

Mark Scheme (Results)

October 2021

Pearson Edexcel International Advanced Subsidiary Level In Chemistry (WCH12) Paper 01: Energetics, Group Chemistry, Halogenoalkanes and Alcohols

Edexcel and BTEC Qualifications Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide the provide the state of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2021 Question Paper Log Number P67128A Publications Code WCH12_01_2110_MS All the material in this publication is copyright © Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the mark scheme

hitps://britisHstudentroom/ba30a.web.app/ Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit. () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the meaning of the phrase or the actual word is **essential** to the answer. ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities. Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A

Question Number	Answer	Mark
1	The only correct answer is B (hexane)	(1)
	A is not correct because the spectrum does not have a peak for the $C=O$	
	C is not correct because the spectrum does not have a peak for the $C=O$ and $O-H$	
	D is not correct because the spectrum does not have a peak for the O-H	

Question Number	Answer	Mark
2	The only correct answer is D (CH ₃ COCH ₃)	(1)
	A is not correct because it is a primary alcohol so will react	
	B is not correct because it is a secondary alcohol so will react	
	<i>C</i> is not correct because it is an aldehyde so will react	

Question	Answer	Mark	
Number			
3	The only correct answer is A (2-methylpropan-2-ol)	(1)	
	B is not correct because it is a secondary alcohol.		
	<i>C</i> is not correct because it is a primary alcohol		ouser, indistin
	D is not correct because it is a secondary alcohol		PINSUS IN.
		Repart Control House	_
	136	,	

Question Number	Answer	Mark
4	The only correct answer is D (highest mass/charge ratio)	(1)
	A is not correct because the molecular ion does not always have the greatest abundance	
	B is not correct because the molecular ion does not always have the greatest stability	
	<i>C</i> is not correct because the molecular ion cannot have a higher charge than the other ions	

Question Number	Answer	Mark
5	The only correct answer is C (43)	(1)
	<i>A</i> is not correct because both would be expected to have this peak due to CH_3^+	
	B is not correct because both would be expected to have this peak due to $C_2H_5^+$	
	D is not correct because both would be expected to have this peak due to $C_4H_9^+$	

Question	Answer	Mark
Number		
6	The only correct answer is A	(1)
	B is not correct because the molecule is branched so has weaker London Forces	LUBOHISONS PHILOU STUD
	C is not correct because the molecule is branched so has weaker London Forces	NSOINSUT.
	D is not correct because the molecule is branched so has weaker London Forces	-XVX
		Alle Can all C

Question Number	Answer	Mark
7(a)	The only correct answer is A (addition) B is not correct because it is not an oxidation reaction	(1)
	<i>C</i> is not correct because it is not a polymerisation reaction	
	D is not correct because it is not a substitution reaction	

Question Number	Answer	Mark
7(b)	The only correct answer is B (oxidation)	(1)
	A is not correct because it is not an addition reaction	
	<i>C</i> is not correct because it is not a reduction reaction	
	D is not correct because it is not a substitution reaction	

Question Number	Answer	Mark	
8	The only correct answer is D (Z ionic radius 0.149, ionic charge +1)	(1)	
	A is not correct because the ion is smaller and more highly charged		
	B is not correct because the ion is smaller		NI-SOM
	C is not correct because the ion is smaller and more highly charged		onsusting, and
L		Ade: CONTROL OF THE OFFICE OFF	r.
		CONTROL OF THE O	
		1500	

Question Number	Answer	Mark
9	The only correct answer is D (0.264 g)	(1)
	A is not correct because the ratio used is 3:1 not 1:3	
	B is not correct because the ratio used is 1:1 not 1:3	
	<i>C</i> is not correct because the atomic numbers have been used to calculate the molar mass of carbon dioxide	

Question Number	Answer	Mark
10(a)	The only correct answer is C (5:3:8)	(1)
	A is not correct because y is wrong	
	B is not correct because x and z are wrong	
	D is not correct because x, y and z are wrong	

Question Number	Answer	Mark	
10(b)	The only correct answer is B (C ₂ O ₄ ²⁻)	(1)	
	A is not correct because the oxidation number of H has not changed		
	<i>C</i> is not correct because it is the oxidising agent		-dui
	D is not correct because the oxidation numbers of S and O have not changed		NSUSIFICANI'S
		Jete can address in the case of the case o	Ş.

Question Number	Answer	Mark
11	The only correct answer is C (+5) A is not correct because this is the charge on the ion	(1)
	B is not correct because, although this is a common oxidation number of phosphorus, it is incorrect here D is not correct because this hbecause been obtained using the oxidation number of oxygen because -1	

Question Number	Answer	Mark
12	The only correct answer is B $(2HCl(aq) + Ba(OH)_2(aq) \rightarrow BaCl_2(aq) + 2H_2O(l))$ A is not correct because it is a redox reaction	(1)
	<i>C</i> is not correct because it is a redox reaction	
	D is not correct because it is a redox reaction	

Question Number	Answer	Mark	
13	The only correct answer is C (475 cm ³)	(1)	
	A is not correct because this would only halve the concentration to $0.5 \text{ mol } dm^{-3}$		
	B is not correct as this would be the total volume to produce a concentration of 0.5 mol dm^{-3}		ursdini
	D is not correct because this is the total volume		Dupper Hilliseling
		ABE COM SOLUTION	₹×
		1816,001,000	

Question Number	Answer	Mark
14	The only correct answer is B (reactivity increases down the group) A is not correct because boiling temperature does increase down the group	(1)
	<i>C</i> is not correct because first ionisation energy does decrease down the group	
	D is not correct because electronegativity does decrease down the group	

Question Number	Answer	Mark
15	The only correct answer is A (purple)	(1)
	B is not correct because this is the colour of bromine in water	
	<i>C</i> is not correct because the solution is not colourless	
	D is not correct because the solution is not brown	

Question Number	Answer	Mark	
16	The only correct answer is C (HCl, HBr, HI, HF)	(1)	
	A is not correct because HF is the highest		
	B is not correct because HI is not the lowest		. 41,14
	D is not correct because HF is the highest and the rest of the order is wrong		SUSIHIANS
		Here Can DOCKALIDODING	^b ur,
		Bloccon	

Question Number	Answer	Mark
17	The only correct answer is C (hydrogen sulfide) A is not correct because bromine is formed	(1)
	<i>B</i> is not correct because hydrogen bromide is formed	
	D is not correct because sulfur dioxide is formed	

Question Number	Answer	Mark
18	The only correct answer is B (4.89 g)	(1)
	A is not correct because this is the mass of water lost using the atomic numbers of water	
	<i>C</i> is not correct because this is the mass of water lost	
	D is not correct because they have used the atomic numbers to calculate the molar mass of water	

(Total for Section A = 20 Marks)

Section B

Question Number	Answer	Additional Guidance	Mark
19(a)(i)			(1)
	• calculation of moles of ethanol	Example of calculation:	
		$1.19/46 = 0.025870/2.5870 \times 10^{-2} \text{(mol)}$	
		Ignore SF except 1 SF	

Question Number	Answer		Additional Guidance	Mark
19(a)(ii)			Example of calculation:	(2)
	• calculation of temperature change	(1)	$(63.9-21.6) = 42.3(^{\circ}C)$	
	• calculation of energy required	(1)	42.3 x 4.18 x 100= 17681.4 (J) / 17.6814 (kJ)	
			Units are not required in (a)(ii) but if given they must be correct. If values converted to kJ units must be given. Ignore signs Ignore SF except 1 SF Correct answer with no working scores 2	
			Ide lan ant	Lucomenner, Hereit

Question Number	Answer		Additional Guidance	Mark
Number 19(a)(iii)	 calculation of the energy per mole (calculation of the enthalpy change per mole) and sign and units answer to 2 or 3 SF 	(1) (1) (1)	Example of calculation: $17681 \div 0.025870 = 683480 \text{ (J mol}^{-1} \text{) / } 683.48 \text{ (kJ mol}^{-1} \text{)}$ $- 683480 \text{ J mol}^{-1} \text{/ } -683.48 \text{ kJ mol}^{-1}$ 680000 / 683000 / 680 / 683	(3)
			TE from 19(a)(i) and 19(a)(ii)	

19(a)(iv) An	n explanation that makes reference to the following points:			(2)
				()
	• incomplete combustion	(1)	Allow formation of soot / carbon / carbon monoxide Allow insufficient oxygen Ignore incomplete reaction/experiment Ignore not all the ethanol burned/reacted	
	• evaporation of the ethanol/alcohol/fuel	(1)	Ignore evaporation of the water/product Ignore non-standard conditions / heat loss / specific heat capacity of water / hotspots / systematic errors	ouspharting

Question Number	Answer		Additional Guidance	Mark
19(b)(i)	 An answer that makes reference to the following points: energy required to break one mole of a (specific) bond 	(1)		(2)
		()	Allow enthalpy/enthalpy change/ Energy/ energy change	
	 in the gaseous phase/state and averaged over a number of compounds/ different molecules/different compounds/different molecules 	(1)	Ignore just mean	
			Ignore any equations even if incorrect Ignore any mention of conditions	
			Do not award if there is any indication that it is averaged over a number of different types of bonds.	
			If neither M1 or M2 is scored 'The energy required to break a particular bond averaged out over a number of compounds' (1)	

Question Number	Answer		Additional Guidance	Mark
19(b)(ii)			Example of calculation	(3)
	• M1 Calculation of the energy change to break the bonds	(1)	Breaking 3 × C-H, 1 × C-O, 1× O-H, 1½ × O=O, (3 × 413) + (1× 358) +(1 × 464) +(1½ × 498)	
			$= (+) 2808(\text{ kJ mol}^{-1})$	
	• M2 Calculation of the energy change to make the bonds	(1)	Making 2 x C=O, 4 x O-H (2 x 805) + (4 x 464)	
			$= (-) 3466(\text{ kJ mol}^{-1})$	
	• M3 Calculation of the enthalpy change of the reaction	(1)	$= 2808(\text{ kJ mol}^{-1}) - 3466(\text{ kJ mol}^{-1})$	
			-658 (kJ mol ⁻¹) Ignore SF except 1SF Ignore units even if wrong	
			M3 TE on M1 and M2	
			+658 (kJ mol ⁻¹) scores (2) If the TE answer is + we do not need to see the sign. Correct answer with or without working scores (3)	SUM
			I	UPSUSHIM
			BAS CONT	Octornoonneet.

Question Number	Answer		Additional Guidance	Mark
19(c)	• correct Hess cycle with arrow on the RHS going down and correct balanced products in the box.	(1)	Example of calculation 2C (s,graphite) + 2H ₂ (g) + $\frac{1}{2}O_2(g) \rightarrow CH_3CHO(g)$ (+2 $\frac{1}{2}O_2$) (+2 $\frac{1}{2}O_2$) 2CO ₂ (g) + 2H ₂ O (l)	(3)
	• calculation of left-hand side	(1)	Ignore state symbols even if incorrect No TE on incorrect cycle $(2 x - 286) + (2 x - 394) = -1360 (kJ mol^{-1})$ An expression giving $-1360 (kJ mol^{-1})$ is sufficient	
	• Correct Answer and sign	(1)	$(-1360 \text{ (kJ mol}^{-1}) + 1167 \text{ (kJ mol}^{-1}))$ = -193 (kJ mol}^{-1}) If units are given they must be correct Allow kJ mol}^{-1} for kJ mol}^{-1} Correct answer with or without working scores M2 and M3 +193 (kJ mol}^{-1}) scores M2 TE on LHS	msteried
L1			(Total for Question 19 = 16 M μ^{10}	arts)

Question Number	Answer	Additional Guidance	Mark
20(a)(i)	• time taken for the (first appearance of the)precipitate (of silver halide) to form	Allow ppt / ppte for precipitate / cloudy/ silver halide Allow how fast / how quickly / rate for time	(1)

Question Number	Answer		Additional Guidance	Mark
20(a)(ii)	An explanation that makes reference to the following points:			(2)
	• 1-iodopropane	(1)	Allow any correct formula	
	• C-I bond weakest/lowest bond enthalpy	(1)	Do not award for simply saying the iodine /1-iodopropane bond is weakest	
			M2 depends on M1	
			Ignore reference to bond length	
			Ignore any references to reactivity, electronegativity/size	
				10 ¹
			10	28 March Charles and a start of the start of
			alla,	30 ¹⁰

Question Number	Answer	Additional Guidance	Mark
20 (b)	A mechanism that shows:		(2)
	• dipole on C-Cl bond and curly arrow from bond to Cl or just beyond (1)	Ignore S _N 2 transition state	
	• curly arrow from lone pair on OH^- ion to δ^+ carbon (1)		
		Do not award M2 if a metal hydroxide e.g. KOH has a covalent bond	
	H - C - C - C - C - C - C - OH + C - C - C - OH + C - C - OH + C - C - C - C - OH + C - C - C - C - OH + C - C - C - C - OH + C - C - C - OH + C - C - C - C - OH + C - C - C - OH + C - C - C - C - OH + C - C - C - C - OH + C - C - C - C - OH + C - C - C - C - C - OH + C - C - C - C - C - OH + C - C - C - C - C - C - OH + C - C - C - C - C - C - C - C - C - C	Ignore products	
	HHH OH	Penalise use of half arrows once only in M1 and M2	
		If $S_N 1$ mechanism M1 as above and then M2 awarded	
		for curly arrow from lone pair on OH ⁻ ion to C+ of carbocation	
			USHIPOII:SUN
		Alle Contract of the	Intradute
		15the Contra	

 Inswer that makes reference to the following points: London forces (and (permanent) dipole-(permanent) dipole forces) 	(1)	Accept dispersion forces / instantaneous dipole-(induced) dipole Allow van der Waals'	(4)
iodine atoms are more polarisable (than chlorine or bromine)/ 1-iodopropane has more electrons (than 1- chloropropane and 1-bromopropane)		Allow iodine has more electrons than chlorine/ bromine Ignore it is a larger molecule / larger molar mass	
(resulting in) stronger / more London Forces (so more energy required to overcome these forces)		Do not award iodine has stronger/more London forces. Allow van der Waals / dispersion forces Ignore just stronger intermolecular forces Do not award M3 if any indication that covalent bonds are being broken.	
(despite) 1-iodopropane having the weakest (permanent) dipole / (permanent) dipole forces	(1)	Allow 1-chloropropane has the strongest (permanent) dipole / (permanent) dipole forces Ignore abbreviations such as id-id and pd-pd	
•	bromine)/ 1-iodopropane has more electrons (than 1- chloropropane and 1-bromopropane) (resulting in) stronger / more London Forces (so more energy required to overcome these forces) (despite) 1-iodopropane having the weakest	bromine)/ 1-iodopropane has more electrons (than 1- chloropropane and 1-bromopropane) (1) (resulting in) stronger / more London Forces (so more energy required to overcome these forces) (1) (despite) 1-iodopropane having the weakest (1)	bromine ite information (numerication of the perimeter)bromine)/ 1-iodopropane has more electrons (than 1- chloropropane and 1-bromopropane)(1)(2)(2)(2)(3)(4)(5)(4)(5)(4)(5)(5)(6)(7)(7)(7

Question Number	Ans	swer	Additional Guidance	Mark
20 (d)	Skeletal formula	Name	Allow any order	(3)
	\/	Z-but-2-ene	Allow cis	
		<i>E</i> -but-2-ene	Allow <i>trans</i> If only one but-2-ene isomer is given the E/Z does not have to be identified	
		but-1-ene	Penalise displayed formulae only once	
			All 6 correct scores (3) 4-5 correct scores (2)	
			2-3 correct scores (1)	
			No TE of names of incorrect formulae	, sdift
			(Total for Question 20 = 12 M	anke) outstring

Question	Answer	Additional Guidance	Mark
Number			
21(a)(i)		Examples of equations	(2)
	• correct equation (1)	$2K(s) + 2H_2O(l) \longrightarrow 2KOH(aq) + H_2(g)$ OR	
		$K(s) + H_2O(l) \longrightarrow KOH(aq) + \frac{1}{2}H_2(g)$	
		Allow multiples	
	• correct state symbols (1)	M2 dependent on M1 or correct species and an unbalanced equation	

Question Number	Answer		Additional Guidance	Mark
21 (a)(ii)	An answer that makes reference to the following points:			(2)
	• K / potassium from 0 to +1 and oxidation	(1)		
	• H / hydrogen from +1 to 0 and reduction	(1)	If oxidation numbers are wrong or omitted one mark is scored for K oxidised and H reduced. or one mark is scored for K changes from 0 to +1 and H changes from +1 to 0.	
			Ade contract	ocuonuomosteniulisenu

Question	Answer	Additional Guidance	Mark
Number			
21(a)(iii)			(1)
	• lilac	Allow purple or lilac-purple	
		Do not award any other colour	

Question Number	Answer		Additional Guidance	Mark
21(b)(i)	• from (pale) pink	(1)	Do not award red/purple	(2)
	• to colourless	(1)	Award (1) mark for correct colours in reverse order	

Question	Answer		Additional Guidance	Mark
Number				
21(b)(ii)			Example of calculation	(4)
	• moles of HCl in titre	(1)	$12.8 \times 0.400 \div 1000 = 5.12 \times 10^{-3} / 0.00512 \text{ (mol)}$	
	• moles of MOH in the flask (= mol M)	(1)	$5.12 \times 10^{-3} / 0.00512 \times 10 = 5.12 \times 10^{-2} / 0.0512$	
	• molar mass of M	(1)	$0.37 \div 5.12 \times 10^{-2} = 7.23 \text{ (g mol}^{-1}\text{)}$	
			Ignore SF	
	• identification of M	(1)	Li	
			TE for each stage but for M4, M must be a Group 1 metal and is dependent on a calculation of a molar mass.	

Question Number	Answer	Additional Guidance	Mark
21(c)	 A description that makes reference to the following points: (some) oil weighed with M/ the mass of M is lower than the mass of material weighed/ (1) 	Ignore mass increased/decreased/mass different Allow fewer moles of HCl (required in the titration)/lower titration value	(2)
	• relative atomic mass of M will be greater (1)		

(Total for Question 21 = 13 Marks)

(Total for Section B = 41 Marks)

Section C

Question Number	Answer		Additional Guidance	Mark
22(a)	 A description that makes reference to the following points: advantage: (it is produced from) renewable / sustainable (resources) or it produces fewer emissions (of CO₂ / greenhouse gases) 	(1)	Do not award no greenhouse gases Ignore cleaner fuel/ more efficient combustion Ignore reference to engine modifications/carbon neutrality/using less oil/good for the environment	(2)
	 disadvantage: it uses up land (that could be used for food production)/uses a food crop that could be eaten or it produces less energy (per mole / g) 	(1)	Ignore just ' it uses lots of crops' Ignore references to time to grow crops/time to carry out fermentation/cost Ignore produces CO ₂ Do not award any references to ozone depletion	

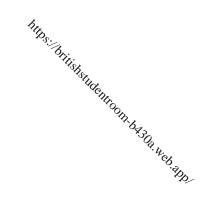
Question Number	Answer	Additional Guidance	Mark
Question Number 22(b)	• ethanol can be oxidised	Allow ethanol can react with oxygen Allow possible (organic) products of oxidation e.g. carboxylic acid / ethanoic acid / aldehyde / ethanal Ignore just 'oxidation takes place' or 'it can be oxidised' Allow to ensure only anaerobic respiration takes place. Allow aerobic respiration would take place (in the air) (producing water and carbon dioxide)	(1)
		Do not award yeast reacts with oxygen Do not award to prevent combustion/ethanol would burn	

Question Number	Answer	Additional Guidance	Mark
22(c)	• (fractional) distillation	Allow distil the mixture	(1)

Question Number	Answer	Additional Guidance	Mark
22(d)(i)	• ethanol forms hydrogen bonds (with water)	Ignore both are polar/ they are miscible Ignore comments about solubility/like dissolves like	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
		late Convolution	^{SC}

Question Number	Answer	Additional Guidance	Mark
22(d)(ii)	An answer that makes reference to one of the following points:		(1)
	• (water can cause) corrosion / rusting	Ignore damages the engine	
	• reduce the energy efficiency of the engine/fuel/ethanol	Allow water does not burn/ fewer km per l/ miles per gallon Allow just 'reduced efficiency'	
	• causes phase separation of the fuel		
		Ignore references to ethanol being diluted	

Question Number	An	swer	Additional Guidance	Mark
*22(e)(i)	 This question assesses the student's ability to show a coherent and logically structured Answer with linkages and fully sustained reasoning. Marks are awarded for indicative content and for how the Answer is structured and shows lines of reasoning. The following table shows how the Marks should be awarded for indicative content. 		Guidance on how the Mark scheme should be applied. The Mark for indicative content should be added to the Mark for lines of reasoning. For example, a response with five indicative Marking points that is partially structured with some linkages and lines of reasoning scores 4	
	Number of indicative Marking points seen in Answer	Number of Marks awarded for indicative Marking points	Marks (3 Marks for indicative content and 1 Mark for partial structure and some linkages and lines of reasoning).	
	6 5-4 3-2	4 3 2	If there were no linkages between the points, then the same indicative Marking points would yield an overall	
		1 0	score of 3 Marks (3 Marks for indicative content and no Marks for linkages).	
	The following table shows how for structure and lines of reaso	v the Marks should be awarded ning. Number of Marks awarded	In general it would be expected that 5 or 6 indicative points would get 2	
		for structure of Answer and sustained lines of reasoning	reasoning Marks, and 3 or 4 indicative points would get 1 Mark for reasoning, and 0, 1 or 2 indicative points would score zero Marks for reasoning.	


Answer is partially structured with some	1	
linkages and lines of		
reasoning		
Answer has no linkages	0	
between points and is		
unstructured		
Indicative content		
IP1 if temperature increases, r particles have energy greater the		
IP2 if temperature increases, y reaction is exothermic/ reaction direction)	ield decreases (because forward n moves in the endothermic	Allow reaction shifts to the left as an alternative to decreases yield
IP3 if pressure increases, rate is more crowded and) collision fr	ncreases (because particles are requency increases)	
IP4 if pressure increases, yield particles on the RHS of the equ		Allow reaction shifts to the right as an alternative to increase yield Ignore fewer atoms on the RHS
IP5 the catalyst allows the use (for the same rate)	of lower temperature/less energy	Ignore any reference to how the catalyst works and the effect of catalyst on rate and yield
IP6 high pressure (and temper	ature) are very expensive	Allow conditions used are compromise between yield and cost / rate and cost Allow reverse argument for all points
		Allow reverse argument for all points

Question Number	Answer		Additional Guidance	Mark
22 (e)(ii)	 An explanation that makes reference to the following points: correct labelling of both axes. activation energy labelled activation energy with a catalyst shown to the left of the uncatalysed activation energy. more particles have energy greater than the activation energy with the catalyst / more particles to the right of the activation energy / greater area to the right of the activation energy 	(1) (1) (1)	number/fraction of molecules (With energy E)	(4)
			Alle Republic	uoonuapmontentudi sin

Question Number	Answer	Additional Guidance	Mark
22(f)(i)	• large(r) surface area (so faster rate of reaction)	Accept more (active) sites Allow more / greater surface Ignore greater area / area of contact	(1)

Question Number	Answer		Additional Guidance	Mark
22(f)(ii)	A description that makes reference to the following points:			(2)
	• remove the ethanol	(1)	Accept condense the ethanol	
	• recycle the (unused) reactants	(1)		
			Allow remove the ethanol to shift the eqm to the right scores (2)	
			Ignore any reference to temperature, pressure or catalyst Ignore any reference to adding more reactants	

(Total for Question 22 = 19 Marks) (Total for Section C = 19 Marks) TOTAL FOR PAPER = 80 MARKS

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom