                 | M1                                     |                 |
| KDHLENJ                                                                | <b>S V</b> $1^{st}$ and $2^{nd}$ passes                         | A1                                     |                 |
| D H K E L J N<br>D H E K J L N                                         |                                                                 | A1ft                                   |                 |
|                                                                        | S V Sort complete + named corretly                              | A1 (cso)                               |                 |
| b3A1: CSO (correct<br>pass + <b>named corr</b><br>Bubble sort right to |                                                                 | mplete' statement <b>or</b> final list | rewritten/sixth |
|                                                                        |                                                                 |                                        |                 |
| KN V D H L E<br>D K N V E H L                                          | S J<br>J S D in place, consistent direction                     | M1                                     |                 |
| DEKNVHJ                                                                | L S 1 <sup>st</sup> and 2 <sup>nd</sup> passes correct          | A1                                     |                 |
| D E H K N V J<br>D E H J K N V                                         | L S $3^{rd}$ and $4^{th}$ passes                                | A1ft                                   |                 |
| D E H J K L N<br>D E H J K L N                                         |                                                                 | A1 (cso)                               |                 |
| Sorting into rever                                                     | se alphabetical order is acceptable for ful                     | ll marks                               |                 |
|                                                                        |                                                                 |                                        |                 |
|                                                                        |                                                                 |                                        |                 |
|                                                                        |                                                                 |                                        |                 |
|                                                                        |                                                                 |                                        |                 |
|                                                                        |                                                                 |                                        |                 |
|                                                                        |                                                                 |                                        |                 |

| Question<br>Number                                                                                                                   | Scheme                                                                                                                                          | Mark    | S   |  |
|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|--|
| 2. (a)(i)                                                                                                                            | A path from an unmatched vertex in one set to an unmatched vertex in the other set which alternately uses arcs not in/in the matching.          | B2,1,0  |     |  |
| (a)(ii)                                                                                                                              | A matching where every member of set X is paired with a single member of set Y and vice-versa.                                                  | B2,1,0  | (4) |  |
| (b)                                                                                                                                  | Alternating path: $F - 3 = A - 5 = B - 6 = D - 2 = E - 1$                                                                                       | M1      |     |  |
|                                                                                                                                      | Change status: $F = 3 - A = 5 - B = 6 - D = 2 - E = 1$                                                                                          | A1      |     |  |
|                                                                                                                                      | Improved matching: $A = 5$ , $B = 6$ , $(C = )$ , $D = 2$ , $E = 1$ , $F = 3$                                                                   |         |     |  |
|                                                                                                                                      | SEE SPECIAL CASES BELOW FOR THOSE STARTING AT C OR FOR THOSE CONSIDERING F TO 4                                                                 | A1      | (3) |  |
| (c)                                                                                                                                  | e.g. F can only do task 3 so therefore A has to do task 5 as A can only do 5 and 3 and so therefore C has no task to do as C can only do task 5 |         |     |  |
| ( <b>d</b> )                                                                                                                         | Alternating path: $C - 1 = E - 2 = D - 6 = B - 4$                                                                                               | M1      |     |  |
|                                                                                                                                      | Change status: $C = 1 - E = 2 - D = 6 - B = 4$                                                                                                  | A1      |     |  |
|                                                                                                                                      | Complete matching: $A = 5$ , $B = 4$ , $C = 1$ , $D = 6$ , $E = 2$ , $F = 3$                                                                    | A1      | (3) |  |
|                                                                                                                                      |                                                                                                                                                 | 11 mark | S   |  |
|                                                                                                                                      | Notes for Question 2                                                                                                                            |         |     |  |
| <b>ai1B1</b> : unmatched to unmatched (vertices do not need to be explicitly mentioned for this mark but B0 if arcs or sets implied) |                                                                                                                                                 |         |     |  |
| <b>ai2B1</b> : (alternate) <b>arcs</b> not in/in (not vertices/nodes) – <b>must</b> mention arcs/edges (not lines) and an            |                                                                                                                                                 |         |     |  |
| understanding of what 'alternating' means in this context                                                                            |                                                                                                                                                 |         |     |  |

aii3B1: 'Pairing' or 'one to one' (or 1-1) only (no equivalents for this mark)

aii4B1: all elements from one set with all elements of the other ('all' (oe) and set (no equivalent) must be mentioned at least once)

**b1M1**: An alternating path (e.g. letter  $1^{st}$  set – number  $2^{nd}$  set – letter  $1^{st}$  set – ...) from F to 1 or vice-versa **b1A1**: CAO – a correct path including change status **either** stated (only accept 'change (of) status' **or** 'c.s' but not, e.g. 'change state') **or** shown (all symbols e.g. (...– ... = ...– ...) interchanged (... = ....– ... = ....)) Chosen path clear

**b2A1:** CAO (improved matching) must follow from the correct stated path. Accept either stated **or** on a clear diagram (with five arcs **only**). **Please check the top of the second page as many candidates will draw either the improved or complete matching on the nodes provided there** 

**c1B1**: CAO – one completely correct statement – do not accept a general statement (specific nodes must be referred to). We need to see (e.g. for the example given in the main scheme) that the candidates have considered the fact that 'F can only do 3', 'A can only do 5 and 3' and 'C can only do 5'. Give bod if all 3 workers and 2 tasks are encorporated in a single use of the word 'only'

d1M1: An alternating path from C to 4 (or vice-versa)

**d1A1**: CAO – a correct path including change status stated **or** shown. Chosen path clear **d2A1**: CAO (complete matching) must follow from two correct stated paths (so **both** previous M marks must have been awarded). Accept on a clear diagram (with six arcs **only**)

| Question                 | Scheme                                                                                                                                                                                                                          | Marks           |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Number<br>Special Cas    | es for (b) and (d)                                                                                                                                                                                                              |                 |
|                          |                                                                                                                                                                                                                                 |                 |
| Alternating              | path from F to 4                                                                                                                                                                                                                |                 |
| A1 for the c             | ternating path from F to 4 (or vice-versa)<br>prrect alternating path (F – 3 = A – 5 = B – 4) <b>and</b> change of status (stated or show<br>prrect improved matching of A = 5, B = 4, D = 6, E = 2, F = 3 from the correct sta |                 |
|                          | ernating path is simply $C - 1$ and therefore no marks in (d) – so an alternating patnaximum of three marks (of the six available) in (b) and (d)                                                                               | h from F to 4   |
| Alternating              | path from either C to 4 or C to 1                                                                                                                                                                                               |                 |
| Candidates               | who find in (b) an alternating path from either C to 4 or C to 1 can score in (b)                                                                                                                                               |                 |
|                          | ternating path from either C to 4 or C to 1<br>r C - 5 = B - 4 or C - 5 = B - 6 = D - 2 = E - 1 together with the change of status                                                                                              | s (either state |
| In (d)                   |                                                                                                                                                                                                                                 |                 |
| M1 for F – 3<br>A0<br>A0 | B = A - 5 = C - 1 (following either their path from C to 4 or their path C to 1)                                                                                                                                                |                 |
| So both Spe              | cial Cases can score a maximum of three marks (of the six available in (b) and (d)                                                                                                                                              | ))              |
|                          |                                                                                                                                                                                                                                 |                 |
|                          |                                                                                                                                                                                                                                 |                 |
|                          |                                                                                                                                                                                                                                 |                 |
|                          |                                                                                                                                                                                                                                 |                 |
|                          |                                                                                                                                                                                                                                 |                 |
|                          |                                                                                                                                                                                                                                 |                 |
|                          |                                                                                                                                                                                                                                 |                 |

| Question      | Scheme                                                                                                                                       | Marks   |  |  |  |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|--|
| Number        | benenie                                                                                                                                      | ivia K5 |  |  |  |
| <b>3.</b> (a) | 7                                                                                                                                            | B1 (1)  |  |  |  |
|               | By definition a path cannot contain a vertex more than once, and as G contains                                                               | B1      |  |  |  |
| (0)           | (b) by definition a path cannot contain a vertex more man once, and as 6 contains<br>only 8 vertices, a path on G cannot contain 10 vertices |         |  |  |  |
| (c)           | 11                                                                                                                                           | B1 (1)  |  |  |  |
| (d)           |                                                                                                                                              |         |  |  |  |
| ( <b>u</b> )  | Thin's starting at C. CE, CD, CH, EJ, DC, AD, EF                                                                                             | (3)     |  |  |  |
| (e)           | Weight of $MST = 177$                                                                                                                        | B1 (1)  |  |  |  |
|               |                                                                                                                                              | 8 marks |  |  |  |
|               | Notes for Question 3                                                                                                                         |         |  |  |  |

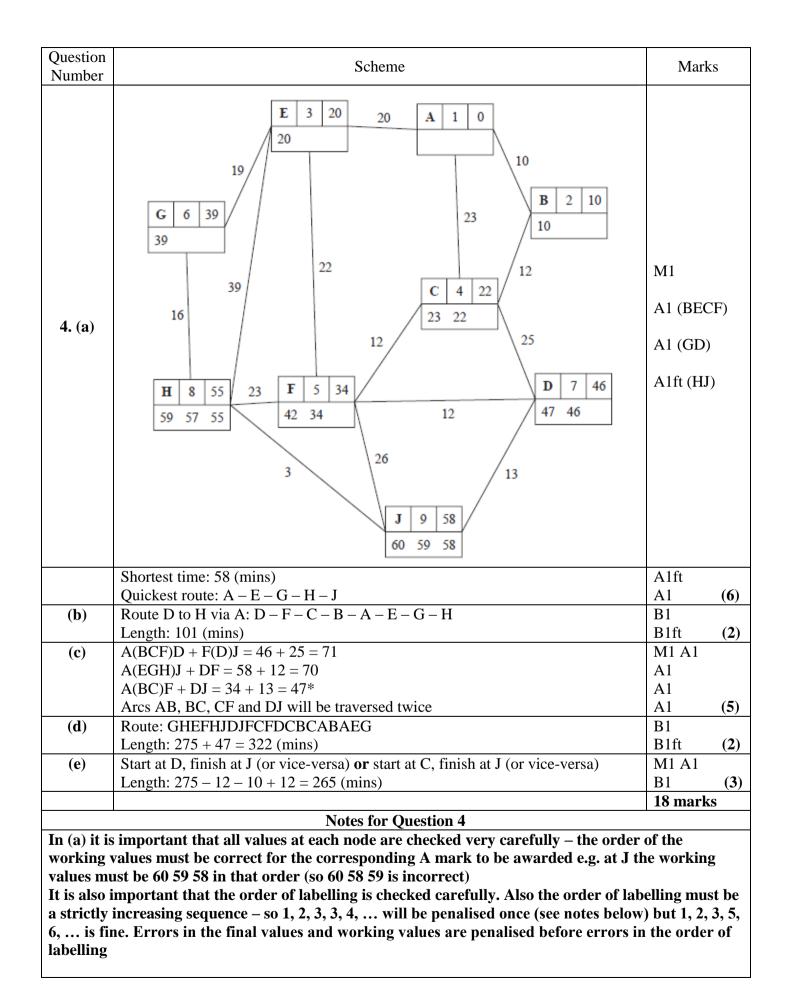
a1B1: CAO (7) – choice of answers scores B0

**b1B1**: a path cannot contain a vertex more than once (oe) – must explicitly state the fact that a <u>vertex</u> cannot appear more than once

**b2B1**: the number of vertices in the 'path' > the number of vertices in G (oe) – as a minimum compares 8 with 10 or states 'vertices in path is greater than the number of vertices in G' or '8 is the maximum (number of vertices in a path on G)' – not dependent on previous B mark, B0 for statements such as '10 is too many' without referencing the 8

In (b) those who state the general case correctly (so score B1) and then go on to give a correct mention of this specific case will most likely score the second B mark too e.g. 'G contains 8 vertices but in a path no vertex can appear more than once' scores B1B1

c1B1: CAO (11) – choice of answers scores B0


**d1M1**: First three arcs correctly chosen in order (CE, CD, CH) or first four nodes correctly chosen in order (C, E, D, H). **If any explicit rejections seen at any point then M1 (max) only**. Candidates may apply Prim's in matrix form so the order of the nodes may be seen across the top of a table – accept {-, -, 1, 3, 2, -, 4, -} for the M mark. Allow CD for DC etc. throughout (d)

**d1A1:** First five arcs correctly chosen in order (CE, CD, CH, EJ, BC) **or** all eight nodes correctly chosen in order (C, E, D, H, J, B, A, F). Candidates may apply Prim's in matrix form so the order of the nodes may be seen across the top of a table – accept  $\{7, 6, 1, 3, 2, 8, 4, 5\}$  – do not condone any missing numbers e.g. the number 8 must be above F

**d2A1:** CSO (correct solution only) – all arcs correctly stated and chosen in the correct order. Candidates must be considering arcs for this final mark (do not accept a list of nodes or numbers across the top of the matrix unless the correct list of arcs (in the correct order) is also seen)

**Misread**: Starting at a node other than C scores M1 only in (d) – must have the first three arcs (or four nodes) correct (and in the correct order). The most common misread is those that start at A so for M1 only – accept AB, BC, CE or A, B, C, E

**e1B1:** CAO (177)



| Question | Sahama                                                                                | Marks                                                 |
|----------|---------------------------------------------------------------------------------------|-------------------------------------------------------|
| Number   | Scheme                                                                                | WIAIKS                                                |
| 91M1 · A | arger value replaced by a smaller value at least once in the working values at either | $C \text{ or } \overline{F} \text{ or } D \text{ or}$ |

**a1M1**: A larger value replaced by a smaller value at least once in the working values at either C or F or D or H or J

**a1A1**: All values in B, E, C and F correct and the working values in the correct order at C (including order of labelling)

**a2A1**: All values G and D correct and the working values in the correct order. Penalise order of labelling only once per question (G and D must be labelled in that order and G must be labelled after B, E, C and F) **a3A1ft**: All values in H and J correct on the follow through and the working values in the correct order. Penalise order of labelling only once per question. To follow through H check that the working value at H follows from the candidate's final values from nodes E, F and G (with the order of these values determined by the candidates order of labelling of E, F and G) and that the final value, and order of labelling, follows through correctly. Repeat this process for J (which will have working values from F, D and H with the order of these values determined by the candidates order of labelling of F, D and H) **a4A1ft**: Follow through on their final value at J **only** (condone lack of units)

**a5A1**: CAO – correct route (A to J **or** J to A)

**b1B1**: CAO – correct route from D to H via A

**b2B1ft**: Follow through on their final value at D + their final value at H

c1M1: Three distinct pairings of A, D, F and J

c1A1: Any row correct including pairing and total

c2A1: Any two rows correct including pairings and totals

c3A1: All three rows correct including pairings and totals

**c4A1:** CAO correct edges clearly stated and not just in their working as AB, BC, CF and DJ. Do not accept AF or AF via B and C

**d1B1**: Any correct route (the route may be given in terms of either vertices (GHE...) or arcs (GH, HE,...) – checks: starts and finishes at G, 20 vertices (repeats AB, BC, CF and DJ, and nodes appearing A(2), B(2), C(3), D(2), E(2), F(3), G(2), H(2), J(2))

**d2B1**: 275 + their smallest repeat out of a choice of at least **two** totals seen in (c) – dependent on the M mark in (c) – this mark can be awarded if answered in (c)

**e1M1:** Any consideration/mention of all the odd nodes (C, D, F, J) **or** consideration/mention of arcs CF and DF (and no others) having least weight **or** listing one correct starting and finishing point (**must be clearly chosen**)

**e1A1**: Both combinations of starting and finishing points correct (D and J + C and J) and no others **e1B1**: CAO (265)

| Question<br>Number |                                                                                | Sche                                                            | eme                                                    |                                                                                | Mark                        | S        |
|--------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------|----------|
| 5. (a)             | Activity<br>A<br>B<br>C<br>D<br>E                                              | Immediately<br>preceding<br>activities<br>-<br>-<br>B<br>C<br>A | Activity<br>F<br>G<br>H<br>I<br>J                      | Immediately<br>preceding<br>activities<br>A, B<br>A, B<br>E, F<br>D, G<br>D, G | B2, 1, 0                    | (2)      |
| (b)                | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                         |                                                                 |                                                        |                                                                                |                             | (3)      |
| (c)                | Minimum project co                                                             | ompletion time is 21 (                                          | (hours)                                                |                                                                                | B1ft<br>B1                  | (2)      |
| ( <b>d</b> )       | Critical activities: B, G, J<br>E could be delayed by $16 - 5 - 6 = 5$ (hours) |                                                                 |                                                        |                                                                                |                             | (1)      |
| (e)                | Lower bound = $\frac{52}{21}$ =                                                |                                                                 |                                                        |                                                                                | B1                          | (1)      |
| ( <b>f</b> )       | e.g.<br>0 2 4<br>B<br>A<br>1 1 1 1<br>1 1 1 1<br>1 1 1 1<br>1 1 1 1            |                                                                 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 2 24 26                                                                        | M1<br>A1<br>A1              | (3)      |
| (g)                | Activities A, E and I<br>The minimum project                                   | H are now critical<br>ct completion time is                     | now 22 (hours)                                         |                                                                                | B1<br>B1<br><b>14 marks</b> | (2)<br>s |

| Question                                                      |                                                                        |                                                                  | Scheme                                                          |                                                                                                                                                                                                                | Marks                                          |
|---------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Number                                                        |                                                                        | No                                                               | tes for Que                                                     | stion 5                                                                                                                                                                                                        |                                                |
| a1B1: Anv 7                                                   | 7 of the 10 row                                                        | s correct (allow A a                                             |                                                                 |                                                                                                                                                                                                                |                                                |
|                                                               | (allow A and I                                                         |                                                                  |                                                                 |                                                                                                                                                                                                                |                                                |
| boxes) and v<br>M only (in b<br>a rogue in th<br>and then the | values generally<br>ottom boxes).<br>e top boxes if<br>values do incre | y decreasing from r<br>Condone one rogue<br>values do not increa | ight to left (<br>value in top<br>ase in the din<br>of the arro | lues generally increasing left to righ<br>for bottom boxes). Condone missin<br>p boxes and one rogue value in bott<br>rection of the arrows then if one val<br>ws then this is considered to be only<br>verse) | g 0 or 21 for<br>om boxes. Fo<br>ue is ignored |
| b1A1: CAO<br>b2A1: CAO                                        | (top boxes)<br>(bottom boxes                                           | )                                                                |                                                                 |                                                                                                                                                                                                                |                                                |
|                                                               | w through cand<br>on critical activ                                    |                                                                  | ded that the                                                    | M mark was earned in (b)                                                                                                                                                                                       |                                                |
| d1B1: Corre                                                   | ect calculation                                                        | with all three numb                                              | ers present.                                                    | An answer of 5 with no working sc                                                                                                                                                                              | ores B0                                        |
| e1B1: Corre                                                   | ect calculation                                                        | seen then $3 - an ar$                                            | nswer of 3 w                                                    | vith no working scores B0                                                                                                                                                                                      |                                                |
| <b>f1A1</b> : 4 wor to at most th                             | kers. All 10 act<br>ree errors; one                                    | tivities present (just                                           | t once). Con<br>n time interv                                   | at least 9 unique activities placed<br>done at most two errors. An activity<br>al and only one on IPA<br>errors                                                                                                | y can give rise                                |
| Activity                                                      | Duration                                                               | Time interval                                                    | IPA                                                             |                                                                                                                                                                                                                |                                                |
| A                                                             | 6                                                                      | 0 -7                                                             | -                                                               |                                                                                                                                                                                                                |                                                |
| В                                                             | 7                                                                      | 0 - 7                                                            | -                                                               |                                                                                                                                                                                                                |                                                |
| С                                                             | 4                                                                      | 7 – 12                                                           | В                                                               |                                                                                                                                                                                                                |                                                |
| D                                                             | 3                                                                      | 11 – 15                                                          | С                                                               |                                                                                                                                                                                                                |                                                |
| Е                                                             | 5                                                                      | 6-16                                                             | А                                                               |                                                                                                                                                                                                                |                                                |
| F                                                             | 6                                                                      | 7 – 16                                                           | A, B                                                            |                                                                                                                                                                                                                |                                                |
| G                                                             | 8                                                                      | 7 – 15                                                           | A, B                                                            |                                                                                                                                                                                                                |                                                |

| Activity | Duration | Time interval | IPA  |
|----------|----------|---------------|------|
| А        | 6        | 0 -7          | -    |
| В        | 7        | 0 - 7         | -    |
| С        | 4        | 7 – 12        | В    |
| D        | 3        | 11 – 15       | С    |
| E        | 5        | 6 – 16        | А    |
| F        | 6        | 7 – 16        | A, B |
| G        | 8        | 7 – 15        | A, B |
| Н        | 5        | 13 – 21       | E, F |
| Ι        | 2        | 15 - 21       | D, G |
| J        | 6        | 15 - 21       | D, G |

**g1B1**: Correctly stating the activities that are now critical (A, E and H) – no extras **g2B1**: Correctly stating new project completion time (22 – no units required)

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                | Mar                               | ks  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----|
| 6. (a)             | z = 15 + x - y substituting into constraints gives                                                                                                                                                                                                                    | M1                                |     |
|                    | $-7x + 4(15 + x - y) \le 36 \implies 3x + 4y \ge 24^*$                                                                                                                                                                                                                |                                   |     |
|                    | $15 + x - y \ge 10 \implies -x + y \le 5^*$                                                                                                                                                                                                                           | A1                                |     |
|                    | $P = 2x + 7y + 2(15 + x - y) \implies P = 4x + 5y \ (+30)$                                                                                                                                                                                                            | B1                                | (3) |
| (b)                | 121010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010 <td>B1<br/>B1<br/>B1<br/>B1 (<i>R</i>)</td> <td>(4)</td> | B1<br>B1<br>B1<br>B1 ( <i>R</i> ) | (4) |
| ( <b>c</b> )       | V correctly labelled                                                                                                                                                                                                                                                  | B1<br>B1                          | (2  |
| ( <b>d</b> )       | $V\left(\frac{15}{7}, \frac{50}{7}\right)$                                                                                                                                                                                                                            | M1 A1                             |     |
|                    | $P = \frac{520}{7}$                                                                                                                                                                                                                                                   | B1                                | (3  |
| (e)                | x = 2, y = 7, z = 10                                                                                                                                                                                                                                                  | B1                                | ( ) |
|                    | <i>P</i> = 73                                                                                                                                                                                                                                                         | B1                                | (2  |
|                    |                                                                                                                                                                                                                                                                       | 14 marl                           | ks  |

| Question<br>Number                                                                       | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Marks                                                                                      |
|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Tumber                                                                                   | Notes for Question 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                            |
| a1M1: Su                                                                                 | bstitute $z = x + 15 - y$ correctly into both $-7x + 4z \le 36$ and $z \ge 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                            |
| <b>a1A1</b> : Borrecovery f see at leas                                                  | th of the constraints correctly derived (note that these answers are given in the quest<br>rom incorrect working and sufficient working must be shown (e.g. in the first constr<br>t one stage of working from substitution to given answer)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,                                                                                          |
| <b>a1B1</b> : CA                                                                         | O either $(P =)4x+5y+30$ or $(P =)4x+5y$ only – isw after correct answer seen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                            |
| In (b), line<br>the points<br>4x+3y =<br>3x+4y =<br>x = 1 mus                            | es must be long enough to define the correct feasible region and pass through one sn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (7.5, 0)<br>3, 0)                                                                          |
| <b>b2B1</b> : An <b>b3B1</b> : All                                                       | y two lines correctly drawn<br>y three lines correctly drawn<br>four lines correctly drawn<br>gion, <i>R</i> , correctly labelled – not just implied by shading – dependent on scoring the t<br>his part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | first three                                                                                |
| that of the<br>from axis<br><b>c2B1</b> : V la                                           | twing the correct objective line <b>on the grid</b> – if their line is shorter than the length of line from $(0, 1)$ to $(1.25, 0)$ then B0. Line must be correct to within one small squar to axis abelled clearly on their graph – this mark is dependent on scoring at least B1B1B1B us B mark in (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e if extended                                                                              |
| (but note<br>the follow<br>correct me<br>This mark<br>B0B0 in (<br>d1A1: Co<br>coordinat | ust have scored at least B1B1B0B0 in (b) and candidates must have drawn an of<br>that it does not need to be correct but must have negative gradient). Must be so<br>ing two pairs of equations only: $-x + y = 5$ , $4x + 3y = 30$ or $4x + 3y = 30$ , $3x + 4y = 20$<br>ethod to solve simultaneous equations and must arrive at $x =$ and $y =$ but allow<br>can also be awarded for the correct exact coordinates stated with no working provi-<br>b) and an objective line drawn (if coordinates are incorrect we must see working for<br>rect exact coordinates of V correctly derived (so if no working then M1 only for<br>tes) as either $(\frac{15}{7}, \frac{50}{7})$ or $(2\frac{1}{7}, 7\frac{1}{7})$ . Note that this mark is dependent on B1B1B<br>correct objective line | lving one of<br>24 . Must be a<br>slips/errors.<br>ded B1B1<br>this mark)<br>correct exact |
|                                                                                          | O $\left(P = \frac{520}{7} \text{ or } 74\frac{2}{7}\right)$ - note that this mark is dependent on B1B1B1B0 scored in Djective line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n (b) <u>and</u> a                                                                         |
| e1B1: CA<br>correct ol                                                                   | O ( $x = 2, y = 7, z = 10$ ) - note that this mark is dependent on B1B1B1B0 scored<br>ojective line<br>O ( $P = 73$ ) - note that this mark is dependent on B1B1B1B0 scored in (b) <u>and</u> a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                            |

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom