Please check the examination details bel	low before ente	ering your candid	ate information								
Candidate surname		Other names	S. Aritishe.								
Centre Number Candidate N	umber		To Hidentro On Basilia								
Pearson Edexcel International Advanced Level											
Time 1 hour 45 minutes	Paper reference	WCH	H15/01								
Chemistry											
International Advanced Level UNIT 5: Transition Metals and Organic Nitrogen Chemistry											
You must have: Scientific calculator, Data Booklet, rul	er		Total Marks								

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

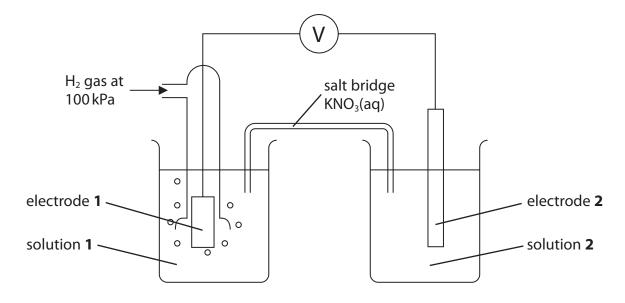
- The total mark for this paper is 90.
- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- In the question marked with an asterisk (*), marks will be awarded for your ability to structure your answer logically showing how the points that you make are related or follow on from each other where appropriate.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Check your answers if you have time at the end.

Turn over ▶

SECTION A


Answer ALL the questions in this section.

You should aim to spend no more than 20 minutes on this section.

hiths:/hitishshidentroom.bastoa.web.app. For each question, select one answer from A to D and put a cross in the box 🗵. If you change your mind, put a line through the box \(\omega \) and then mark your new answer with a cross \boxtimes .

The apparatus shown was used to measure the standard electrode potential for the reduction of $Cr_2O_7^{2-}$ ions to Cr^{3+} ions in acid solution:

$$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- \rightarrow 2Cr^{3+}(aq) + 7H_2O(l)$$

(a) Which material should be used for each electrode?

(1)

		Electrode 1	Electrode 2
X	Α	Na ₂ Cr ₂ O ₇	Cr ₂ O ₃
X	В	H ₂	Cr
×	C	Pt	Cr
×	D	Pt	Pt

(b) Solution 1 is

- \triangle **A** 0.33 mol dm⁻³ H₃PO₄(aq)
- **B** $0.50 \,\text{mol}\,\text{dm}^{-3}\,\text{H}_2\text{SO}_4(\text{ag})$
- C 1.00 mol dm⁻³ HCl(aq)
- 1.00 mol dm⁻³ CH₃COOH(aq)
- (c) Solution 2 contains 14.71 g of K₂Cr₂O₇.

What mass of Cr₂(SO₄)₃·18H₂O should also be used?

 $[M_r \text{ values: } K_2Cr_2O_7 = 294.2]$

 $Cr_2(SO_4)_3 \cdot 18H_2O = 716.3$

(1)

https://hritishstadentioon/bdsOa.web.app/

- A 8.95 g
- **■ B** 17.91 g
- **■ C** 19.62 g

(d) Solution 2 is best acidified with

(1)

- \triangle A H₂SO₄
- B HCl
- C HBr
- \square **D** H₂CrO₄

(Total for Question 1 = 4 marks)

The equation for a redox reaction is

tion for a redox reaction is
$$^{h_{ID_{3}}}_{IB_{1}}^{II_{ID_{3}}}_{II_{3}}^{II_{3}$$

Which is the correct cell diagram to measure $E_{\text{cell}}^{\ominus}$ for this reaction?

- **A** Fe | Fe²⁺, Fe³⁺ || $[MnO_4^- + 8H^+]$, $[Mn^{2+} + 4H_2O]$ | Mn
- **B** Fe | Fe²⁺, Fe³⁺ || [Mn²⁺ + 4H₂O], [MnO $_4^-$ + 8H⁺] | Mn X
- **C** Pt | Fe²⁺, Fe³⁺ || [MnO₄⁻ + 8H⁺], [Mn²⁺ + 4H₂O] | Pt X
- **D** Pt | Fe²⁺, Fe³⁺ | $| [Mn^{2+} + 4H_2O], [MnO_4^- + 8H^+] | Pt$ X

(Total for Question 2 = 1 mark)

Some standard electrode potentials are shown.

Electro	E⊕ / V		
Bk ³⁺ + e ⁻	\rightleftharpoons	Bk ²⁺	-2.80
Cu ²⁺ + e ⁻	\rightleftharpoons	Cu ⁺	+0.15
Bk ⁴⁺ + e ⁻	\rightleftharpoons	Bk ³⁺	+1.67
Au ⁺ + e ⁻	\rightleftharpoons	Au	+1.69
Au ²⁺ + e ⁻	\rightleftharpoons	Au⁺	+1.80
Ag ³⁺ + e ⁻	\rightleftharpoons	Ag ²⁺	+1.80
Ag ²⁺ + e ⁻	\rightleftharpoons	Ag⁺	+1.98
Cu ³⁺ + e ⁻	\rightleftharpoons	Cu ²⁺	+2.40

Which of these disproportionation reactions is thermodynamically feasible under standard conditions?

- $\textbf{A} \quad 2Bk^{^{3+}} \rightarrow Bk^{^{2+}} + Bk^{^{4+}}$ X
- $\mathbf{B} \quad 2Cu^{2+} \rightarrow Cu^{+} + Cu^{3+}$ X
- \mathbf{C} 2Au⁺ \rightarrow Au + Au²⁺ X
- $\mathbf{D} \quad 2Ag^{2+} \rightarrow Ag^{+} + Ag^{3+}$ X

(Total for Question 3 = 1 mark)

			Au _{bo}							
4	Whi	ch is	true of a hydrogen-oxygen fuel cell?							
	X	A	the cathode has a more positive potential than the anode							
	×	В	hydrogen is oxidised at the cathode							
	X	C	oxygen is reduced at the negative electrode							
	Which is true of a hydrogen-oxygen fuel cell? A the cathode has a more positive potential than the anode B hydrogen is oxidised at the cathode C oxygen is reduced at the negative electrode D the cell potential is different when operating under alkaline or acidic conditions									
			(Total for Question 4 = 1 mark)							
5	Whi	ch of	f the following statements best explains carbon monoxide poisoning?							
	X	A	carbon monoxide binds irreversibly to haemoglobin							
	X	В	carbon monoxide forms stronger dative covalent bonds with haemoglobin than oxygen does							
	X	C	the formation of carboxyhaemoglobin leads to a large increase in the entropy of the system							
	X	D	carbon monoxide has a triple bond whereas oxygen has a double bond							
			(Total for Question 5 = 1 mark)							
6	CoCl	l₂(aq	s ammonia is added drop by drop to a solution of cobalt(II) chloride,), until in excess. ould be the sequence of observations?							
	\square	Λ	blue solution \rightarrow pink precipitate \rightarrow dark blue solution							
	×	В	pink solution → blue precipitate							
	X									
		C	blue solution → pink precipitate							
	X	D	pink solution $ ightarrow$ blue precipitate $ ightarrow$ yellow-brown solution							
_			(Total for Question 6 = 1 mark)							
	Use	this	space for any rough working. Anything you write in this space will gain no credit.							

Some nickel(II) complex ions are formed by the addition of complexing agents to nickel(II) ions, $[Ni(H_2O)_6]^{2^+}$, in aqueous solution.

These leads to the **most** positive increase in ΔS_{system} ?

- **C** $[Ni(C_2O_4)_2]^{2-}$ X
- **D** $[Ni(H_2NCH_2CH_2NH_2)_3]^{2+}$ X

(Total for Question 7 = 1 mark)

- Which of the following is **not** true of the reactions occurring in the catalytic converter fitted to a car exhaust?
 - **A** they involve heterogeneous catalysis
 - **B** carbon monoxide is adsorbed onto the surface of the catalyst X
 - X **C** nitrogen is desorbed from the surface of the catalyst
 - X **D** the products cause no harm to the environment

(Total for Question 8 = 1 mark)

The reaction of ethanedioate ions, $C_2O_4^{2-}$, with manganate(VII) ions, MnO₄, in acidic solution involves autocatalysis.

$$2MnO_4^- + 16H^+ + 5C_2O_4^{2-} \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O_4^{2-}$$

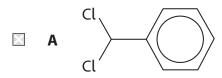
The catalyst in this reaction is

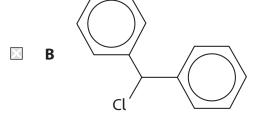
- A MnO₄
- X B H⁺
- $C Mn^{2+}$
- X **D** CO₂

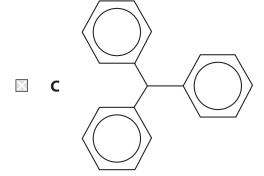
(Total for Question 9 = 1 mark)

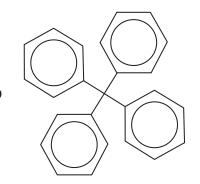
10 lodide ions, I^- , are oxidised by peroxodisulfate(VI) ions, $S_2O_8^{2-}$.

$$2I^{-}(aq) + S_2O_8^{2-}(aq) \rightarrow I_2(aq) + 2SO_4^{2-}(aq)$$


Which of the following statements is **true** of this reaction?


- \square A both Fe²⁺(aq) and Fe³⁺(aq) catalyse the reaction
- \blacksquare **B** Fe²⁺(aq) catalyses the reaction but Fe³⁺(aq) does not
- lacktriangle C Fe³⁺(aq) catalyses the reaction but Fe²⁺(aq) does not
- **D** neither Fe²⁺(aq) nor Fe³⁺(aq) catalyses the reaction


(Total for Question 10 = 1 mark)


- hubs://britishstudentroom/ba30aweb.app.

11 Which of these could **not** be formed when excess benzene is heated with trichloromethane, CHCl₃, in the presence of an aluminium chloride catalyst?

(Total for Question 11 = 1 mark)

- The state of the organic product when phenol reaction with excess bromine water?

 The state of the organic product when phenol reaction with excess bromine water?

 - X **D** 488.5

(Total for Question 12 = 1 mark)

- 13 Which sequence shows these compounds in order of **decreasing** basicity?
 - X **A** $C_6H_5NH_2 > CH_3CH_2CH_2NH_2 > NH_3$
 - X **B** $NH_3 > CH_3CH_2CH_2NH_2 > C_6H_5NH_2$
 - X $C CH_3CH_2CH_2NH_2 > NH_3 > C_6H_5NH_2$
 - X **D** $C_6H_5NH_2 > NH_3 > CH_3CH_2CH_2NH_2$

(Total for Question 13 = 1 mark)

- **14** Which amine could **not** be prepared by the reduction of a nitrile?
 - H_2N
- В H_2N

(Total for Question 14 = 1 mark)

- Α 3
- 4 В
- 5

(Total for Question 15 = 1 mark)

- **16** Grignard reagents react with
 - X **A** water giving primary alcohols
 - X **B** all aldehydes giving secondary alcohols
 - X ketones giving secondary or tertiary alcohols
 - X **D** carbon dioxide giving carboxylic acids

(Total for Question 16 = 1 mark)

- 17 The melting temperature is determined for impure crystals of an organic compound. When compared with a data book value for the pure compound, the measured melting temperature
 - X A will be the same as the true value
 - X will be higher than the true value
 - X will be lower than the true value
 - X **D** could be higher or lower than the true value

(Total for Question 17 = 1 mark)

TOTAL FOR SECTION A = 20 MARKS

- **18** A series of reactions with iron and iron complexes was carried out.
- SECTION B

 Answer ALL the questions. Write your answers in the spaces provided on with iron and iron complexes was carried out.

 Third with iron and iron complexes was carried and a pale green arrive tallised from Reaction 1 the solution.
 - Reaction 2 Salt **A** was dissolved in water forming a pale green solution containing complex ion B. On addition of excess aqueous potassium cyanide, KCN, the solution turned yellow due to the formation of complex ion **C**.
 - Reaction 3 Chlorine gas was bubbled through the solution containing complex ion **C** forming a red solution of complex ion **D**. Salt **E**, the potassium salt of complex ion **D**, was then crystallised from the solution.
 - (a) Deduce the formula of the hydrated salt A. You **must** show your working.

(2)

(b) Give the **formula** of complex ion **B**.

(1)

(c) Complex ion **C** has six cyanide ligands. Draw the structure of **C**, clearly showing its three-dimensional shape.

hips://britishshidenfroom/bastoa.web.app/

(d) The percentage composition by mass of salt **E** is

$$K = 35.6\%$$

$$Fe = 17.0\%$$

$$C = 21.9\%$$

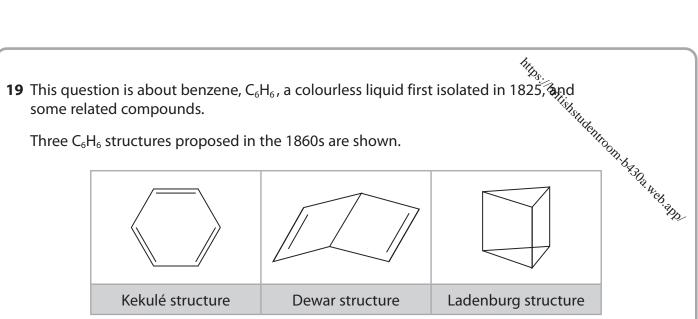
$$N = 25.5\%$$

Calculate the empirical formula of salt **E**.

(3)

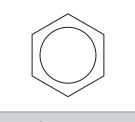
(e) Write the **ionic** equation for the reaction of complex ion **C** with chlorine to form complex ion **D**.

(2)


(f) Complete the table, using \checkmark as appropriate, to identify the type of each reaction.

(2)

	Neutralisation	Ligand exchange	Redox
Reaction 2			
Reaction 3			


(Total for Question 18 = 11 marks)

The delocalised model for the structure of benzene has been accepted since the 1930s following the study of its X-ray diffraction pattern and the understanding of electron delocalisation in bonding theory.

The Dewar and Ladenburg structures have since been isolated as stable compounds but there is no compound with the Kekulé structure.

benzene

(a) Describe a **chemical** test, including the result, that could distinguish the Dewar structure from benzene.

(2)

(b) State **one** similarity and **one** difference you would expect in the **low** resolution proton NMR spectrum of the Ladenburg structure and that of benzene.

You **must** include data from the Data Booklet to support your answer.

(c) Explain how X-ray diffraction shows that benzene has a delocalised structure and not a Kekulé structure.

(2)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(8)

(9)

(9)

(9)

(9)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

- (d) The Ladenburg and Dewar structures both isomerise to benzene. The enthalpy changes are -376 kJ mol⁻¹ and -297 kJ mol⁻¹ respectively.
 - (i) Draw a **labelled** enthalpy level diagram showing the relative thermodynamic stability of the Ladenburg structure, the Dewar structure and benzene. Include the enthalpy change values in kJ mol⁻¹. Your diagram does **not** need to be to scale.

(2)

H/kJmol⁻¹

(ii) Give a possible reason why the isomerisation of the Dewar structure to benzene has a lower activation energy than that of the Ladenburg structure to benzene.

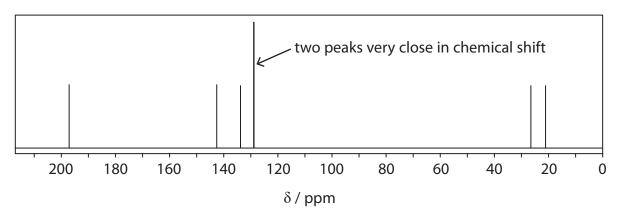
(e) The enthalpy change of hydrogenation of hex-3-ene is -118 kJ mol⁻¹.

The table shows the enthalpy changes of hydrogenation of two further alkenes containing six carbon atoms.

Alkene	Enthalpy change of hydrogenation / kJ mol ⁻¹						
<i>E</i> -hexa-1,4-diene	-236						
<i>E</i> -hexa-1,3-diene	-214						

Use your knowledge of benzene thermochemistry to suggest explanations for **both** of these enthalpy changes of hydrogenation in relation to the value for hex-3-ene.

Methylbenzene, $C_6H_5CH_3$, reacts with ethanoyl chloride, CH_3COCl , in the presence of the catalyst aluminium chloride, $AlCl_3$, to form a mixture of organic products with the formula $CH_3COC_6H_4CH_3$.

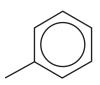

CH_COCl \rightarrow $CH_3COC_6H_4CH_3$ + HClCH_COCl \rightarrow $CH_3COC_6H_4CH_3$ + HClCH_COCl \rightarrow $CH_3COC_6H_4CH_3$ + HCl(f) Methylbenzene, $C_6H_5CH_3$, reacts with ethanoyl chloride, CH_3COCl , in the presence

$$C_6H_5CH_3 + CH_3COCl \rightarrow CH_3COC_6H_4CH_3 + HCl$$

 $CH_3COC_6H_4CH_3$.

(2)

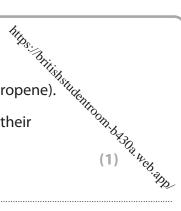
(ii) The ¹³C NMR spectrum of **one** of these arenes, compound **X**, is shown.

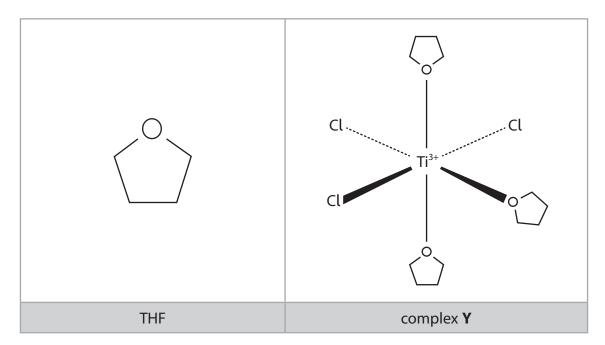

Identify compound X. Use the number of peaks on the ¹³C NMR spectrum to justify your answer.

(iii) Complete the diagram, including curly arrows, to show the mechanism for the formation of compound **X** in this reaction.

An an equation for the regeneration of the catalyst.

CO⁺ + AlCl₄



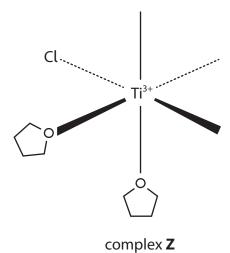

(Total for Question 19 = 19 marks)

- **20** This question is about titanium(III) chloride, TiCl₃.
 - (a) Titanium(III) chloride is used as a catalyst in the production of poly(propene).

 State the property of transition metals, such as titanium, that makes their compounds effective catalysts.

(b) When dissolved in tetrahydrofuran (THF), titanium(III) chloride forms a blue solution containing complex **Y**.

(i) THF acts as a monodentate ligand in complex ${\bf Y}$.


State the meaning of the terms **monodentate** and **ligand**.

(ii) Complex ${\bf Z}$ is a stereoisomer of complex ${\bf Y}$.

Complex **Z** is a stereoisomer of complex **Y**.

Complete the diagram to show the arrangement of the ligands in complex **Z**_{entro(1)}

Only the stereoisomer of complex **Y**.

(1)

(c) A student determines the change in oxidation number of **nitrogen** when the a solution of magnesium nitrate, Mg(NO₃)₂, is titrated with aqueous chloride.

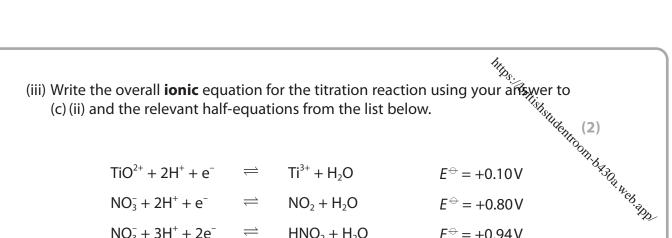
- Pipette 10.0 cm³ of the solution from Step 1 into a conical flask and Step 2 add a few drops of alizarin indicator. Add 2 cm³ of concentrated hydrochloric acid and heat the mixture.
- Fill a burette with 0.0850 mol dm⁻³ aqueous titanium(III) chloride and Step 3 titrate the contents of the conical flask from Step 2 while continuing to heat the mixture.

During the titration, Ti³⁺ ions are oxidised to TiO²⁺ ions

$${\rm Ti}^{3+} + {\rm H_2O} \rightarrow {\rm TiO}^{2+} + 2{\rm H}^+ + {\rm e}^-$$

Alizarin indicator is green in the presence of aqueous Ti³⁺ and yellow in the presence of aqueous TiO²⁺.

The end-point of the titration is reached on the addition of 20.70 cm³ of aqueous titanium(III) chloride.


(i) State the colour **change** that would be observed at the end-point of the titration.

(ii) Use the results to determine the **final** oxidation state of nitrogen in the titration.

You **must** show your working.

 $[M_r \text{ value: } Mg(NO_3)_2 \cdot 6H_2O = 256.3]$

https://dritishstudentroom/bds/0,4pp/

$$TiO^{2+} + 2H^{+} + e^{-} \qquad \rightleftharpoons \qquad Ti^{3+} + H_2O \qquad \qquad E^{\oplus} = +0.10V$$

$$NO_3^- + 3H^+ + 2e^- \implies HNO_2 + H_2O \qquad E^{\oplus} = +0.94V$$

$$NO_3^- + 4H^+ + 3e^- \implies NO + 2H_2O \qquad E^{\oplus} = +0.96V$$

(iv) Use the electrode potential data provided to calculate $E_{\text{cell}}^{\ominus}$ for the overall titration reaction.

(1)

(v) Suggest why the contents of the conical flask are heated.

(1)

*(vi) The student's teacher said,

The student's teacher said,

"As TiCl₃ is blue and TiO²⁺ ions are colourless in aqueous solution, the titration tean be carried out **without** an alizarin indicator."

"**Toacher's statement.

- present when TiCl₃ dissolves in water
- explain how the colour of this complex ion arises
- suggest why the titration may be more accurate with an alizarin indicator.

(-)

~	htps://shiiishshidentoon/bases
	original and the second
	*Sh _{Sthey}
	GENTATO_
	O _D
	*30a, h

/T-4-15 C	20 – 20 manulas)
(Total for Question	zu = zu marks)
TOTAL FOR SECTION	D FO MADI/C

TOTAL FOR SECTION B = 50 MARKS

21 Organic molecules are an important source of colour both in the natural world and in a wide range of industrial applications.

SECTION C

Answer ALL the questions. Write your answers in the spaces provided on the space an important source of colour both in the natural world and in the space and the space of the s Curcumin contributes to the yellow colour of turmeric spice and is used as an additive in cosmetics and foods. It has been suggested that curcumin can act as an antioxidant and anticancer agent, through reactions with free radicals and proteins, and may also inhibit Alzheimer's disease by complexing to toxic metal ions.

curcumin

Azo dyes are synthetic compounds that do not occur naturally. They can be used to colour textiles such as cotton. The acid-base indicator methyl red is an azo dye.

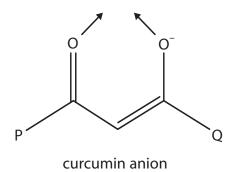
methyl red

Indigotin is used to dye denim a blue colour and coumarin 440 is used to generate blue light in lasers. Both dyes occur naturally in plants but can be synthesised in the laboratory.

indigotin

coumarin 440

curcumin


Complete the left-hand side of the equation by adding curly half-arrows.

(1)

(b) Selenide anions attached to protein side-chains may undergo nucleophilic addition reactions with curcumin.

Complete the mechanism for one of the steps in such a reaction, adding curly arrows to the simplified structures shown.

(c) Curcumin anions can act as bidentate ligands in metal-curcumin (M-curc) R_{ij} complexes. The oxygen atoms of the curc ligand occupy adjacent coordination sites in the complex, as shown.

Complete the table relating to two M-curc complexes.

	[Au(curc) ₂] ⁺	[Al(curc)(C2H5OH)2(NO3)2]
Coordination number	4	
O—M—O bond angle	90°	
Shape		octahedral
Charge on metal ion		+3

2-nitrobenzaldehyde

$$N = N$$

Step **Z**

methyl red

(i) State the reagents and conditions needed in Step X .	(2)
(ii) Draw the structure of compound A .	(1)
(iii) State the reagents needed in Step Y .	(1)
(iv) Draw the structure of compound B .	(1)
(v) The temperature used in Steps Y and Z should be kept as close to 5 °C as possible. State why the temperature should be neither higher nor lower than 5 °C.	(2)

indigotin

(i) Complete the equation for this reaction.

(ii) Calculate the mass of 2-nitrobenzaldehyde required to make 10.0 g of indigotin from this reaction when the percentage yield is 85.0%.

(3)

(f) Give the structure of the **organic** product of each of the following reactions; of coumarin 440.

$$H_2N$$

coumarin 440

(i) Hydrolysis with excess aqueous sodium hydroxide.

(2)

(ii) Condensation with ethanoyl chloride.

(1)

(Total for Question 21 = 20 marks)

TOTAL FOR SECTION C = 20 MARKS TOTAL FOR PAPER = 90 MARKS

	0 (8)	4.0	Helium	2	20.2	Ne	10 10	39.9	٩٢	argon 18	83.8	추	krypton 36	131.3	Xe	xenon 54	[222]	윤	radon 86			Š
		Ľ			_		fluorine n			e e	-		<u>е</u>	126.9		iodine x 53	[210]	At	astatine r		reported	
	7			(17)	19			35.5	บ —	chlorir 17	79.9	Ŗ					[2]	_			e been	
	9			(16)	16.0	0	oxygen 8	32.1	S	sulfur 16	79.0	Se	selenium 34	127.6	<u>P</u>	tellurium 52	[209]	8	polonium 84		-116 hav	nticated
	2			(15)	14.0	z	nitrogen 7	31.0	۵	phosphorus 15	74.9	As	ø	121.8	Sb	antimony 51	209.0	œ.	bismuth 83		mbers 112	but not fully authenticated
	4			(14)	12.0	U	carbon 6	28.1	Si	silicon 14	72.6	g	germanium 32	118.7	Sn	20 ti	207.2	Ъ	lead 82		atomic nu	but not
	e			(13)	10.8	ω	boron 5	27.0	¥	aluminium 13	69.7	g	gallium 31	114.8	드	indium 49	204.4	F	thallium 81		Elements with atomic numbers 112-116 have been reported	
ents										(12)	1	Zu	zinc 30	112.4	5	cadmium 48	200.6	Hg	mercury 80			
eriodic Table of Elements										(11)	63.5	ŋ	copper 29	107.9	Ag	silver 47	197.0	Αn	gold 79	[272]	Rg	meitnerium damstadtium roentgenium
le of	1.0		1.0 H hydrogen							(10)	58.7	Z	nickel 28	106.4	В	palladium 46	195.1	T	platinum 78	[271]	Ds	darmstadtium 110
c Tab										6)	58.9	ပ	cobalt 27	102.9	몺	rhodium 45	192.2	<u>_</u>	iridium 77	[368]	۸ŧ	meitnerium 109
riodi		1.0		-						(8)	55.8	Fe	iron 26	101.1	Ru	ruthenium 44	190.2	õ	osmium 76	[277]	Ұ	hassium 108
The Pe										0	54.9	W	manganese 25	[86]	բ	molybdenum technetium ruthenium 42 44	186.2	Re	rhenium 75	[264]		bohrium 107
Ė					mass	Jog 1	101 Imber			(9)	52.0	ъ	chromium manganese 24 25	95.9	Wo	molybdenum 42	183.8	>	tungsten 74	[592]	Sg	seaborgium 106
				Key	relative atomic mass	atomic symbol	name atomic (proton) number			(5)	50.9	>	vanadium 23	92.9	å	niobium 41	180.9	ъ	tantalum 73	[292]	g	dubnium 105
					relati	ato	atomic			4)	47.9	ï	titanium 22	91.2	Zr	zirconium 40	178.5	¥	hafnium 72	[261]	¥	rutherfordium 104
										(3)	45.0	S	scandium 21	88.9	>	yttrium 39	138.9	La*	lanthanum 57	[227]		actinium 89
	7			(2)	0.6	Be	beryllium 4	24.3	Mg	magnesium 12	40.1	g	F	97.8	Ş	strontium 38	137.3	Ba	barium 56	[526]	Ra	radium 88
	-			(1)	6.9	ב	lithium 3	23.0	Na	_	39.1	¥	potassium 19	85.5	&	rubidium 37	132.9	ర	caesium 55	[223]	ェ	francium 87

* Lanthanide series

* Actinide series

titum 175 (tium nacium		
	Uden.	
but not fully authenticated	t lute	[2,57] .ao Lr Tawrencium 103
	173 Yb ytterbium 70	No nobetium
	169 Tm thulium 69	[256] Md mendelevium 101
	167 Er erbium 68	[253] Fm fermium 100
	165 Ho holmium 67	[254] Es einsteinium 99
	163 Dy dysprosium 66	[251] Cf californium 98
roentgenium 111	159 Tb terbium 65	[245] BK berkelium 97
damstadtium 110	157 Gd gadolinium 64	[247] Cm anium 96
meitnerium damstadtium roentgenium 109 110 111	152 Eu europium 63	[243] Am americium 95
hassium 108	150 Sm samarium 62	Pu Pu plutonium 94
bohrium 107	[147] Pm promethium 61	[237] Np neptunium 93
seaborgium 106	144 Nd neodymium 60	238 U uranium 92
dubnium seaborgium 105 106	141 Pr praseodymium 59	[231] Pa protactinium 91
nium rutherfordium	140 Ce cerium 58	232 Th thorium 90
mniu 13		